1
|
Iizumi K, Yamaguchi J. Transformative reactions in nitroarene chemistry: C-N bond cleavage, skeletal editing, and N-O bond utilization. Org Biomol Chem 2025. [PMID: 39831336 DOI: 10.1039/d4ob01928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Nitroarenes are highly versatile building blocks in organic synthesis, playing a pivotal role in various reactions. Common transformations involving nitroarenes include nucleophilic aromatic substitution (SNAr) reactions, where the nitro group functions both as a potent electron-withdrawing group that activates the aromatic ring and as a leaving group facilitating the substitution. Additionally, the direct transformation of nitro groups, such as reduction-driven syntheses of amines and carboxylic acids, as well as ipso-substitution SNAr reactions, have been extensively explored. Interactions between ortho-nitro groups and neighboring substituents also provide unique opportunities for selective transformations. However, beyond these well-established processes, direct transformations of nitro groups have been relatively limited. In recent years, significant advancements have been made in alternative methodologies for nitro group transformations. This review focuses on the latest progress in novel transformations of nitroarenes, with emphasis on three major categories: (i) functional group transformations involving C-N bond cleavage in nitroarenes, (ii) skeletal editing via nitrene intermediates generated by N-O bond cleavage, and (iii) the utilization of nitroarenes as an oxygen source through N-O bond cleavage. These developments under-score the expanding utility of nitroarenes in modern organic synthesis.
Collapse
Affiliation(s)
- Keiichiro Iizumi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| |
Collapse
|
2
|
Konwar M, Das T, Das A. Parts-Per-Million Level Loading Cyclometalated Ru(II)-NHC Catalyzed Selective Oxidation of Olefins to Carbonyls. Chemistry 2025; 31:e202403135. [PMID: 39563099 DOI: 10.1002/chem.202403135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Oxidative cleavage of olefins is a useful reaction in organic synthesis. The most well-known catalytic system is the osmium based Lemieux-Johnson catalyst, which generally requires high catalyst loading and tends to suffer from rapid overoxidation to produce the acid predominantly. Hence, the development of a mild, general, and selective method toward the oxidative cleavage of alkenes to carbonyl compounds is highly desired. In this work, a highly efficient ruthenium-based catalyst for olefin oxidation has been demonstrated by employing a fused π-conjugated imidazo[1,5-a]quinoxaline (ImQx) based NHC ligand with bidentate C(carbanion) CNHC motif. Strong C-donor ligands, paired with a rigid backbone and ruthenium redox activity, provided exceptionally high catalytic activity and a long lifetime for olefin oxidation. Complex showed high catalytic activity and a long lifetime, TONs are several million. The catalyst tolerates numerous functional groups and can be applicable to challenging biomass, natural products, sugar, amino acids, and fatty acid-derived substrates. Based on kinetic studies, thermodynamic activation parameters, and DFT study, the mechanistic finding demonstrated that [3+2] cycloaddition reaction is the key step in the oxidation process. The use of the by-product NaIO3 in the catalytic efficiency has been disclosed for the first time.
Collapse
Affiliation(s)
- Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Tapashi Das
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| |
Collapse
|
3
|
You H, Lim SH, Cho DW. Photooxidative C-C double bond cleavage of β-enaminocarbonyl compounds: toward selective N-formylation of amines. Org Biomol Chem 2024; 23:108-112. [PMID: 39545313 DOI: 10.1039/d4ob01688b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
A photooxidative C-C double bond cleavage of electron-deficient β-enaminocarbonyl compounds possessing a silyl group at the α-position to the nitrogen atom using methylene blue (MB) as the photosensitizer was explored. Photochemically generated 1O2 was added across the CC bond with the aid of a tethered silyl group to cleave it and form N-formylamines. This reaction protocol exhibited compatibility with numerous β-enaminocarbonyl substrates, including those with various N-alkyl, N-benzyl and N-aryl substituents.
Collapse
Affiliation(s)
- Hayeon You
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Suk Hyun Lim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Dae Won Cho
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
4
|
Konwar M, Das A. Cyclometalated Ruthenium-Complex-Catalyzed Selective Oxidation of Olefins to Carbonyls. Org Lett 2024; 26:10235-10240. [PMID: 39568370 DOI: 10.1021/acs.orglett.4c03595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Cyclometalated ruthenium(II)-complex-catalyzed selective oxidative scission of olefins to carbonyls is described. A strong C-donor ligand, paired with a rigid backbone and redox activity of ruthenium, provided high catalytic activity and a long lifetime for olefin oxidation. The catalyst tolerates numerous functional groups and applies to challenging biomass-, natural-product-, sugar-, amino-acid-, and fatty-acid-derived substrates.
Collapse
Affiliation(s)
- Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Kao TY, Chung CA, Lee YP. Rate Coefficient and Branching Ratio for the Formation of Criegee Intermediate S yn-/A nti-CH 3CHOO from CH 3CHI + O 2 and the Self-Reaction of S yn-/A nti-CH 3CHOO Determined with Simultaneous IR/UV Probes. J Phys Chem A 2024; 128:9453-9461. [PMID: 39427260 PMCID: PMC11533191 DOI: 10.1021/acs.jpca.4c06588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
A flow reactor coupled with a light-emitting diode at 286 nm, an infrared quantum-cascade laser near 11 μm, and an ultraviolet laser at 335 nm was implemented to probe the precursor CH3CHI2, syn-CH3CHOO, and anti/syn-CH3CHOO, respectively, in the reaction of CH3CHI + O2. The branching between syn- and anti-CH3CHOO was determined to be ≈80:20 from two methods. The concentration temporal profiles of anti-CH3CHOO, derived on comparison of infrared and ultraviolet profiles, yielded the rate coefficient for the self-reaction of anti-CH3CHOO, kself anti = (6 ± 2) × 10-10 cm3 molecule-1 s-1, ∼4 times the corresponding value, kself syn = (1.4 ± 0.3) × 10-10 cm3 molecule-1 s-1, for syn-CH3CHOO; the rate coefficient for the cross-reaction between syn-CH3CHOO and anti-CH3CHOO was estimated to be (2.1 ± 0.6) × 10-10 cm3 molecule-1 s-1. With determined concentrations of syn-CH3CHOO and self-reaction rate coefficients, the rate coefficient for the formation of CH3CHOO from CH3CHI + O2 was determined to be kform = (3.8 ± 0.7) × 10-12 cm3 molecule-1 s-1 at 298 K, ∼45% of previous reports.
Collapse
Affiliation(s)
- Tang-Yu Kao
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chen-An Chung
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yuan-Pern Lee
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center
for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
6
|
Xia Y, Long B, Liu A, Truhlar DG. Reactions with Criegee intermediates are the dominant gas-phase sink for formyl fluoride in the atmosphere. FUNDAMENTAL RESEARCH 2024; 4:1216-1224. [PMID: 39431129 PMCID: PMC11489503 DOI: 10.1016/j.fmre.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
Atmospheric oxidation processes are of central importance in atmospheric climate models. It is often considered that volatile organic molecules are mainly removed by hydroxyl radical; however, the kinetics of some reactions of hydroxyl radical with volatile organic molecules are slow. Here we report rate constants for rapid reactions of formyl fluoride with Criegee intermediates. These rate constants are calculated by dual-level multistructural canonical variational transition state theory with small-curvature tunneling (DL-MS-CVT/SCT). The treatment contains beyond-CCSD(T) electronic structure calculations for transition state theory, and it employs validated density functional input for multistructural canonical variational transition state theory with small-curvature tunneling and for variable-reaction-coordinate variational transition state theory. We find that the M11-L density functional has higher accuracy than CCSD(T)/CBS for the HC(O)F + CH2OO and HC(O)F + anti-CH3CHOO reactions. We find significant negative temperature dependence in the ratios of the rate constants for HC(O)F + CH2OO/anti-CH3CHOO to the rate constant for HC(O)F + OH. We also find that different Criegee intermediates have different rate-determining-steps in their reactions with formyl fluoride, and we find that the dominant gas-phase removal mechanism for HC(O)F in the atmosphere is the reaction with CH2OO and/or anti-CH3CHOO Criegee intermediates.
