1
|
Wang X, Zhao W, Li X, Liu L, Leng J, Liu Y. Multistimuli-Responsive Soft Actuators with Controllable Bionic Motions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63894-63903. [PMID: 39500568 DOI: 10.1021/acsami.4c12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Soft actuators with biomimetic self-regulatory intelligence have garnered significant scientific interest due to their potential applications in robotics and advanced functional devices. We present a multistimuli-responsive actuator made from a carbon nitride/carbon nanotube (CN/CNTs) composite film. This film features a molecular switch based on reversible hydrogen bonds, whose asymmetric distribution endows the film with the ability to absorb water unevenly and convert molecular motion into macroscopic movement. By incorporating carboxylated CNTs, the film demonstrates improved mechanical properties and actuation performance. Under ambient humidity stimuli, the actuator can autonomously generate walking and tumbling motions. The CN/CNTs composite film's actuating behaviors are programmable, enabling diverse deformation modes and complex biomimetic movements. Additionally, the film exhibits excellent photothermal conversion efficiency (74.10 °C/s), allowing for temperature and light-responsive actuation, which can be remotely controlled in real time. These features have enabled the creation of soft robots capable of complex biomimetic actions such as jumping, directional movement, and transporting objects. This research broadens the potential applications of CN-based actuators and paves the way for the development of intelligent soft robots.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150080, People's Republic of China
| | - Wei Zhao
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150080, People's Republic of China
| | - Xinlin Li
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin 150080, People's Republic of China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150080, People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin 150080, People's Republic of China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150080, People's Republic of China
| |
Collapse
|
2
|
Zhang C, Zhang Z, Liu X. Closed-Loop Recyclable and Totally Renewable Liquid Crystal Networks with Room-Temperature Programmability and Reconfigurable Functionalities. Angew Chem Int Ed Engl 2024; 63:e202411280. [PMID: 38924237 DOI: 10.1002/anie.202411280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Dynamic covalent liquid crystal networks (DCv-LCNs) with straightforward (re)programmability, reprocessability, and recyclability facilitates the manufacture of sophisticated LCN actuators and intelligent robots. However, the DCv-LCNs are still limited to heat-assisted programming and polymer-to-polymer reprocessing/recycling, which inevitably lead to deterioration of the LCN structures and the actuation performances after repeated programming/processing treatments, owing to the thermal degradation of the polymer network and/or external agent interference. Here, a totally renewable azobenzene-based DCv-LCN with room-temperature programmability and polymer-to-monomers chemical recyclability is reported, which was synthesized by crosslinking the azobenzene-containing dibenzaldehyde monomer and the triamine monomer via the dynamic and dissociable imine bonds. Thanks to the water-activated dynamics of the imine bonds, the resultant DCv-LCN can be simply programmed, upon water-soaking at room temperature, to yield a UV/Vis light-driven actuator. Importantly, the reported DCv-LCN undergoes depolymerization in an acid-solvent medium at room temperature because of the acid-catalyzed hydrolysis of the imine bonds, giving rise to easy separation and recovery of both monomers in high purity, even with tolerance to additives. The recovered pure monomers can be used to regenerate totally new DCv-LCNs and actuators, and their functionalities can be reconfigured by removing old and introducing new additives, by implementing the closed-loop polymer-monomers-polymer recycling.
Collapse
Affiliation(s)
- Chenxuan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhuoqiang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Bala I, Plank JT, Balamut B, Henry D, Lippert AR, Aprahamian I. Multi-stage and multi-colour liquid crystal reflections using a chiral triptycene photoswitchable dopant. Nat Chem 2024:10.1038/s41557-024-01648-0. [PMID: 39367064 DOI: 10.1038/s41557-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
The photomodulation of the helical pitch of cholesteric liquid crystals results in dynamic and coloured canvases that can potentially be used in applications ranging from energy-efficient displays to colour filters, anti-counterfeiting tags and liquid crystal (LC) lasers. Here we report on the analysis of a series of photoswitchable chiral dopants that combine the large geometrical change and bistability of hydrazone switches with the efficient helical pitch induction of the chiral motif, triptycene. We elucidate the effects that conformational flexibility, dispersion forces and π-π interactions have on the chirality transfer ability of the dopant. We then use the irradiation time with visible light (442 nm) combined with a simple digital light processing microscope projection set-up to draw numerous stable multi-coloured images on an LC canvas, showcasing the fine control this dopant yields over the LC assembly.
Collapse
Affiliation(s)
- Indu Bala
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Joshua T Plank
- Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Brandon Balamut
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Drake Henry
- Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | | | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
4
|
Balamut B, Hughes RP, Aprahamian I. Tuning the Properties of Hydrazone/Isosorbide-Based Switchable Chiral Dopants. J Am Chem Soc 2024; 146:24561-24569. [PMID: 39163573 DOI: 10.1021/jacs.4c07848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The long-range supramolecular interactions in liquid crystals (LCs) can be used to amplify and subsequently propagate microscopic structural changes into macroscopic events. Here, we report on a systematic structure-property analysis using 16 chiral photoswitchable dopants composed of bistable hydrazones and chiral isosorbide moieties. Our findings showcase the relationship between the dopant's structure and its helical twisting power (β), and hence, the photophysical properties of the host LC. We show that an increase in the hydrazone CNNH dihedral angle results in an increase in the β value, while alkoxy chains do not lead to such an increase. These results contradict established rules of thumb, stating that structural rigidity and long alky chains are needed for high β values. We also found that the position of the substitution, whether at the 2' or 5' positions of the isosorbide unit, or the attachment of the chiral unit to the rotor or stator phenyl units can have negative or positive additive effects that can either increase or decrease the β values. These results made us hypothesize that unsymmetrically functionalized dopants should result in large Δβ values, which we corroborated experimentally. Moreover, a fluorine-functionalized dopant resulted in higher overall β values, most likely because of π-π interactions. Finally, the dopants were used in modulating and locking in the reflective properties of LC films, yielding multicolor LC canvases that can reflect light from the ultraviolet to the infrared range (i.e., a manipulation of up to ca. 1500 nm of reflected light).
Collapse
Affiliation(s)
- Brandon Balamut
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Russell P Hughes
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| |
Collapse
|
5
|
van Vliet S, Sheng J, Stindt CN, Feringa BL. All-visible-light-driven salicylidene schiff-base-functionalized artificial molecular motors. Nat Commun 2024; 15:6461. [PMID: 39085193 PMCID: PMC11291758 DOI: 10.1038/s41467-024-50587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Light-driven rotary molecular motors are among the most promising classes of responsive molecular machines and take advantage of their intrinsic chirality which governs unidirectional rotation. As a consequence of their dynamic function, they receive considerable interest in the areas of supramolecular chemistry, asymmetric catalysis and responsive materials. Among the emerging classes of responsive photochromic molecules, multistate first-generation molecular motors driven by benign visible light remain unexplored, which limits the exploitation of the full potential of these mechanical light-powered systems. Herein, we describe a series of all-visible-light-driven first-generation molecular motors based on the salicylidene Schiff base functionality. Remarkable redshifts up to 100 nm in absorption are achieved compared to conventional first-generation motor structures. Taking advantage of all-visible-light-driven multistate motor scaffolds, adaptive behaviour is found as well, and potential application in multistate photoluminescence is demonstrated. These functional visible-light-responsive motors will likely stimulate the design and synthesis of more sophisticated nanomachinery with a myriad of future applications in powering dynamic systems.
Collapse
Affiliation(s)
- Sven van Vliet
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Jinyu Sheng
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Yao X, Vishnu JA, Lupfer C, Hoenders D, Skarsetz O, Chen W, Dattler D, Perrot A, Wang WZ, Gao C, Giuseppone N, Schmid F, Walther A. Scalable Approach to Molecular Motor-Polymer Conjugates for Light-Driven Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403514. [PMID: 38613525 DOI: 10.1002/adma.202403514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Indexed: 04/15/2024]
Abstract
The integration of molecular machines and motors into materials represents a promising avenue for creating dynamic and functional molecular systems, with potential applications in soft robotics or reconfigurable biomaterials. However, the development of truly scalable and controllable approaches for incorporating molecular motors into polymeric matrices has remained a challenge. Here, it is shown that light-driven molecular motors with sensitive photo-isomerizable double bonds can be converted into initiators for Cu-mediated controlled/living radical polymerization enabling the synthesis of star-shaped motor-polymer conjugates. This approach enables scalability, precise control over the molecular structure, block copolymer structures, and high-end group fidelity. Moreover, it is demonstrated that these materials can be crosslinked to form gels with quasi-ideal network topology, exhibiting light-triggered contraction. The influence of arm length and polymer structure is investigated, and the first molecular dynamics simulation framework to gain deeper insights into the contraction processes is developed. Leveraging this scalable methodology, the creation of bilayer soft robotic devices and cargo-lifting artificial muscles is showcased, highlighting the versatility and potential applications of this advanced polymer chemistry approach. It is anticipated that the integrated experimental and simulation framework will accelerate scalable approaches for active polymer materials based on molecular machines, opening up new horizons in materials science and bioscience.
Collapse
Affiliation(s)
- Xuyang Yao
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
| | - Jude Ann Vishnu
- KOMET 1, Institute of Physics, Johannes Gutenberg University of Mainz, D 55099, Mainz, Germany
| | - Claudius Lupfer
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Daniel Hoenders
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Oliver Skarsetz
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Weixiang Chen
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Damien Dattler
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Alexis Perrot
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Wen-Zhi Wang
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Chuan Gao
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| | - Friederike Schmid
- KOMET 1, Institute of Physics, Johannes Gutenberg University of Mainz, D 55099, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
| |
Collapse
|
7
|
Sheng J, Perego J, Bracco S, Cieciórski P, Danowski W, Comotti A, Feringa BL. Orthogonal Photoswitching in a Porous Organic Framework. Angew Chem Int Ed Engl 2024; 63:e202404878. [PMID: 38530132 DOI: 10.1002/anie.202404878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
The development of photoresponsive systems with non-invasive orthogonal control by distinct wavelengths of light is still in its infancy. In particular, the design of photochemically triggered-orthogonal systems integrated into solid materials that enable multiple dynamic control over their properties remains a longstanding challenge. Here, we report the orthogonal and reversible control of two types of photoswitches in an integrated solid porous framework, that is, visible-light responsive o-fluoroazobenzene and nitro-spiropyran motifs. The properties of the constructed material can be selectively controlled by different wavelengths of light thus generating four distinct states providing a basis for dynamic multifunctional materials. Solid-state NMR spectroscopy demonstrated the selective transformation of the azobenzene switch in the bulk, which in turn modulates N2 and CO2 adsorption.
Collapse
Affiliation(s)
- Jinyu Sheng
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
- Present address: Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Jacopo Perego
- Department of Materials Science, University of Milano Bicocca, Milan, Italy, Via R. Cozzi 55, Milan, 20125, Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano Bicocca, Milan, Italy, Via R. Cozzi 55, Milan, 20125, Italy
| | - Piotr Cieciórski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Wojciech Danowski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Angiolina Comotti
- Department of Materials Science, University of Milano Bicocca, Milan, Italy, Via R. Cozzi 55, Milan, 20125, Italy
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| |
Collapse
|
8
|
Long G, Deng Y, Zhao W, Zhou G, Broer DJ, Feringa BL, Chen J. Photoresponsive Biomimetic Functions by Light-Driven Molecular Motors in Three Dimensionally Printed Liquid Crystal Elastomers. J Am Chem Soc 2024; 146:13894-13902. [PMID: 38728606 PMCID: PMC11117400 DOI: 10.1021/jacs.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
Despite the fascinating developments in design and synthesis of artificial molecular machines operating at the nanoscales, translating molecular motion along multiple length scales and inducing mechanical motion of a three-dimensional macroscopic entity remains an important challenge. The key to addressing this amplification of motion relies on the effective organization of molecular machines in a well-defined environment. By taking advantage of long-range orientational order and hierarchical structures of liquid crystals and unidirectional rotation of light-driven molecular motors, we report here photoresponsive biomimetic functions of liquid crystal elastomers (LCEs) by the repetitive unidirectional rotation of molecular motors using 3D printing. Molecular motors were built in the main chain of liquid crystals oligomers to serve as photoactuators. The oligomers were then used as the ink, and liquid crystal elastomers with different morphologies were printed. The obtained LCEs are able to conduct multiple types of motions including bending, helical coiling, closing of petals, and flipping of wings of a butterfly upon UV illumination, which paves the way for future design of responsive materials with enhanced complex actuating functions.