Collapse
Affiliation(s)
- Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Ai Liu
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, United States
| |
Collapse
|
7
|
Liao K, Fang Y, Sheng L, Chen J, Huang Y. Water mediated redox-neutral cleavage of arylalkenes via photoredox catalysis. Nat Commun 2024; 15:6227. [PMID: 39043702 PMCID: PMC11266562 DOI: 10.1038/s41467-024-50624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Cleavage of carbon-carbon bonds remains a challenging task in organic synthesis. Traditional methods for splitting Csp2=Csp2 bonds into two halves typically involve non-redox (metathesis) or oxidative (ozonolysis) mechanisms, limiting their synthetic potential. Disproportionative deconstruction of alkenes, which yields one reduced and one oxidized fragment, remains an unexplored area. In this study, we introduce a redox-neutral approach for deleting a Csp2 carbon unit from substituted arylalkenes, resulting in the formation of an arene (reduction) and a carbonyl product (oxidation). This transformation is believed to proceed through a mechanistic sequence involving visible-light-promoted anti-Markovnikov hydration, followed by photoredox cleavage of Csp3-Csp3 bond in the alcohol intermediate. A crucial consideration in this design is addressing the compatibility between the highly reactive oxy radical species in the latter step and the required hydrogen-atom-transfer (HAT) reagent for both steps. We found that ethyl thioglycolate serves as the optimal hydrogen-atom shuttle, offering remarkable chemoselectivity among multiple potential HAT events in this transformation. By using D2O, we successfully prepared dideuteromethylated (-CD2H) arenes with good heavy atom enrichment. This work presents a redox-neutral alternative for alkene deconstruction, with considerable potential in late-stage modification of complex molecules.
Collapse
Affiliation(s)
- Ke Liao
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Yuqi Fang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Lei Sheng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
8
|
Murtaza B, Wang L, Li X, Saleemi MK, Nawaz MY, Li M, Xu Y. Cold plasma: A success road to mycotoxins mitigation and food value edition. Food Chem 2024; 445:138378. [PMID: 38383214 DOI: 10.1016/j.foodchem.2024.138378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/09/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Mycotoxins are common in many agricultural products and may harm both animals and humans. Dietary mycotoxins are reduced via physical, chemical, and thermal decontamination methods. Chemical residues are left behind after physical and chemical treatments that decrease food quality. Since mycotoxins are heat-resistant, heat treatments do not completely eradicate them. Cold plasma therapy increases food safety and shelf life. Cold plasma-generated chemical species may kill bacteria quickly at room temperature while leaving no chemical residues. This research explains how cold plasma combats mold and mycotoxins to guarantee food safety and quality. Fungal cells are damaged and killed by cold plasma species. Mycotoxins are also chemically broken down by the species, making the breakdown products safer. According to a preliminary cold plasma study, plasma may enhance food shelf life and quality. The antifungal and antimycotoxin properties of cold plasma benefit fresh produce, agricultural commodities, nuts, peppers, herbs, dried meat, and fish.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | | | | | - Mengyao Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China.
| |
Collapse
|
9
|
Woo W, Tian L, Lum M, Canchola A, Chen K, Lin YH. Ozonolysis of Terpene Flavor Additives in Vaping Emissions: Elevated Production of Reactive Oxygen Species and Oxidative Stress. Chem Res Toxicol 2024; 37:981-990. [PMID: 38776470 PMCID: PMC11187633 DOI: 10.1021/acs.chemrestox.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The production of e-cigarette aerosols through vaping processes is known to cause the formation of various free radicals and reactive oxygen species (ROS). Despite the well-known oxidative potential and cytotoxicity of fresh vaping emissions, the effects of chemical aging on exhaled vaping aerosols by indoor atmospheric oxidants are yet to be elucidated. Terpenes are commonly found in e-liquids as flavor additives. In the presence of indoor ozone (O3), e-cigarette aerosols that contain terpene flavorings can undergo chemical transformations, further producing ROS and reactive carbonyl species. Here, we simulated the aging process of the e-cigarette emissions in a 2 m3 FEP film chamber with 100 ppbv of O3 exposure for an hour. The aged vaping aerosols, along with fresh aerosols, were collected to detect the presence of ROS. The aged particles exhibited 2- to 11-fold greater oxidative potential, and further analysis showed that these particles formed a greater number of radicals in aqueous conditions. The aging process induced the formation of various alkyl hydroperoxides (ROOH), and through iodometric quantification, we saw that our aged vaping particles contained significantly greater amounts of these hydroperoxides than their fresh counterparts. Bronchial epithelial cells exposed to aged vaping aerosols exhibited an upregulation of the oxidative stress genes, HMOX-1 and GSTP1, indicating the potential for inhalation toxicity. This work highlights the indirect danger of vaping in environments with high ground-level O3, which can chemically transform e-cigarette aerosols into new particles that can induce greater oxidative damage than fresh e-cigarette aerosols. Given that the toxicological characteristics of e-cigarettes are mainly associated with the inhalation of fresh aerosols in current studies, our work may provide a perspective that characterizes vaping exposure under secondhand or thirdhand conditions as a significant health risk.
Collapse
Affiliation(s)
- Wonsik Woo
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
| | - Linhui Tian
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Michael Lum
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Alexa Canchola
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
| | - Kunpeng Chen
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| |
Collapse
|
10
|
Hussain WA, Parasram M. Recent Advances in Photoinduced Oxidative Cleavage of Alkenes. SYNTHESIS-STUTTGART 2024; 56:1775-1786. [PMID: 39144683 PMCID: PMC11323056 DOI: 10.1055/s-0042-1751534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Oxidative cleavage of alkenes leading to valuable carbonyl derivatives is a fundamental transformation in synthetic chemistry. In particular, ozonolysis is the mainstream method for the oxidative cleavage of alkenes that has been widely implemented in the synthesis of natural products and pharmaceutically relevant compounds. However, due to the toxicity and explosive nature of ozone, alternative approaches employing transition metals and enzymes in the presence of oxygen and/or strong oxidants have been developed. These protocols are often conducted under harsh reaction conditions that limit the substrate scope. Photochemical approaches can provide milder and more practical alternatives for this synthetically useful transformation. In this review, we outline recent visible-light-promoted oxidative cleavage reactions that involve photocatalytic activation of oxygen via electron transfer and energy transfer. Also, an emerging field featuring visible-light-promoted oxidative cleavage under anaerobic conditions is discussed. The methods highlighted in this review represent a transformative step toward more sustainable and efficient strategies for the oxidative cleavage of alkenes.
Collapse
Affiliation(s)
- Waseem A Hussain
- Department of Chemistry, New York University, 29 Washington Pl, New York, New York 10003, USA
| | - Marvin Parasram
- Department of Chemistry, New York University, 29 Washington Pl, New York, New York 10003, USA
| |
Collapse
|
11
|
Lu L, Wu B, He X, Zhao F, Feng X, Wang D, Qiu Z, Han T, Zhao Z, Tang BZ. Multiple photofluorochromic luminogens via catalyst-free alkene oxidative cleavage photoreaction for dynamic 4D codes encryption. Nat Commun 2024; 15:4647. [PMID: 38821919 PMCID: PMC11143217 DOI: 10.1038/s41467-024-49033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Controllable photofluorochromic systems with high contrast and multicolor in both solutions and solid states are ideal candidates for the development of dynamic artificial intelligence. However, it is still challenging to realize multiple photochromism within one single molecule, not to mention good controllability. Herein, we report an aggregation-induced emission luminogen TPE-2MO2NT that undergoes oxidation cleavage upon light irradiation and is accompanied by tunable multicolor emission from orange to blue with time-dependence. The photocleavage mechanism revealed that the self-generation of reactive oxidants driving the catalyst-free oxidative cleavage process. A comprehensive analysis of TPE-2MO2NT and other comparative molecules demonstrates that the TPE-2MO2NT molecular scaffold can be easily modified and extended. Further, the multicolor microenvironmental controllability of TPE-2MO2NT photoreaction within polymer matrices enables the fabrication of dynamic fluorescence images and 4D information codes, providing strategies for advanced controllable information encryption.