Collapse
Affiliation(s)
- Guiying Long
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Yanping Deng
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wei Zhao
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
| | - Dirk J. Broer
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Ben L. Feringa
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Jiawen Chen
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
9
|
Gisbert Y, Fellert M, Stindt CN, Gerstner A, Feringa BL. Molecular Motors' Magic Methyl and Its Pivotal Influence on Rotation. J Am Chem Soc 2024; 146:12609-12619. [PMID: 38656891 PMCID: PMC11082891 DOI: 10.1021/jacs.4c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Molecular motors have found a wide range of applications, powering a transition from molecules to dynamic molecular systems for which their motion must be precisely tuned. To achieve this adjustment, strategies involving laborious changes in their design are often used. Herein, we show that control over a single methyl group allows a drastic change in rotational properties. In this regard, we present the straightforward asymmetric synthesis of β-methylated first-generation overcrowded-alkene-based molecular motors. Both enantiomers of the new motors were prepared in good yields and high enantiopurities, and these motors were thoroughly studied by variable-temperature nuclear magnetic resonance (VT-NMR), ultraviolet-visible (UV-vis), and circular dichroism (CD) spectroscopy, showing a crucial influence of the methylation pattern on the rotational behavior of the motors. Starting from a common chiral precursor, we demonstrate that subsequent methylation can drastically reduce the speed of the motor and reverse the direction of the rotation. We show for the first time that complete unidirectionality can be achieved even when the energy difference between the stable and metastable states is small, resulting in the coexistence of both states under ambient conditions without hampering the energy ratcheting process. This discovery opens the way for the design of more advanced first-generation motors.
Collapse
Affiliation(s)
| | | | - Charlotte N. Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Alexander Gerstner
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| |
Collapse
|
10
|
Daou D, Zarate Y, Maaloum M, Collin D, Fleith G, Constantin D, Moulin E, Giuseppone N. Out-of-Equilibrium Mechanical Disruption of β-Amyloid-Like Fibers using Light-Driven Molecular Motors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311293. [PMID: 38236822 DOI: 10.1002/adma.202311293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Artificial molecular motors have the potential to generate mechanical work on their environment by producing autonomous unidirectional motions when supplied with a source of energy. However, the harnessing of this mechanical work to subsequently activate various endoenergetic processes that can be useful in materials science remains elusive. Here, it is shown that by integrating a light-driven rotary motor through hydrogen bonds in a β-amyloid-like structure forming supramolecular hydrogels, the mechanical work generated during the constant rotation of the molecular machine under UV irradiation is sufficient to disrupt the β-amyloid fibers and to trigger a gel-to-sol transition at macroscopic scale. This melting of the gel under UV irradiation occurs 25 °C below the temperature needed to melt it by solely using thermal activation. In the dark, a reversible sol-gel transition is observed as the system fully recovers its original microstructure, thus illustrating the possible access to new kinds of motorized materials that can be controlled by advanced out-of-equilibrium thermodynamics.
Collapse
Affiliation(s)
- Dania Daou
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Yohan Zarate
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Mounir Maaloum
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | | | | | - Doru Constantin
- CNRS, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Emilie Moulin
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Nicolas Giuseppone
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| |
Collapse
|
11
|
Liu M, Hua J, Du X. Smart materials for light control of droplets. NANOSCALE 2024. [PMID: 38624048 DOI: 10.1039/d3nr05593k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Droplet manipulation plays a critical role in both fundamental research and practical applications, especially when combined with smart materials and external fields to achieve multifunctional droplet manipulation. Light control of droplets has emerged as a significant and widely used strategy, driven primarily by photochemistry, photomechanics, light-induced Marangoni effects, and light-induced electric effects. This approach allowing for droplet manipulation with high spatial and temporal resolution, all while maintaining a remote and non-contact mode of operation. This review aims to provide a comprehensive overview of the mechanisms underlying light control of droplets, the design of smart materials for this purpose, and the diverse range of applications enabled by this technique. These applications include merging, splitting, releasing, forwarding, backward movement, and rotation of droplets, as well as chemical reactions, droplet robots, and microfluidics. By presenting this information, we aim to establish a unified framework that guides the sustainable development of light control of droplets. Additionally, this review addresses the challenges associated with light control of droplets and suggests potential directions for future development.
Collapse
Affiliation(s)
- Meijin Liu
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jiachuan Hua
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
12
|
Wang B, Lu Y. Collective Molecular Machines: Multidimensionality and Reconfigurability. NANO-MICRO LETTERS 2024; 16:155. [PMID: 38499833 PMCID: PMC10948734 DOI: 10.1007/s40820-024-01379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work. During the last 60 years, designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research. Effective progress has been made, attributed to advances in various fields such as supramolecular chemistry, biology and nanotechnology, and informatics. However, individual molecular machines are only capable of producing nanometer work and generally have only a single functionality. In order to address these problems, collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm. In this review, we comprehensively discuss recent developments in the collective behaviors of molecular machines. In particular, collective behavior is divided into two paradigms. One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials. The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations. We discuss design strategies for both modes and focus on the modulation of features and properties. Subsequently, in order to address existing challenges, the idea of transferring experience gained in the field of micro/nano robotics is presented, offering prospects for future developments in the collective behavior of molecular machines.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
13
|
Deng Y, Long G, Zhang Y, Zhao W, Zhou G, Feringa BL, Chen J. Photo-responsive functional materials based on light-driven molecular motors. LIGHT, SCIENCE & APPLICATIONS 2024; 13:63. [PMID: 38429259 PMCID: PMC10907585 DOI: 10.1038/s41377-024-01391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
In the past two decades, the research and development of light-triggered molecular machines have mainly focused on developing molecular devices at the nanoscale. A key scientific issue in the field is how to amplify the controlled motion of molecules at the nanoscale along multiple length scales, such as the mesoscopic or the macroscopic scale, or in a more practical perspective, how to convert molecular motion into changes of properties of a macroscopic material. Light-driven molecular motors are able to perform repetitive unidirectional rotation upon irradiation, which offers unique opportunities for responsive macroscopic systems. With several reviews that focus on the design, synthesis and operation of the motors at the nanoscale, photo-responsive macroscopic materials based on light-driven molecular motors have not been comprehensively summarized. In the present review, we first discuss the strategy of confining absolute molecular rotation into relative rotation by grafting motors on surfaces. Secondly, examples of self-assemble motors in supramolecular polymers with high internal order are illustrated. Moreover, we will focus on building of motors in a covalently linked system such as polymeric gels and polymeric liquid crystals to generate complex responsive functions. Finally, a perspective toward future developments and opportunities is given. This review helps us getting a more and more clear picture and understanding on how complex movement can be programmed in light-responsive systems and how man-made adaptive materials can be invented, which can serve as an important guideline for further design of complex and advanced responsive materials.
Collapse
Affiliation(s)
- Yanping Deng
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guiying Long
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Yang Zhang
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Wei Zhao
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guofu Zhou
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Ben L Feringa
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Sun C, Ma H, Yu F, Xia S. Preparation and evaluation of hydroxyethyl cellulose-based functional polymer for highly efficient utilization of heavy oil under the harsh reservoir environments. Int J Biol Macromol 2024; 259:128972. [PMID: 38151086 DOI: 10.1016/j.ijbiomac.2023.128972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Emulsification viscosity reduction and subsequent demulsification are effective strategies to improve the utilization rate of heavy oil. However, traditional surfactants are challenged by unsatisfactory salt tolerance, inadequate stability in emulsification, difficulty in demulsification and pollution problem of oily wastewater discharge. To realize the feasibility and environment-friendliness of heavy oil utilization in the harsh reservoir environments, we designed a functional polymer and conducted a comprehensive evaluation using heavy oil samples from Chenping oil well in Shengli Oilfield. It was synthesized by grafting two hydrophobic monomers, lauryl methacrylate (LMA) and N, N-Diethylaminomethyl methacrylate (DEAEMA), onto the hydrophilia hydroxyethyl cellulose (HEC) by free-radical polymerization. The viscosity reduction rate can reach 99.57 % even under the high salinity of 26,050 mg/L. The stable oil-in-water (O/W) emulsion can be maintained for >48 h, satisfying the actual requirements for heavy oil recovery. Moreover, the emulsion can be completely demulsified in a CO2 atmosphere within 30 min, suggesting its satisfactory demulsification performance. Our study achieved the one-step transformation of heavy oil emulsion between emulsification and demulsification, which provides a green bio-based material and an ingenious strategy for enhanced oil recovery and other chemical engineering applications including oil/water separation.
Collapse
Affiliation(s)
- Caixia Sun
- China Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Hao Ma
- China Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fuce Yu
- China Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shuqian Xia
- China Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
15
|
Wang X, Yu Z, Huang Z, Zhou N, Cheng X, Zhang Z, Zhang W, Zhu X. Unraveling Dynamic Helicity Inversion and Chirality Transfer through the Synthesis of Discrete Azobenzene Oligomers by an Iterative Exponential Growth Strategy. Angew Chem Int Ed Engl 2023:e202315686. [PMID: 38085492 DOI: 10.1002/anie.202315686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 12/23/2023]
Abstract
Unraveling the chirality transfer mechanism of polymer assemblies and controlling their handedness is beneficial for exploring the origin of hierarchical chirality and developing smart materials with desired chiroptical activities. However, polydisperse polymers often lead to an ambiguous or statistical evaluation of the structure-property relationship, and it remains unclear how the iterative number of repeating units function in the helicity inversion of polymer assemblies. Herein, we report the macroscopic helicity and dynamic manipulation of the chiroptical activity of supramolecular assemblies from discrete azobenzene-containing oligomers (azooligomers), together with the helicity inversion and morphological transition achieved solely by changing the iterative chain lengths. The corresponding assemblies also differ from their polydisperse counterparts in terms of thermodynamic properties, chiroptical activities, and morphological control.
Collapse
Affiliation(s)
- Xiao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihong Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihao Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
16
|
Sangchai T, Al Shehimy S, Penocchio E, Ragazzon G. Artificial Molecular Ratchets: Tools Enabling Endergonic Processes. Angew Chem Int Ed Engl 2023; 62:e202309501. [PMID: 37545196 DOI: 10.1002/anie.202309501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Non-equilibrium chemical systems underpin multiple domains of contemporary interest, including supramolecular chemistry, molecular machines, systems chemistry, prebiotic chemistry, and energy transduction. Experimental chemists are now pioneering the realization of artificial systems that can harvest energy away from equilibrium. In this tutorial Review, we provide an overview of artificial molecular ratchets: the chemical mechanisms enabling energy absorption from the environment. By focusing on the mechanism type-rather than the application domain or energy source-we offer a unifying picture of seemingly disparate phenomena, which we hope will foster progress in this fascinating domain of science.
Collapse
Affiliation(s)
- Thitiporn Sangchai
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Emanuele Penocchio
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
17
|
Bao J, Wang Z, Song C, Zhang Y, Li Z, Zhang L, Lan R, Yang H. Shape-Programmable Liquid-Crystalline Polyurethane-Based Multimode Actuators Triggered by Light-Driven Molecular Motors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302168. [PMID: 37459653 DOI: 10.1002/adma.202302168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 09/03/2023]
Abstract
In recent years, light-driven soft actuators have been rapidly developed as enablers in the fabrication of artificial robots and biomimetic devices. However, it remains challenging to amplify molecular isomerization to multiple modes of macroscopic actuation with large amplitude and complex motions. Here, a strategy is reported to build a light-responsive liquid-crystalline polyurethane elastomer by phototriggered overcrowded alkene-based molecular motors. A trifunctional molecular motor modified with an ethylene glycol spacer on the rotor and stator functions as a crosslinker and unidirectional stirrer that amplifies molecular motion into macroscopic movement. The shape-programmable polymeric film presents superior mechanical properties and characteristic shape-memory effect. Furthermore, diverse modes of motions including bending, unwinding, and contracting with tunable actuation speed over a wide range are achieved. Such research is hoped to pave a new way for the design of advanced light-responsive soft actuators and robots.
Collapse
Affiliation(s)
- Jinying Bao
- Beijing Advanced Innovation Center for Materials Genome Engineering & School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zizheng Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering & School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Chenjie Song
- Capital Medical University, Beijing Anzhen Hospital, Department of Ophthalmology, Beijing, 100029, P. R. China
| | - Yuhan Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhaozhong Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lanying Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering & School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Ruochen Lan
- Beijing Advanced Innovation Center for Materials Genome Engineering & School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Institute of Advanced Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Huai Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering & School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
18
|
Sheng J, Pooler DRS, Feringa BL. Enlightening dynamic functions in molecular systems by intrinsically chiral light-driven molecular motors. Chem Soc Rev 2023; 52:5875-5891. [PMID: 37581608 PMCID: PMC10464662 DOI: 10.1039/d3cs00247k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 08/16/2023]
Abstract
Chirality is a fundamental property which plays a major role in chemistry, physics, biological systems and materials science. Chiroptical artificial molecular motors (AMMs) are a class of molecules which can convert light energy input into mechanical work, and they hold great potential in the transformation from simple molecules to dynamic systems and responsive materials. Taking distinct advantages of the intrinsic chirality in these structures and the unique opportunity to modulate the chirality on demand, chiral AMMs have been designed for the development of light-responsive dynamic processes including switchable asymmetric catalysis, chiral self-assembly, stereoselective recognition, transmission of chirality, control of spin selectivity and biosystems as well as integration of unidirectional motion with specific mechanical functions. This review focuses on the recently developed strategies for chirality-led applications by the class of intrinsically chiral AMMs. Finally, some limitations in current design and challenges associated with recent systems are discussed and perspectives towards promising candidates for responsive and smart molecular systems and future applications are presented.