Collapse
Affiliation(s)
- Lin Lu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Bo Wu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Xinyuan He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Fen Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Xing Feng
- School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
| |
Collapse
|
12
|
Yaremenko IA, Fomenkov DI, Budekhin RA, Radulov PS, Medvedev MG, Krivoshchapov NV, He LN, Alabugin IV, Terent'ev AO. Interrupted Dance of Five Heteroatoms: Reinventing Ozonolysis to Make Geminal Alkoxyhydroperoxides from C═N Bonds. J Org Chem 2024; 89:5699-5714. [PMID: 38564503 DOI: 10.1021/acs.joc.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Four heteroatoms dance in the cascade of four pericyclic reactions initiated by ozonolysis of C═N bonds. Switching from imines to semicarbazones introduces the fifth heteroatom that slows this dance, delays reaching the thermodynamically favorable escape path, and allows efficient interception of carbonyl oxides (Criegee intermediates, CIs) by an external nucleophile. The new three-component reaction of alcohols, ozone, and oximes/semicarbazones greatly facilitates synthetic access to monoperoxyacetals (alkoxyhydroperoxides).
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Dmitri I Fomenkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Roman A Budekhin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| |
Collapse
|
13
|
Huo Y, An Z, Li M, Jiang J, Zhou Y, Xie J, Zhang J, He M. Atmospheric fate of typical liquid crystal monomers in the tropospheric gas, liquid, and granular phases. J Environ Sci (China) 2024; 136:348-360. [PMID: 37923444 DOI: 10.1016/j.jes.2022.12.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/25/2022] [Accepted: 12/25/2022] [Indexed: 11/07/2023]
Abstract
Mineral aerosol particles significantly impact environmental risk prediction of liquid crystal monomers (LCMs). In this work, we investigated the reaction mechanisms and kinetics of three typical LCMs (4-cyano-3,5-difluorophenyl 4-ethylbenzoate (CEB-2F), 4-cyano-3-fluorophenyl 4-ethylbenzoate (CEB-F), and 4-cyanophenyl 4-ethylbenzoate (CEB)) with ozone (O3) in the atmospheric gas, liquid, and particle phases employing density functional theory (DFT). Here, O3 is prone to add to the benzene ring without F atom(s) in the selected LCMs. The ozonolysis products are aldehydes, carboxylic acids, epoxides, and unsaturated hydrocarbons containing aromatic rings. Those products undergo secondary ozonolysis to generate small molecular compounds such as glyoxal, which is beneficial for generating secondary organic aerosol (SOA). Titanium dioxide (TiO2), an essential component of mineral aerosol particles, has good adsorption properties for LCMs; however, it slightly reduces the reactivity with O3. At 298 K, the reaction rate constant of the selected LCMs reacting with O3 in the gas and atmospheric liquid phases is (2.74‒5.53) × 10-24 cm3/(mol·sec) and 5.58 × 10-3‒39.1 L/(mol·sec), while CEB-2F reacting with O3 on (TiO2)6 cluster is 1.84 × 10-24 cm3/(mol·sec). The existence of TiO2 clusters increases the persistence and long-distance transportability of LCMs, which enlarges the contaminated area of LCMs.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jianguo Zhang
- Jinan Environmental Research Academy, Jinan 250000, China.
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
14
|
Behera B, Lee YP. Detailed mechanism and kinetics of reactions of anti- and syn-CH 3CHOO with HC(O)OH: infrared spectra of conformers of hydroperoxyethyl formate. Phys Chem Chem Phys 2024; 26:1950-1966. [PMID: 38116617 DOI: 10.1039/d3cp04086k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The reaction of CH3CHOO with HC(O)OH has a large rate coefficient so that it might play a significant role in the formation of secondary organic aerosols (SOA) in the atmosphere. We investigated the detailed mechanism and kinetics of the reactions of Criegee intermediate anti- and syn-CH3CHOO with HC(O)OH with a step-scan Fourier-transform infrared spectrometer by recording time-resolved absorption spectra of transient species and end products produced upon irradiation at 308 nm of a flowing mixture of CH3CHI2/O2/HC(O)OH at 298 K and 60 Torr. Thirteen bands of hydroperoxyethyl formate [HC(O)OCH(CH3)OOH, HPEF], the hydrogen-transferred adduct of CH3CHOO and HC(O)OH, were observed. Careful analysis deconvoluted these bands into absorption of three conformers of HPEF: a transient HPEF (P2*/P3*), a more stable open-form HPEF (mainly P2), and a stable intramolecularly hydrogen-bonded HPEF (mainly P1). At a later period, the end-product formic acetic anhydride [CH3C(O)OC(O)H, FAA], a dehydrated product of HPEF, was observed; this end-product is the same as that observed in CH2OO + CH3C(O)OH. Theoretical calculations on the reaction pathway scheme were performed to elucidate these reaction paths. Syn-CH3CHOO + HC(O)OH produced conformers P2*/P3* initially, followed by conversion to conformers P2, whereas anti-CH3CHOO + HC(O)OH produced conformers P2 and P1 directly. We derived a rate coefficient for the reaction CH3CHOO + HC(O)OH to be k = (2.1 ± 0.7) × 10-10 cm3 molecule-1 s-1 at 298 K and 40-80 Torr; the rate coefficient appeared to show insignificant conformation-specificity. We also found that FAA was produced mainly from the dehydration of the open-form HPEF (P2) with a rate coefficient k = (1420 ± 70) s-1; the intramolecularly hydrogen-bonded HPEF (P1) is stable.
Collapse
Affiliation(s)
- Bedabyas Behera
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 300093, Taiwan.
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 300093, Taiwan.
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
15
|
Xue W, Jiang Y, Lu H, You B, Wang X, Tang C. Direct C-C Double Bond Cleavage of Alkenes Enabled by Highly Dispersed Cobalt Catalyst and Hydroxylamine. Angew Chem Int Ed Engl 2023; 62:e202314364. [PMID: 37964715 DOI: 10.1002/anie.202314364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
The utilization of a single-atom catalyst to break C-C bonds merges the merits of homogeneous and heterogeneous catalysis and presents an intriguing pathway for obtaining high-value-added products. Herein, a mild, selective, and sustainable oxidative cleavage of alkene to form oxime ether or nitrile was achieved by using atomically dispersed cobalt catalyst and hydroxylamine. Diversified substrate patterns, including symmetrical and unsymmetrical alkenes, di- and tri-substituted alkenes, and late-stage functionalization of complex alkenes were demonstrated. The reaction was successfully scaled up and demonstrated good performance in recycling experiments. The hot filtration test, catalyst poisoning and radical scavenger experiment, time kinetics, and studies on the reaction intermediate collectively pointed to a radical mechanism with cobalt/acid/O2 promoted C-C bond cleavage as the key step.