Collapse
Affiliation(s)
- Jinyu Sheng
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Daisy R S Pooler
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
19
|
Singhania A, Kalita S, Chettri P, Ghosh S. Accounts of applied molecular rotors and rotary motors: recent advances. NANOSCALE ADVANCES 2023; 5:3177-3208. [PMID: 37325522 PMCID: PMC10262963 DOI: 10.1039/d3na00010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Molecular machines are nanoscale devices capable of performing mechanical works at molecular level. These systems could be a single molecule or a collection of component molecules that interrelate with one another to produce nanomechanical movements and resulting performances. The design of the components of molecular machine with bioinspired traits results in various nanomechanical motions. Some known molecular machines are rotors, motors, nanocars, gears, elevators, and so on based on their nanomechanical motion. The conversion of these individual nanomechanical motions to collective motions via integration into suitable platforms yields impressive macroscopic output at varied sizes. Instead of limited experimental acquaintances, the researchers demonstrated several applications of molecular machines in chemical transformation, energy conversion, gas/liquid separation, biomedical use, and soft material fabrication. As a result, the development of new molecular machines and their applications has accelerated over the previous two decades. This review highlights the design principles and application scopes of several rotors and rotary motor systems because these machines are used in real applications. This review also offers a systematic and thorough overview of current advancements in rotary motors, providing in-depth knowledge and predicting future problems and goals in this area.
Collapse
Affiliation(s)
- Anup Singhania
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sudeshna Kalita
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Prerna Chettri
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Subrata Ghosh
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
20
|
Wu Y, Lou B, Zheng N, Zhou X, Gao Y, Hong W, Yang Q, Yang G. F OF 1-ATPase Motor-Embedded Chromatophore as Drug Delivery System: Extraction, Cargo Loading Ability and Mucus Penetration Ability. Pharmaceutics 2023; 15:1681. [PMID: 37376130 PMCID: PMC10302136 DOI: 10.3390/pharmaceutics15061681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Mucosal drug delivery permits direct and prompt drug absorption, which is capable of reducing undesirable decomposition that occurs before absorption. However, mucus clearance of those mucosal drug delivery systems strongly retards their actual application. Herein, we propose chromatophore nanoparticles embedded with FOF1-ATPase motors to promote mucus penetration. The FOF1-ATPase motor-embedded chromatophores were firstly extracted from Thermus thermophilus by using a gradient centrifugation method. Then, the model drug (curcumin) was loaded onto the chromatophores. The drug loading efficiency and entrapment efficiency were optimized by using different loading approaches. The activity, motility, stability and mucus permeation of the drug-loaded chromatophore nanoparticles were thoroughly investigated. Both the in vitro and in vivo studies revealed that the FOF1-ATPase motor-embedded chromatophore successfully enhanced mucus penetration glioma therapy. This study indicates that the FOF1-ATPase motor-embedded chromatophore is a promising alternative as a mucosal drug delivery system.
Collapse
Affiliation(s)
- Yujing Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
| | - Ning Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
| | - Xuhui Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
| | - Ying Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
- Zhejiang Moda Biotech Co., Ltd., Hangzhou 310018, China
| | - Weiyong Hong
- Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
| |
Collapse
|
21
|
Perrot A, Wang WZ, Buhler E, Moulin E, Giuseppone N. Bending Actuation of Hydrogels through Rotation of Light-Driven Molecular Motors. Angew Chem Int Ed Engl 2023; 62:e202300263. [PMID: 36715696 DOI: 10.1002/anie.202300263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
The unidirectional rotation of chemically crosslinked light-driven molecular motors is shown to progressively shift the swelling equilibrium of hydrogels. The concentration of molecular motors and the initial strand density of the polymer network are key parameters to modulate the macroscopic contraction of the material, and both parameters can be tuned using polymer chains of different molecular weights. These findings led to the design of optimized hydrogels revealing a half-time contraction of approximately 5 min. Furthermore, under inhomogeneous stimulation, the local contraction event was exploited to design useful bending actuators with an energy output 400 times higher than for previously reported self-assembled systems involving rotary motors. In the present configuration, we measure that a single molecular motor can lift up loads of 200 times its own molecular weight.
Collapse
Affiliation(s)
- Alexis Perrot
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000, Strasbourg, France.,School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Wen-Zhi Wang
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000, Strasbourg, France
| | - Eric Buhler
- Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité, Bâtiment Condorcet, 75013, Paris, France
| | - Emilie Moulin
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000, Strasbourg, France
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000, Strasbourg, France
| |
Collapse
|
22
|
Xu F, Feringa BL. Photoresponsive Supramolecular Polymers: From Light-Controlled Small Molecules to Smart Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204413. [PMID: 36239270 DOI: 10.1002/adma.202204413] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Photoresponsive supramolecular polymers are well-organized assemblies based on highly oriented and reversible noncovalent interactions containing photosensitive molecules as (co-)monomers. They have attracted increasing interest in smart materials and dynamic systems with precisely controllable functions, such as light-driven soft actuators, photoresponsive fluorescent anticounterfeiting and light-triggered electronic devices. The present review discusses light-activated molecules used in photoresponsive supramolecular polymers with their main photo-induced changes, e.g., geometry, dipole moment, and chirality. Based on these distinct changes, supramolecular polymers formed by light-activated molecules exhibit photoresponsive disassembly and reassembly. As a consequence, photo-induced supramolecular polymerization, "depolymerization," and regulation of the lengths and topologies are observed. Moreover, the light-controlled functions of supramolecular polymers, such as actuation, emission, and chirality transfer along length scales, are highlighted. Furthermore, a perspective on challenges and future opportunities is presented. Besides the challenge of moving from harmful UV light to visible/near IR light avoiding fatigue, and enabling biomedical applications, future opportunities include light-controlled supramolecular actuators with helical motion, light-modulated information transmission, optically recyclable materials, and multi-stimuli-responsive supramolecular systems.
Collapse
Affiliation(s)
- Fan Xu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
23
|
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:855. [PMID: 36903733 PMCID: PMC10005801 DOI: 10.3390/nano13050855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
24
|
Yang F, Yue B, Zhu L. Light-triggered Modulation of Supramolecular Chirality. Chemistry 2023; 29:e202203794. [PMID: 36653305 DOI: 10.1002/chem.202203794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Dynamically controlling the supramolecular chirality is of great significance in development of functional chiral materials, which is thus essential for the specific function implementation. As an external energy input, light is remote and accurate for modulating chiral assemblies. In non-polarized light control, some photochemically reactive units (e. g., azobenzene, ɑ-cyanostilbene, spiropyran, anthracene) or photo-induced directionally rotating molecular motors were designed to drive chiral transfer or amplification. Besides, photoexcitation induced assembly based physical approach was also explored recently to regulate supramolecular chirality beyond photochemical reactions. In addition, circularly polarized light was applied to induce asymmetric arrangement of organic molecules and asymmetric photochemical synthesis of inorganic metallic nanostructures, in which both wavelength and handedness of circularly polarized light have effects on the induced supramolecular chirality. Although light-triggered chiral assemblies have been widely applied in photoelectric materials, biomedical fields, soft actuator, chiral catalysis and chiral sensing, there is a lack of systematic review on this topic. In this review, we summarized the recent studies and perspectives in the constructions and applications of light-responsive chiral assembled systems, aiming to provide better knowledge for the development of multifunctional chiral nanomaterials.
Collapse
Affiliation(s)
- Fan Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Bingbing Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
25
|
Lan R, Bao J, Huang R, Wang Z, Zhang L, Shen C, Wang Q, Yang H. Amplifying Molecular Scale Rotary Motion: The Marriage of Overcrowded Alkene Molecular Motor with Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109800. [PMID: 35732437 DOI: 10.1002/adma.202109800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Design and fabrication of macroscopic functional devices by molecular engineering is an emerging and effective strategy in exploration of advanced materials. Photoresponsive overcrowded alkene-based molecular motor (OAMM) is considered as one of the most promising molecular machines due to the unique rotary motion driven by light with high temporal and spatial precision. Amplifying the molecular rotary motions into macroscopic behaviors of photodirected systems links the molecular dynamics with macroscopic motions of materials, providing new opportunities to design novel materials and devices with a bottom-up strategy. In this review, recent developments of the light-responsive liquid crystal system triggered by OAMM will be summarized. The mechanism of amplification effect of liquid crystal matrix will be introduced first. Then progress of the OAMM-driven liquid crystal materials will be described including light-controlled photonic crystals, texture-tunable liquid crystal coating and microspheres, photoactuated soft robots, and dynamic optical devices. It is hoped that this review provides inspirations in design and exploration of light-driven soft matters and novel functional materials from molecular engineering to structural modification.
Collapse
Affiliation(s)
- Ruochen Lan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Rui Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zizheng Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lanying Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chen Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qian Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
26
|
Joshi A, Gayakwad A, Manjuladevi V, Varia MC, Kumar S, Gupta R. Photoinduced modulation of refractive index in Langmuir-Blodgett films of azo-based H-shaped liquid crystal molecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Kathan M, Crespi S, Troncossi A, Stindt CN, Toyoda R, Feringa BL. The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angew Chem Int Ed Engl 2022; 61:e202205801. [PMID: 35718745 PMCID: PMC9544085 DOI: 10.1002/anie.202205801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/13/2022]
Abstract
In artificial small‐molecule machines, molecular motors can be used to perform work on coupled systems by applying a mechanical load—such as strain—that allows for energy transduction. Here, we report how ring strain influences the rotation of a rotary molecular motor. Bridging the two halves of the motor with alkyl tethers of varying sizes yields macrocycles that constrain the motor's movement. Increasing the ring size by two methylene increments increases the mobility of the motor stepwise and allows for fine‐tuning of strain in the system. Small macrocycles (8–14 methylene units) only undergo a photochemical E/Z isomerization. Larger macrocycles (16–22 methylene units) can perform a full rotational cycle, but thermal helix inversion is strongly dependent on the ring size. This study provides systematic and quantitative insight into the behavior of molecular motors under a mechanical load, paving the way for the development of complex coupled nanomachinery.
Collapse
Affiliation(s)
- Michael Kathan
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
- Present address: Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Stefano Crespi
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
- Present address: Department of Chemistry—Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Axel Troncossi
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| | - Charlotte N. Stindt
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| | - Ryojun Toyoda
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
- Present address: Department of Chemistry Graduate School of Science Tohoku University 6-3 Aramaki-Aza-Aoba, Aobaku Sendai 980-8578 Japan
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| |
Collapse
|
28
|
Kathan M, Crespi S, Troncossi A, Stindt CN, Toyoda R, Feringa BL. The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michael Kathan
- Humboldt-Universitat zu Berlin Department of Chemistry Brook-Taylor-Str. 2 12489 Berlin GERMANY
| | - Stefano Crespi
- Uppsala Universitet Department of Chemistry Ångström LaboratoryBox 523 751 20 Uppsala SWEDEN
| | - Axel Troncossi
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Charlotte N. Stindt
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ryojun Toyoda
- Tohoku University: Tohoku Daigaku Department of Chemistry JAPAN
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
29
|
Freese T, Fridrich B, Crespi S, Lubbe AS, Barta K, Feringa BL. A molecular motor from lignocellulose. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:3689-3696. [PMID: 35694221 PMCID: PMC9086859 DOI: 10.1039/d2gc00291d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 05/07/2023]
Abstract
Lignin is the largest natural source of functionalized aromatics on the planet, therefore exploiting its inherent structural features for the synthesis of aromatic products is a timely and ambitious goal. While the recently developed lignin depolymerization strategies gave rise to well-defined aromatic platform chemicals, the diversification of these structures, especially toward high-end applications is still poorly addressed. Molecular motors and switches have found widespread application in many important areas such as targeted drug delivery systems, responsive coatings for self-healing surfaces, paints and resins or muscles for soft robotics. They typically comprise a functionalized aromatic backbone, yet their synthesis from lignin has not been considered before. In this contribution, we showcase the synthesis of a novel light-driven unidirectional molecular motor from the specific aromatic platform chemical 4-(3-hydroxypropyl)-2,6-dimethoxyphenol (dihydrosynapyl alcohol) that can be directly obtained from lignocellulose via a reductive catalytic fractionation strategy. The synthetic path takes into account the principles of green chemistry and aims to maintain the intrinsic functionality of the lignin-derived platform molecule.