Collapse
Affiliation(s)
- Wenxuan Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Yijie Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Hongcheng Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Xu Wang
- Institute of Advanced Science Facilities, Shenzhen (IASF), No. 268 Zhenyuan Road, Guangming District, Shenzhen, 518107, China
| | - Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| |
Collapse
|
16
|
Xiong J, Yuan X, Zong MH, Wu X, Lou WY. Iron-incorporated metal-organic frameworks for oxidative cleavage of trans-anethole to p-anisaldehyde. NANOSCALE 2023. [PMID: 38051109 DOI: 10.1039/d3nr04795d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
An iron-incorporated Zn-MOF catalyst Zn-bpydc·Fe was fabricated for the oxidative cleavage of trans-anethole to p-anisaldehyde under facile conditions, under 1 atm of O2. The Fe coordinated bipyridine serves as the catalytically active center inside the structural skeleton of Zn-MOFs. This work affords a new avenue for the mild oxidation of olefins.
Collapse
Affiliation(s)
- Jun Xiong
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Xin Yuan
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Xiaoling Wu
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| |
Collapse
|
17
|
Wu H, Fu Y, Fu B, Zhang DH. Roaming Dynamics in Hydroxymethyl Hydroperoxide Decomposition Revealed by the Full-Dimensional Potential Energy Surface of the CH 2OO + H 2O Reaction. J Phys Chem A 2023; 127:9098-9105. [PMID: 37870501 DOI: 10.1021/acs.jpca.3c05818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The CH2OO + H2O reaction is an important atmospheric process that leads to the formation of formic acid (HCOOH) and water via the intermediate hydroxymethyl hydroperoxide (HOCH2OOH, HMHP). We investigated the intricacies of this process by employing quasiclassical trajectory calculations on an accurate, full-dimensional ab initio potential energy surface (PES). In addition to the direct mechanism via the transition state (TS), an interesting roaming mechanism was found to play the predominant role in producing H2O and HCOOH. This roaming pathway is featured as the near direct dissociation of HMHP into OH and hydroxymethoxy radical, followed by the retraction of OH and abstraction of the H atom, culminating in the formation of H2O. Due to the longer interaction time of the roaming mechanism, less product translational energy was released, but more internal energies of HCOOH were obtained, as compared with the direct TS mechanism. The enhanced yield of H2O and formic acid achieved through roaming dynamics underscores the significance of dynamics simulations based on an accurate full-dimensional PES. This work provides new insights into the dynamics of the CH2OO + H2O reaction and its implications for atmospheric chemistry.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Su ZS, Lee YP. Infrared Characterization of the Products of the Reaction between the Criegee Intermediate CH 3CHOO and HCl. J Phys Chem A 2023; 127:6902-6915. [PMID: 37561815 DOI: 10.1021/acs.jpca.3c03527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The rapid reactions between Criegee intermediates and hydrogen halides play important roles in atmospheric chemistry, particularly in the polluted urban atmosphere. Employing a step-scan Fourier transform spectrometer, we recorded infrared absorption spectra of transient species and end products of the reaction CH3CHOO + HCl in a flowing mixture of CH3CHI2/HCl/O2/N2 irradiated at 308 nm. Bands at 1453.6, 1383.7, 1357.9, 1323.8, 1271.8, 1146.2, 1098.2, 1017.5, 931.5, and 847.0 cm-1 were observed and assigned to the anti-conformer of chloroethyl hydroperoxide (anti-CEHP or anti-CH3CHClOOH). In addition, absorption bands of H2O and acetyl chloride [CH3C(O)Cl, at 1819.1 cm-1] were observed; some of them were produced from the secondary reactions of CH3CHClO + O2 → CH3C(O)Cl + HO2 and OH + HCl → H2O + Cl, according to temporal profiles of H2O and CH3C(O)Cl. These secondary reactions are conceivable because the nascent formation of CH3CHClO + OH via decomposition of internally excited CEHP was predicted by theory, and both HCl and O2 are major species in the system. The nascent formation of CH3CHClO + OH appears to be more important than that of CH3C(O)Cl + H2O, consistent with theoretical predictions. By adding methanol to deplete some anti-CH3CHOO, we observed only anti-CEHP with a reduced proportion; this observation indicates that the conversion from syn-CEHP, expected to be produced from syn-CH3CHOO + HCl, to anti-CEHP is facile. We also estimated the overall rate coefficient of the reaction syn-/anti-CH3CHOO + HCl to be kHCl = (2.7 ± 1.0) × 10-10 cm3 molecule-1 s-1 at ∼70 Torr and 298 K; this rate coefficient is about six times the only literature value kHClsyn = (4.77 ± 0.95) × 10-11 cm3 molecule-1 s-1 reported for syn-CH3CHOO + HCl by Liu et al., indicating that anti-CH3CHOO reacts with HCl much more rapidly than syn-CH3CHOO.
Collapse
Affiliation(s)
- Zih-Syuan Su
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
19
|
Wu H, Fu Y, Dong W, Fu B, Zhang DH. Full-dimensional neural network potential energy surface and dynamics of the CH 2OO + H 2O reaction. RSC Adv 2023; 13:13397-13404. [PMID: 37143908 PMCID: PMC10153484 DOI: 10.1039/d3ra02069j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023] Open
Abstract
An accurate global full-dimensional machine learning-based potential energy surface (PES) of the simplest Criegee intermediate (CH2OO) reaction with water monomer was developed based on the high level of extensive CCSD(T)-F12a/aug-cc-pVTZ calculations. This analytical global PES not only covers the regions of reactants to hydroxymethyl hydroperoxide (HMHP) intermediates, but also different end product channels, which facilities both the reliable and efficient kinetics and dynamics calculations. The rate coefficients calculated by the transition state theory with the interface to the full-dimensional PES agree well with the experimental results, indicating the accuracy of the current PES. Extensive quasi-classical trajectory (QCT) calculations were performed both from the bimolecular reaction CH2OO + H2O and from HMHP intermediate on the new PES. The product branching ratios of hydroxymethoxy radical (HOCH2O, HMO) + OH radical, formaldehyde (CH2O) + H2O2 and formic acid (HCOOH) + H2O were calculated. The reaction yields dominantly HMO + OH, because of the barrierless pathway from HMHP to this channel. The computed dynamical results for this product channel show the total available energy was deposited into the internal rovibrational excitation of HMO, and the energy release in OH and translational energy is limited. The large amount of OH radical found in the current study implies that the CH2OO + H2O reaction can provide crucially OH yield in Earth's atmosphere.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yanlin Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Wenrui Dong
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Hefei National Laboratory Hefei 230088 China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Hefei National Laboratory Hefei 230088 China
| |
Collapse
|
20
|
Liang Q, Zhu C, Yang J. Water Charge Transfer Accelerates Criegee Intermediate Reaction with H 2O - Radical Anion at the Aqueous Interface. J Am Chem Soc 2023; 145:10159-10166. [PMID: 37011411 DOI: 10.1021/jacs.3c00734] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Criegee intermediates (CIs) are important carbonyl oxides that may react with atmospheric trace chemicals and impact the global climate. The CI reaction with water has been widely studied and is a main channel for trapping CIs in the troposphere. Previous experimental and computational reports have largely focused on reaction kinetic processes in various CI-water reactions. The molecular-level origin of CI's interfacial reactivity at the water microdroplet surface (e.g., as found in aerosols and clouds) is unclear. In this study, by employing the quantum mechanical/molecular mechanical (QM/MM) Born-Oppenheimer molecular dynamics with the local second-order Møller-Plesset perturbation theory, our computational results reveal a substantial water charge transfer up to ∼20% per water, which creates the surface H2O+/H2O- radical pairs to enhance the CH2OO and anti-CH3CHOO reactivity with water: the resulting strong CI-H2O- electrostatic attraction at the microdroplet surface facilitates the nucleophilic attack to the CI carbonyl by water, which may counteract the apolar hindrance of the substituent to accelerate the CI-water reaction. Our statistical analysis of the molecular dynamics trajectories further resolves a relatively long-lived bound CI(H2O-) intermediate state at the air/water interface, which has not been observed in gaseous CI reactions. This work provides insights into what may alter the oxidizing power of the troposphere by the next larger CIs than simple CH2OO and implicates a new perspective on the role of interfacial water charge transfer in accelerating molecular reactions at aqueous interfaces.
Collapse
Affiliation(s)
- Qiujiang Liang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100190, People's Republic of China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
21
|
He J, Zhang H, Liu Y, Ju Y, He Y, Jiang Y, Jiang J. Interfacial Extraction to Trap and Characterize the Criegee Intermediates from Phospholipid Ozonolysis. Anal Chem 2023; 95:5018-5023. [PMID: 36840931 DOI: 10.1021/acs.analchem.2c05472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Criegee intermediates (CIs) play a significant role in cell membrane peroxidation, but their identification remains elusive at the molecular level. Herein, we combined interfacial extraction and sonic spray ionization mass spectrometry to study the oxidation reaction of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) mediated by ozone (O3) at/near the surface of a hung water droplet. On-line interfacial extraction and ionization provided a snapshot of the short-lived CIs. Experiments in which the content of water was varied provided evidence for the formation of CIs, which has not been previously observed. Capture experiments using 5,5-dimethyl-pyrroline N-oxide (DMPO) indicated that CIs could be selectively characterized, and the extracted ion current (EICs) of CIs vs DMPO-CI adducts further confirmed the successful observation of CIs. Theoretical calculation suggested that surface ozonolysis of POPG was mainly mediated by anti-CI. These results open a new route for aqueous surface reactive species identification, and benefit toward the understanding of disease development associated with cell oxidative stress mediated by CIs.
Collapse
Affiliation(s)
- Jing He
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Yaqi Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong, China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong, China
| | - Yuwei He
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| |
Collapse
|
22
|
Theoretical Exploration of New Particle Formation from Glycol Aldehyde in the Atmosphere- A Temperature-Dependent Study. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Luo PL. Kinetics and pressure-dependent HO x yields of the reaction between the Criegee intermediate CH 2OO and HNO 3. Phys Chem Chem Phys 2023; 25:4062-4069. [PMID: 36651102 DOI: 10.1039/d2cp03660f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The reaction of Criegee intermediates with nitric acid (HNO3) plays an important role for removal of Criegee intermediates as well as in oxidation of atmospheric HNO3 because of its fast reaction rate. Theoretical prediction suggests that the product branching ratios of the reaction of the simplest Criegee intermediate CH2OO with HNO3 are strongly pressure dependent and the CH2OO may be catalytically converted to OH and HCO radicals by HNO3. The direct quantification of HOx radicals formed from this reaction is hence crucial to evaluate its atmospheric implications. By employing mid-infrared multifunctional dual-comb spectrometers, the kinetics and product yields of the reaction CH2OO + HNO3 are investigated. A pressure independent rate coefficient of (1.9 ± 0.2) × 10-10 cm3 molecule-1 s-1 is obtained under a total pressure of 6.3-58.6 Torr at 296 K. The product branching ratios are derived by simultaneous determination of CH2OO, formaldehyde (CH2O), OH and HO2 radicals. At the total pressure of 12.5 Torr, the yield for the formation of NO2 + CH2O + HO2 is 36% and only 3.2% for OH + CH2(O)NO3, whereas the main remainder may be thermalized nitrooxymethyl hydroperoxide (NMHP, NO3CH2OOH). Additionally, the fractional yields of both the OH and HO2 product channels are decreased by a factor of roughly 2 from 12 to 60 Torr, indicating that there is almost no catalytic conversion of CH2OO to the OH radicals in the presence of HNO3.
Collapse
Affiliation(s)
- Pei-Ling Luo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| |
Collapse
|
24
|
Karsili TNV, Marchetti B, Lester MI, Ashfold MNR. Electronic Absorption Spectroscopy and Photochemistry of Criegee Intermediates. Photochem Photobiol 2023; 99:4-18. [PMID: 35713380 DOI: 10.1111/php.13665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 01/26/2023]
Abstract
Interest in Criegee intermediates (CIs), often termed carbonyl oxides, and their role in tropospheric chemistry has grown massively since the demonstration of laboratory-based routes to their formation and characterization in the gas phase. This article reviews current knowledge regarding the electronic spectroscopy of atmospherically relevant CIs like CH2 OO, CH3 CHOO, (CH3 )2 COO and larger CIs like methyl vinyl ketone oxide and methacrolein oxide that are formed in the ozonolysis of isoprene, and of selected conjugated carbene-derived CIs of interest in the synthetic chemistry community. Of the aforementioned atmospherically relevant CIs, all except CH2 OO and (CH3 )2 COO exist in different conformers which, under tropospheric conditions, can display strikingly different thermal loss rates via unimolecular and bimolecular processes. Calculated photolysis rates based on their absorption properties suggest that solar photolysis will rarely be a significant contributor to the total loss rate for any CI under tropospheric conditions. Nonetheless, there is ever-growing interest in the absorption cross sections and primary photochemistry of CIs following excitation to the strongly absorbing 1 ππ* state, and how this varies with CI, with conformer and with excitation wavelength. The later part of this review surveys the photochemical data reported to date, including a range of studies that demonstrate prompt photo-induced fission of the terminal O-O bond, and speculates about possible alternate decay processes that could occur following non-adiabatic coupling to, and dissociation from, highly internally excited levels of the electronic ground state of a CI.
Collapse
Affiliation(s)
| | | | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
25
|
Kaur K, Pandiselvam R, Kothakota A, Padma Ishwarya S, Zalpouri R, Mahanti NK. Impact of ozone treatment on food polyphenols – A comprehensive review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Chung CA, Hsu CW, Lee YP. Infrared Characterization of the Products and Rate Coefficient of the Reaction between Criegee Intermediate CH 2OO and HNO 3. J Phys Chem A 2022; 126:5738-5750. [PMID: 35994612 DOI: 10.1021/acs.jpca.2c04557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of Criegee intermediates with HNO3 are important in the polluted urban atmosphere because of their large rate coefficients and the significant concentration of HNO3. Employing a step-scan Fourier-transform spectrometer, we recorded infrared spectra of transient species and end products in the reaction CH2OO + HNO3 upon irradiation of a flowing mixture of CH2I2/HNO3/N2/O2 at 308 nm. Eight bands at 1686, 1426, 1348, 1294, 1052, 965, 891, and 825 cm-1 were assigned to the absorption of the adduct nitrooxymethyl hydroperoxide (NMHP, NO3CH2OOH). Additional products from two dissociation channels were observed. Four bands at 1709, 1325, 1276, and 886 cm-1 were assigned to H2C(O)ONO2 (with coproduct OH), produced from the fission of the O-O bond of internally hot NMHP (NMHP*). Simultaneous detection of H2CO (1746 cm-1), NO2 (1617 cm-1), and HO2 (1392 and 1098 cm-1) indicated a direct cleavage of the N-OC and C-OO bonds of NMHP*. The relative yields of these three channels in pressure range 10-150 Torr were estimated. At 10 Torr, the absorption of internally excited HNO3 near 885 and 1320 cm-1 was also detected at an early stage of the reaction. We investigated also the rate coefficient of the reaction CH2OO + HNO3 by probing the temporal profiles of the formation of NMHP and NO2 under total pressures of 40 and 70 Torr at 298 K. The rate coefficient kHNO3 = (2.4 ± 0.4) × 10-10 cm3 molecule-1 s-1 is less than half the only literature value, (5.4 ± 1.0) × 10-10 cm3 molecule-1 s-1, reported by Foreman et al. (Angew. Chem. Int. Ed. 2016, 55, 10419-10422).