Collapse
Affiliation(s)
- Thomas Freese
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Bálint Fridrich
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Anouk S Lubbe
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
30
|
Xu Y, Chang Y, Yao Y, Zhang M, Dupont RL, Rather AM, Bao X, Wang X. Modularizable Liquid-Crystal-Based Open Surfaces Enable Programmable Chemical Transport and Feeding using Liquid Droplets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108788. [PMID: 35333418 DOI: 10.1002/adma.202108788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Droplet-based miniature reactors have attracted interest in both fundamental studies, for the unique reaction kinetics they enable, and applications in bio-diagnosis and material synthesis. However, the precise and automatic feeding of chemicals, important for the delicate reactions in these miniaturized chemical reactors, either requires complex, high-cost microfluidic devices or lacks the capability to maintain a pinning-free droplet movement. Here, the design and synthesis of a new class of liquid crystal (LC)-based open surfaces, which enable a controlled chemical release via a programmable LC phase transition without sacrificing the free transport of the droplets, are reported. It is demonstrated that their intrinsic slipperiness and self-healing properties enable a modularizable assembly of LC surfaces that can be loaded with different chemicals to achieve a wide range of chemical reactions carried out within the droplets, including sequential and parallel chemical reactions, crystal growth, and polymer synthesis. Finally, an LC-based chemical feeding device is developed that can automatically control the release of chemicals to direct the simultaneous differentiation of human induced pluripotent stem cells into endothelial progenitor cells and cardiomyocytes. Overall, these LC surfaces exhibit desirable levels of automation, responsiveness, and controllability for use in miniature droplet carriers and reactors.
Collapse
Affiliation(s)
- Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Robert L Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Adil M Rather
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
31
|
Ma W, Cheng T, Liu FZ, Liu Y, Yan K. Allosteric Binding-Induced Intramolecular Mechanical-Strain Engineering. Angew Chem Int Ed Engl 2022; 61:e202202213. [PMID: 35212101 DOI: 10.1002/anie.202202213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Recently, polymer mechanochemistry has attracted much scientific interest due to its potential to develop degradable polymers. When the two ends of a polymer chain experience a linear pulling stress, molecular strain builds up, at sufficiently strong force, a bond scission of the weakest covalent bond results. In contrast, bond-breaking events triggered by conformational stress are much less explored. Here, we discovered that a Zn salen complex would undergo conformational switching upon allosteric complexation with alkanediammonium guests. By controlling the guest chain length, the torsional strain experienced by Zn complex can be modulated to induce bond cleavage with chemical stimulus, and reactivity trend is predicted by conformational analysis derived by DFT calculation. Such strain-release reactivity by a Zn(salen) complex initiated by guest binding is reminiscent of conformation-induced reactivity of enzymes to enable chemical events that are otherwise inhibited.
Collapse
Affiliation(s)
- Wenxian Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Cheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
32
|
Controlling forward and backward rotary molecular motion on demand. Nat Commun 2022; 13:2124. [PMID: 35440652 PMCID: PMC9019045 DOI: 10.1038/s41467-022-29820-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Synthetic molecular machines hold tremendous potential to revolutionize chemical and materials sciences. Their autonomous motion controlled by external stimuli allows to develop smart materials whose properties can be adapted on command. For the realisation of more complex molecular machines, it is crucial to design building blocks whose properties can be controlled by multiple orthogonal stimuli. A major challenge is to reversibly switch from forward to backward and again forward light-driven rotary motion using external stimuli. Here we report a push-pull substituted photo-responsive overcrowded alkene whose function can be toggled between that of a unidirectional 2nd generation rotary motor and a molecular switch depending on its protonation and the polarity of its environment. With its simplicity in design, easy preparation, outstanding stability and orthogonal control of distinct forward and backward motions, we believe that the present concept paves the way for creating more advanced molecular machines. Being able to control motion at the molecular level is vital for many future developments in the molecular sciences. Here, the authors report the controlled forward and backward rotation of a molecular motor guided by external stimuli.
Collapse
|
33
|
Hou J, Long G, Zhao W, Zhou G, Liu D, Broer DJ, Feringa BL, Chen J. Phototriggered Complex Motion by Programmable Construction of Light-Driven Molecular Motors in Liquid Crystal Networks. J Am Chem Soc 2022; 144:6851-6860. [PMID: 35380815 PMCID: PMC9026258 DOI: 10.1021/jacs.2c01060] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Recent developments
in artificial molecular machines have enabled
precisely controlled molecular motion, which allows several distinct
mechanical operations at the nanoscale. However, harnessing and amplifying
molecular motion along multiple length scales to induce macroscopic
motion are still major challenges and comprise an important next step
toward future actuators and soft robotics. The key to addressing this
challenge relies on effective integration of synthetic molecular machines
in a hierarchically aligned structure so numerous individual molecular
motions can be collected in a cooperative way and amplified to higher
length scales and eventually lead to macroscopic motion. Here, we
report the complex motion of liquid crystal networks embedded with
molecular motors triggered by single-wavelength illumination. By design,
both racemic and enantiomerically pure molecular motors are programmably
integrated into liquid crystal networks with a defined orientation.
The motors have multiple functions acting as cross-linkers, actuators,
and chiral dopants inside the network. The collective rotary motion
of motors resulted in multiple types of motion of the polymeric film,
including bending, wavy motion, fast unidirectional movement on surfaces,
and synchronized helical motion with different handedness, paving
the way for the future design of responsive materials with enhanced
complex functions.
Collapse
Affiliation(s)
- Jiaxin Hou
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China.,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Guiying Long
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wei Zhao
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China.,SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Danqing Liu
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.,Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
| | - Dirk J Broer
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.,Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
| | - Ben L Feringa
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China.,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
34
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
35
|
Ma W, Cheng T, Liu F, Liu Y, Yan K. Allosteric Binding‐Induced Intramolecular Mechanical‐Strain Engineering. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenxian Ma
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tingting Cheng
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Fang‐Zi Liu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Yan Liu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - KaKing Yan
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
36
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
37
|
Huang R, Lan R, Shen C, Zhang Z, Wang Z, Bao J, Wang Z, Zhang L, Hu W, Yu Z, Zhu S, Wang L, Yang H. Remotely Controlling Drug Release by Light-Responsive Cholesteric Liquid Crystal Microcapsules Triggered by Molecular Motors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59221-59230. [PMID: 34851087 DOI: 10.1021/acsami.1c16367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive smart nanocarriers are an emerging class of materials applicable in fields including drug delivery and tissue engineering. Instead of constructing responsive polymer shells to control the release and delivery of drugs, in this work, we put forward a novel strategy to endow the internal drugs with light responsivity. The microcapsule consisted of molecular motor (MM)-doped cholesteric liquid crystals (CLCs) and drugs. The drug in gelatin-gum arabic microcapsules can protect the carried drugs for a long time with a low release speed totally resulting from drug diffusion. Under UV light, the MM isomerizes and the chirality changes, inducing the alteration of the superstructure of the CLCs. In this process, the cooperative molecular disturbance accelerates the diffusion of the drugs from the microcapsule core to the outside. As a result, thanks to the cooperative effect of liquid crystalline mesogens, molecular-scale geometric changes of motors could be amplified to the microscale disturbance of the self-organized superstructure of the CLCs, resulting in the acceleration of the drug release. This method is hoped to provide opportunities in the design and fabrication of novel functional drug delivery systems.