Collapse
|
27
|
Shields SWJ, Sanders JD, Brodbelt JS. Enhancing the Signal-to-Noise of Diagnostic Fragment Ions of Unsaturated Glycerophospholipids via Precursor Exclusion Ultraviolet Photodissociation Mass Spectrometry (PEx-UVPD-MS). Anal Chem 2022; 94:11352-11359. [PMID: 35917227 PMCID: PMC9484799 DOI: 10.1021/acs.analchem.2c02128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding and elucidating the diverse structures and functions of lipids has motivated the development of many innovative tandem mass spectrometry (MS/MS) strategies. Higher-energy activation methods, such as ultraviolet photodissociation (UVPD), generate unique fragment ions from glycerophospholipids that can be used to perform in-depth structural analysis and facilitate the deconvolution of isomeric lipid structures in complex samples. Although detailed characterization is central to the correlation of lipid structure to biological function, it is often impeded by the lack of sufficient instrument sensitivity for highly bioactive but low-abundance phospholipids. Here, we present precursor exclusion (PEx) UVPD, a simple yet powerful technique to enhance the signal-to-noise (S/N) of informative low-abundance fragment ions produced from UVPD of glycerophospholipids. Through the exclusion of the large population of undissociated precursor ions with an MS3 strategy, the S/N of diagnostic fragment ions from PC 18:0/18:2(9Z, 12Z) increased up to an average of 13x for PEx-UVPD compared to UVPD alone. These enhancements were extended to complex mixtures of lipids from bovine liver extract to confidently identify 35 unique structures using liquid chromatography PEx-UVPD. This methodology has the potential to advance lipidomics research by offering deeper structure elucidation and confident identification of biologically active lipids.
Collapse
Affiliation(s)
- Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
28
|
Wise DE, Gogarnoiu ES, Duke AD, Paolillo JM, Vacala TL, Hussain WA, Parasram M. Photoinduced Oxygen Transfer Using Nitroarenes for the Anaerobic Cleavage of Alkenes. J Am Chem Soc 2022; 144:15437-15442. [PMID: 35930615 DOI: 10.1021/jacs.2c05648] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the anaerobic cleavage of alkenes into carbonyl compounds using nitroarenes as oxygen transfer reagents under visible light. This approach serves as a safe and practical alternative to mainstream oxidative cleavage protocols, such as ozonolysis and the Lemieux-Johnson reaction. A wide range of alkenes possessing oxidatively sensitive functionalities underwent anaerobic cleavage to generate carbonyl derivatives with high efficiency and regioselectivity. Mechanistic studies support that the transformation occurs via direct photoexcitation of the nitroarene followed by a nonstereospecific radical cycloaddition event with alkenes. This leads to 1,3,2- and 1,4,2-dioxazolidine intermediates that fragment to give the carbonyl products. A combination of radical clock experiments and in situ photoNMR spectroscopy revealed the identities of the key radical species and the putative aryl dioxazolidine intermediates, respectively.
Collapse
Affiliation(s)
- Dan E Wise
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Emma S Gogarnoiu
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Alana D Duke
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Joshua M Paolillo
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Taylor L Vacala
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Waseem A Hussain
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Marvin Parasram
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| |
Collapse
|
29
|
Qiu J, Fujita M, Tonokura K, Enami S. Stability of Terpenoid-Derived Secondary Ozonides in Aqueous Organic Media. J Phys Chem A 2022; 126:5386-5397. [PMID: 35921086 PMCID: PMC9393869 DOI: 10.1021/acs.jpca.2c04077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,2,4-Trioxolanes, known as secondary ozonides (SOZs), are key products of ozonolysis of biogenic terpenoids. Functionalized terpenoid-derived SOZs are readily taken up into atmospheric aerosols; however, their condensed-phase fates remain unknown. Here, we report the results of a time-dependent mass spectrometric investigation into the liquid-phase fates of C10 and C13 SOZs synthesized by ozonolysis of a C10 monoterpene alcohol (α-terpineol) in water:acetone (1:1 = vol:vol) mixtures. Isomerization of Criegee intermediates and bimolecular reaction of Criegee intermediates with acetone produced C10 and C13 SOZs, respectively, which were detected as their Na+-adducts by positive-ion electrospray mass spectrometry. Use of CD3COCD3, D2O, and H218O solvents enabled identification of three types of C13 SOZs (aldehyde, ketone, and lactol) and other products. These SOZs were surprisingly stable in water:acetone (1:1) mixtures at T = 298 K, with some persisting for at least a week. Theoretical calculations supported the high stability of the lactol-type C13 SOZ formed from the aldehyde-type C13 SOZ via intramolecular rearrangement. The present results suggest that terpenoid-derived SOZs can persist in atmospheric condensed phases, potentially until they are delivered to the epithelial lining fluid of the pulmonary alveoli via inhaled particulate matter, where they may exert hitherto unrecognized adverse health effects.
Collapse
Affiliation(s)
- Junting Qiu
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan
| | - Michiya Fujita
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan
| | - Kenichi Tonokura
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| |
Collapse
|
30
|
Pang H, Wang Y, Wu Y, He J, Deng H, Li P, Xu J, Yu Z, Gligorovski S. Unveiling the pH-Dependent Yields of H 2O 2 and OH by Aqueous-Phase Ozonolysis of m-Cresol in the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7618-7628. [PMID: 35608856 DOI: 10.1021/acs.est.1c08962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide (H2O2) and hydroxyl radical (OH) are important oxidants in the atmospheric aqueous phase such as cloud droplets and deliquescent aerosol particles, playing a significant role in the chemical transformation of organic and inorganic pollutants in the atmosphere. Atmospheric aqueous-phase chemistry has been considered to be a source of H2O2 and OH. However, our understanding of the mechanisms of their formation in atmospheric waters is still incomplete. Here, we show that the aqueous-phase reaction of dissolved ozone (O3) with substituted phenols such as m-cresol represents an important source of H2O2 and OH exhibiting pH-dependent yields. Intriguingly, the formation of H2O2 through the ring-opening mechanism is strongly promoted under lower pH conditions (pH 2.5-3.5), while higher pH favors the ring-retaining pathways yielding OH. The rate constant of the reaction of O3 with m-cresol increases with increasing pH. The reaction products formed during the ozonolysis of m-cresol are analyzed by an Orbitrap mass spectrometer, and reaction pathways are suggested based on the identified product compounds. This study indicates that aqueous-phase ozonolysis of phenolic compounds might be an alternative source of H2O2 and OH in the cloud, rain, and liquid water of aerosol particles; thus, it should be considered in future model studies.
Collapse
Affiliation(s)
- Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jiazhuo He
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
31
|
Coffaro B, Weisel CP. Reactions and Products of Squalene and Ozone: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7396-7411. [PMID: 35648815 PMCID: PMC9231367 DOI: 10.1021/acs.est.1c07611] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 05/15/2023]
Abstract
This critical review describes the squalene-ozone (SqOz) reaction, or squalene ozonolysis. Ambient ozone penetrates indoors and drives indoor air chemistry. Squalene, a component of human skin oil, contains six carbon-carbon double bonds and is very reactive with ozone. Bioeffluents from people contribute to indoor air chemistry and affect the indoor air quality, resulting in exposures because people spend the majority of their time indoors. The SqOz reaction proceeds through various formation pathways and produces compounds that include aldehydes, ketones, carboxylic acids, and dicarbonyl species, which have a range of volatilities. In this critical review of SqOz chemistry, information on the mechanism of reaction, reaction probability, rate constants, and reaction kinetics are compiled. Characterizations of SqOz reaction products have been done in laboratory experiments and real-world settings. The effect of multiple environmental parameters (ozone concentration, air exchange rate (AER), temperature, and relative humidity (RH)) in indoor settings are summarized. This critical review concludes by identifying the paucity of available exposure, health, and toxicological data for known reaction products. Key knowledge gaps about SqOz reactions leading to indoor exposures and adverse health outcomes are provided as well as an outlook on where the field is headed.
Collapse
Affiliation(s)
- Breann Coffaro
- Environmental
and Health Sciences Institute and Graduate Program in Exposure Science, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| | - Clifford P. Weisel
- Environmental
and Health Sciences Institute and School of Public Health, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| |
Collapse
|
32
|
Perna A, Gambacorta E, Simonetti A, Grassi G, Scopa A. Effect of Ozone Treatment Exposure Time on Oxidative Stability of Cream Milk. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- A. Perna
- School of Agricultural Forestry, Food and Environmental Sciences University of Basilicata Viale dell'Ateneo Lucano 10‐85100 Potenza Italy
| | - E. Gambacorta
- School of Agricultural Forestry, Food and Environmental Sciences University of Basilicata Viale dell'Ateneo Lucano 10‐85100 Potenza Italy
| | - A. Simonetti
- School of Agricultural Forestry, Food and Environmental Sciences University of Basilicata Viale dell'Ateneo Lucano 10‐85100 Potenza Italy
| | - G. Grassi
- School of Agricultural Forestry, Food and Environmental Sciences University of Basilicata Viale dell'Ateneo Lucano 10‐85100 Potenza Italy
| | - A. Scopa
- School of Agricultural Forestry, Food and Environmental Sciences University of Basilicata Viale dell'Ateneo Lucano 10‐85100 Potenza Italy
| |
Collapse
|
33
|
Lou F, Cao Q, Zhang C, Ai N, Wang Q, Zhang J. Continuous synthesis of benzaldehyde by ozonolysis of styrene in a micro-packed bed reactor. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Yaremenko IA, Radulov PS, Belyakova YY, Fomenkov DI, Tsogoeva SB, Terent’ev AO. Lewis Acids and Heteropoly Acids in the Synthesis of Organic Peroxides. Pharmaceuticals (Basel) 2022; 15:ph15040472. [PMID: 35455469 PMCID: PMC9025639 DOI: 10.3390/ph15040472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
Organic peroxides are an important class of compounds for organic synthesis, pharmacological chemistry, materials science, and the polymer industry. Here, for the first time, we summarize the main achievements in the synthesis of organic peroxides by the action of Lewis acids and heteropoly acids. This review consists of three parts: (1) metal-based Lewis acids in the synthesis of organic peroxides; (2) the synthesis of organic peroxides promoted by non-metal-based Lewis acids; and (3) the application of heteropoly acids in the synthesis of organic peroxides. The information covered in this review will be useful for specialists in the field of organic synthesis, reactions and processes of oxygen-containing compounds, catalysis, pharmaceuticals, and materials engineering.
Collapse
Affiliation(s)
- Ivan A. Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
- Correspondence: (I.A.Y.); (A.O.T.)
| | - Peter S. Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Yulia Yu. Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Dmitriy I. Fomenkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen–Nürnberg, Nikolaus Fiebiger-Straße 10, 91058 Erlangen, Germany;
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
- Correspondence: (I.A.Y.); (A.O.T.)
| |
Collapse
|
35
|
Luo PL, Chen IY. Synchronized Two-Color Time-Resolved Dual-Comb Spectroscopy for Quantitative Detection of HO x Radicals Formed from Criegee Intermediates. Anal Chem 2022; 94:5752-5759. [PMID: 35377143 DOI: 10.1021/acs.analchem.1c04583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Criegee intermediates, derived from ozonolysis of alkenes and recognized as key species in the production of nonphotolytic free radicals, play a crucial role in atmospheric chemistry. Here, we present a spectrometer based on synchronized two-color time-resolved dual-comb spectroscopy, enabling simultaneous spectral acquisitions in two molecular fingerprint regions near 2.9 and 7.8 μm. Upon flash photolysis of CH2I2/O2/N2 gas mixtures, multiple reaction species, involving the simplest Criegee intermediates (CH2OO), formaldehyde (CH2O), hydroxyl (OH) and hydroperoxy (HO2) radicals are simultaneously detected with microsecond time resolution. The concentration of each molecule can be determined based on high-resolution rovibrational absorption spectroscopy. With quantitative detection and simulation of temporal concentration profiles of the targeted molecules at various conditions, the underlying reaction mechanisms and pathways related to the formation of the HOx radicals, which can be generated from decomposition of initially energized and vibrationally excited Criegee intermediates, are explored. This approach capable of achieving multispectral measurements with simultaneously high spectral and temporal resolutions opens up the opportunities for quantification of transient intermediates and products, thus, enabling elucidation of complex reaction mechanisms.
Collapse
Affiliation(s)
- Pei-Ling Luo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - I-Yun Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| |
Collapse
|
36
|
Wang L, Wu Z, Lu B, Zeng X. Spectroscopic characterization and photochemistry of the Criegee intermediate CF 3C(H)OO. J Environ Sci (China) 2022; 114:160-169. [PMID: 35459481 DOI: 10.1016/j.jes.2021.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/14/2023]
Abstract
Criegee intermediates (CIs), also known as carbonyl oxide, are reactive intermediates that play an important role in the atmospheric chemistry. Investigation on the structures and reactivity of CIs is of fundamental importance in understanding the underlying mechanism of their atmospheric reactions. In sharp contrast to the intensively studied parent molecule (CH2OO) and the alkyl-substituted derivatives, the knowledge about the fluorinated analogue CF3C(H)OO is scarce. By carefully heating the triplet carbene CF3CH in an O2-doped Ar-matrix to 35 K, the elusive carbonyl oxide CF3C(H)OO in syn- and anti-conformations has been generated and characterized with infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. The spectroscopic identification is supported by 18O-labeling experiments and quantum chemical calculations at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(2d,2p) levels. Upon the long-wavelength irradiation (λ > 680 nm), both conformers of CF3C(H)OO decompose to give trifluoroacetaldehyde CF3C(H)O and simultaneously rearrange to the isomeric dioxirane, cyclic-CF3CH(OO), which undergoes isomerization to the lowest-energy carboxylic acid CF3C(O)OH upon UV-light excitation at 365 nm. The O2-oxidation of CF3CH via the intermediacy of CF3C(H)OO and cyclic-CF3CH(OO) might provide new insight into the mechanism for the degradation of hydro-chlorofluorocarbon CF3CHCl2 (HCFC-123) in the atmosphere.
Collapse
Affiliation(s)
- Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.
| | - Zhuang Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
37
|
Peltola J, Seal P, Vuorio N, Heinonen P, Eskola A. Solving the discrepancy between the direct and relative-rate determinations of unimolecular reaction kinetics of dimethyl-substituted Criegee intermediate (CH 3) 2COO using a new photolytic precursor. Phys Chem Chem Phys 2022; 24:5211-5219. [PMID: 35167635 DOI: 10.1039/d1cp02270a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have performed direct kinetic measurements of the thermal unimolecular reaction of (CH3)2COO in the temperature range 243-340 K and pressure range 5-350 Torr using time-resolved UV-absorption spectroscopy. We have utilized a new photolytic precursor, 2-bromo-2-iodopropane ((CH3)2CIBr), which photolysis at 213 nm in the presence of O2 produces acetone oxide, (CH3)2COO. The results show that the thermal unimolecular reaction is even more important main loss process of (CH3)2COO in the atmosphere than direct kinetic studies have suggested hitherto. The current experiments show that the unimolecular reaction rate of (CH3)2COO at 296 K and atmospheric pressure is 899 ± 42 s-1. Probably more importantly, current measurements bring the direct and relative-rate measurements of thermal unimolecular reaction kinetics of (CH3)2COO into quantitative agreement.