Collapse
Affiliation(s)
- Rui Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ruochen Lan
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Chen Shen
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhongping Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zichen Wang
- College of Materials Science and Opto-Electronic Technology, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zizheng Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Lanying Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Wei Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhan Yu
- Beijing Anzhen Hospital of Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing 100020, P. R. China
| | - Siquan Zhu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Anzhen Hospital of Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing 100020, P. R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
38
|
Perrot A, Moulin E, Giuseppone N. Extraction of mechanical work from stimuli-responsive molecular systems and materials. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Hu Y, Ji Q, Huang M, Chang L, Zhang C, Wu G, Zi B, Bao N, Chen W, Wu Y. Light‐Driven Self‐Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying Hu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Qixiao Ji
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Majing Huang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Longfei Chang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Chengchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Bin Zi
- School of Mechanical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing The Hong Kong Polytechnic University Hong Kong 999077 P. R. China
| | - Yucheng Wu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| |
Collapse
|
40
|
Liu C, Sun Y, Huanng J, Guo Z, Liu W. External-field-induced directional droplet transport: A review. Adv Colloid Interface Sci 2021; 295:102502. [PMID: 34390884 DOI: 10.1016/j.cis.2021.102502] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Directional transport of fluids is crucial for vital activities of organisms and numerous industrial applications. This process has garnered widespread research attention due to the wide breadth of flexible applications such as medical diagnostics, drug delivery, and digital microfluidics. The rational design of functional surfaces that can achieve the subtle control of liquid behavior. Previous studies were mainly dependent on the special asymmetric structures, which inevitably have the problem of slow transport speed and short distance. To improve controllability, researchers have attempted to use external fields, such as thermal, light, electric fields, and magnetic fields, to achieve controllable droplet transport. On the fundamental side, much of their widespread applicably is due to the degree of control over droplet transport. This review provides an overview of recent progress in the last three years toward the transport of droplets with different mechanisms induced by various external stimuli, including light, electric, thermal, and magnetic field. First, the relevant basic theory and typical induced gradient for directional liquid transport are illustrated. We will then review the latest advances in the external-field-induced directional transport. Moreover, the most emerging applications such as digital microfluidics, harvesting of energy and water, heat transfer, and oil/water separation are also presented. Finally, we will outline possible future perspectives to attract more researchers interest and promote the development of this field.
Collapse
|
41
|
Hu Y, Ji Q, Huang M, Chang L, Zhang C, Wu G, Zi B, Bao N, Chen W, Wu Y. Light-Driven Self-Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angew Chem Int Ed Engl 2021; 60:20511-20517. [PMID: 34272927 DOI: 10.1002/anie.202108058] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/28/2022]
Abstract
Developing self-oscillating soft actuators that enable autonomous, continuous, and directional locomotion is significant in biomimetic soft robotics fields, but remains great challenging. Here, an untethered soft photoactuators based on covalently-bridged black phosphorus-carbon nanotubes heterostructure with self-oscillation and phototactic locomotion under constant light irradiation is designed. Owing to the good photothermal effect of black phosphorus heterostructure and thermal deformation of the actuator components, the new actuator assembled by heterostructured black phosphorus, polymer and paper produces light-driven reversible deformation with fast and large response. By using this actuator as mechanical power and designing a robot configuration with self-feedback loop to generate self-oscillation, an inchworm-like actuator that can crawl autonomously towards the light source is constructed. Moreover, due to the anisotropy and tailorability of the actuator, an artificial crab robot that can simulate the sideways locomotion of crabs and simultaneously change color under light irradiation is also realized.
Collapse
Affiliation(s)
- Ying Hu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Qixiao Ji
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Majing Huang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Longfei Chang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Chengchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Bin Zi
- School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yucheng Wu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
42
|
Hou J, Mondal A, Long G, de Haan L, Zhao W, Zhou G, Liu D, Broer DJ, Chen J, Feringa BL. Photo-responsive Helical Motion by Light-Driven Molecular Motors in a Liquid-Crystal Network. Angew Chem Int Ed Engl 2021; 60:8251-8257. [PMID: 33511680 PMCID: PMC8048625 DOI: 10.1002/anie.202016254] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Controlling sophisticated motion by molecular motors is a major goal on the road to future actuators and soft robotics. Taking inspiration from biological motility and mechanical functions common to artificial machines, responsive small molecules have been used to achieve macroscopic effects, however, translating molecular movement along length scales to precisely defined linear, twisting and rotary motions remain particularly challenging. Here, we present the design, synthesis and functioning of liquid‐crystal network (LCN) materials with intrinsic rotary motors that allow the conversion of light energy into reversible helical motion. In this responsive system the photochemical‐driven molecular motor has a dual function operating both as chiral dopant and unidirectional rotor amplifying molecular motion into a controlled and reversible left‐ or right‐handed macroscopic twisting movement. By exploiting the dynamic chirality, directionality of motion and shape change of a single motor embedded in an LC‐network, complex mechanical motions including bending, walking and helical motion, in soft polymer materials are achieved which offers fascinating opportunities toward inherently photo‐responsive materials.
Collapse
Affiliation(s)
- Jiaxin Hou
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Anirban Mondal
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Guiying Long
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Laurens de Haan
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM)Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- Stimuli-responsive Functional Materials and DevicesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyDen Dolech 2, 5600MBEindhovenThe Netherlands
| | - Wei Zhao
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM)Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Guofu Zhou
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM)Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Danqing Liu
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM)Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- Stimuli-responsive Functional Materials and DevicesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyDen Dolech 2, 5600MBEindhovenThe Netherlands
| | - Dirk J. Broer
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM)Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- Stimuli-responsive Functional Materials and DevicesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyDen Dolech 2, 5600MBEindhovenThe Netherlands
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Ben L. Feringa
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|