Collapse
Affiliation(s)
- Jari Peltola
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), Helsinki, FI-00014, Finland.
| | - Prasenjit Seal
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), Helsinki, FI-00014, Finland.
| | - Niko Vuorio
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), Helsinki, FI-00014, Finland.
| | - Petri Heinonen
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), Helsinki, FI-00014, Finland.
| | - Arkke Eskola
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), Helsinki, FI-00014, Finland.
| |
Collapse
|
38
|
Buntasana S, Hayashi J, Saetung P, Klumphu P, Vilaivan T, Padungros P. Surfactant-Assisted Ozonolysis of Alkenes in Water: Mitigation of Frothing Using Coolade as a Low-Foaming Surfactant. J Org Chem 2022; 87:6525-6540. [PMID: 35133162 DOI: 10.1021/acs.joc.1c02539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aqueous-phase ozonolysis in the atmosphere is an important process during cloud and fog formation. Water in the atmosphere acts as both a reaction medium and a reductant during the ozonolysis. Inspired by the atmospheric aqueous-phase ozonolysis, we herein report the ozonolysis of alkenes in water assisted by surfactants. Several types of surfactants, including anionic, cationic, and nonionic surfactants, were investigated. Although most surfactants enhanced the solubility of alkenes in water, they also generated excessive foaming during the ozone bubbling, which led to the loss of products. Mitigation of the frothing was accomplished by using Coolade as a nonionic and low-foaming surfactant. Coolade-assisted ozonolysis of alkenes in water provided the desired carbonyl products in good yields and comparable to those achieved in organic solvents. During the ozonolysis reaction, water molecules trapped within the polyethylene glycol region of Coolade were proposed to intercept the Criegee intermediate to provide a hydroxy hydroperoxide intermediate. Decomposition of the hydroxy hydroperoxide led to formation of the carbonyl product without the need for a reductant typically required for the conventional ozonolysis using organic solvents. This study presents Coolade as an effective surfactant to improve the solubility of alkenes while mitigating frothing during the ozonolysis in water.
Collapse
Affiliation(s)
- Supanat Buntasana
- Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Jun Hayashi
- Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Prakorn Saetung
- Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Piyatida Klumphu
- Department of Chemistry, Faculty of Science, Maejo University, Sansai, Chiang Mai 50290, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Panuwat Padungros
- Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
39
|
Majumder N, Velayutham M, Bitounis D, Kodali VK, Hasan Mazumder MH, Amedro J, Khramtsov VV, Erdely A, Nurkiewicz T, Demokritou P, Kelley EE, Hussain S. Oxidized carbon black nanoparticles induce endothelial damage through C-X-C chemokine receptor 3-mediated pathway. Redox Biol 2021; 47:102161. [PMID: 34624601 PMCID: PMC8502956 DOI: 10.1016/j.redox.2021.102161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 01/19/2023] Open
Abstract
Oxidation of engineered nanomaterials during application in various industrial sectors can alter their toxicity. Oxidized nanomaterials also have widespread industrial and biomedical applications. In this study, we evaluated the cardiopulmonary hazard posed by these nanomaterials using oxidized carbon black (CB) nanoparticles (CBox) as a model particle. Particle surface chemistry was characterized by X-ray photo electron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). Colloidal characterization and in vitro dosimetry modeling (particle kinetics, fate and transport modeling) were performed. Lung inflammation was assessed following oropharyngeal aspiration of CB or oxidized CBox particles (20 μg per mouse) in C57BL/6J mice. Toxicity and functional assays were also performed on murine macrophage (RAW 264.7) and endothelial cell lines (C166) with and without pharmacological inhibitors. Oxidant generation was assessed by electron paramagnetic resonance spectroscopy (EPR) and via flow cytometry. Endothelial toxicity was evaluated by quantifying pro-inflammatory mRNA expression, monolayer permeability, and wound closure. XPS and FTIR spectra indicated surface modifications, the appearance of new functionalities, and greater oxidative potential (both acellular and in vitro) of CBox particles. Treatment with CBox demonstrated greater in vivo inflammatory potentials (lavage neutrophil counts, secreted cytokine, and lung tissue mRNA expression) and air-blood barrier disruption (lavage proteins). Oxidant-dependent pro-inflammatory signaling in macrophages led to the production of CXCR3 ligands (CXCL9,10,11). Conditioned medium from CBox-treated macrophages induced significant elevation in endothelial cell pro-inflammatory mRNA expression, enhanced monolayer permeability and impairment of scratch healing in CXCR3 dependent manner. In summary, this study mechanistically demonstrated an increased biological potency of CBox particles and established the role of macrophage-released chemical mediators in endothelial damage.
Collapse
Affiliation(s)
- Nairrita Majumder
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA
| | - Murugesan Velayutham
- Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA; Department of Biochemistry, West Virginia University, School of Medicine, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Vamsi K Kodali
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA; National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Md Habibul Hasan Mazumder
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA
| | - Jessica Amedro
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA
| | - Valery V Khramtsov
- Department of Biochemistry, West Virginia University, School of Medicine, USA
| | - Aaron Erdely
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA; National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Timothy Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA; National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA
| | - Salik Hussain
- Department of Physiology and Pharmacology, West Virginia University, School of Medicine, USA; Center for Inhalation Toxicology (iTOX), West Virginia University, School of Medicine, USA.
| |
Collapse
|
40
|
Triandafillidi I, Kokotou MG, Lotter D, Sparr C, Kokotos CG. Aldehyde-catalyzed epoxidation of unactivated alkenes with aqueous hydrogen peroxide. Chem Sci 2021; 12:10191-10196. [PMID: 34377408 PMCID: PMC8336450 DOI: 10.1039/d1sc02360h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
The organocatalytic epoxidation of unactivated alkenes using aqueous hydrogen peroxide provides various indispensable products and intermediates in a sustainable manner. While formyl functionalities typically undergo irreversible oxidations when activating an oxidant, an atropisomeric two-axis aldehyde capable of catalytic turnover was identified for high-yielding epoxidations of cyclic and acyclic alkenes. The relative configuration of the stereogenic axes of the catalyst and the resulting proximity of the aldehyde and backbone residues resulted in high catalytic efficiencies. Mechanistic studies support a non-radical alkene oxidation by an aldehyde-derived dioxirane intermediate generated from hydrogen peroxide through the Payne and Criegee intermediates.
Collapse
Affiliation(s)
- Ierasia Triandafillidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
- Department of Chemistry, University of Basel St. Johanns-Ring 19 Basel 4056 Switzerland
| | - Maroula G Kokotou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Dominik Lotter
- Department of Chemistry, University of Basel St. Johanns-Ring 19 Basel 4056 Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel St. Johanns-Ring 19 Basel 4056 Switzerland
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
41
|
Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Criegee Intermediates Beyond Ozonolysis: Synthetic and Mechanistic Insights. Angew Chem Int Ed Engl 2021; 60:15138-15152. [PMID: 33283439 PMCID: PMC8359312 DOI: 10.1002/anie.202014974] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/20/2022]
Abstract
After more than 70 years since their discovery, Criegee intermediates (CIs) are back at the forefront of modern chemistry of short-lived reactive intermediates. They play an important role in the mechanistic context of chemical synthesis, total synthesis, pharmaceuticals, and, most importantly, climate-controlling aerosol formation as well as atmospheric chemistry. This Minireview summarizes key aspects of CIs (from the mechanism of formation, for example, by ozonolysis of alkenes and photolysis methods employing diiodo and diazo compounds, to their electronic structures and chemical reactivity), highlights the most recent findings and some landmark results of gas-phase kinetics, and detection/measurements. The recent progress in synthetic and mechanistic studies in the chemistry of CIs provides a guide to illustrate the possibilities for further investigations in this exciting field.
Collapse
Affiliation(s)
- Zahid Hassan
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz-Haber-Weg 676131KarlsruheGermany
- 3DMM2O—Cluster of Excellence (EXC-2082/1–390761711)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Mareen Stahlberger
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz-Haber-Weg 676131KarlsruheGermany
| | - Nicolai Rosenbaum
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz-Haber-Weg 676131KarlsruheGermany
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz-Haber-Weg 676131KarlsruheGermany
- 3DMM2O—Cluster of Excellence (EXC-2082/1–390761711)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
- Institute of Biological and Chemical Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|