1
|
Wang J, Zhao K, Yao Y, Xue F, Lu F, Yan W, Yuan F, Wang X. Ferromagnetic Fe-TiO 2 spin catalysts for enhanced ammonia electrosynthesis. Nat Commun 2025; 16:1129. [PMID: 39875424 DOI: 10.1038/s41467-025-56566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Magnetic field effects (MFE) of ferromagnetic spin electrocatalysts have attracted significant attention due to their potential to enhance catalytic activity under an external magnetic field. However, no ferromagnetic spin catalysts have demonstrated MFE in the electrocatalytic reduction of nitrate for ammonia (NO3RR), a pioneering approach towards NH3 production involving the conversion from diamagnetic NO3- to paramagnetic NO. Here, we report the ferromagnetic Fe-TiO2 to investigate MFE on NO3RR. Fe-TiO2 possesses a high density of atomically dispersed Fe sites and exhibits an intermediate-spin state, resulting in magnetic ordering through ferromagnetism. Assisted by a magnetic field, Fe-TiO2 achieves a Faradaic efficiency (FE) of up to 97% and an NH3 yield of 24.69 mg mgcat-1 at -0.5 V versus reversible hydrogen electrode. Compared to conditions without an external magnetic field, the FE and NH3 yield for Fe-TiO2 under an external magnetic field is increased by ~21.8% and ~ 3.1 times, respectively. In-situ characterization and theoretical calculations show that spin polarization enhances the critical step of NO hydrogenation to NOH by optimizing electron transfer pathways between Fe and NO, significantly boosting NO3RR activity.
Collapse
Affiliation(s)
- Jingnan Wang
- Institute of Molecular Engineering Plus, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Kaiheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongbin Yao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Fan Xue
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Fei Lu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225002, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fangli Yuan
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
2
|
Xue F, Wang J, Li P, Yao Y, Li J, Lu Z, Yi D, Yuan F, Yan W, Wang X. Enhancing Stability and Activity of Fe-Based Catalysts for Propane Dehydrogenation via Anchoring Isolated Fe-Cl Sites. CHEMSUSCHEM 2025:e202402408. [PMID: 39757117 DOI: 10.1002/cssc.202402408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
The eco-friendly features and desirable catalytic activities of Fe-based catalysts make them highly promising for propane dehydrogenation (PDH). However, simultaneously improving their stability and activity remains a challenge. Here, we present a strategy to address these issues synergistically by anchoring single-atom Fe-Cl sites in Al3+ vacancies of Al2O3. The as-synthesized Fe-Cl/Al2O3 catalyst exhibited greater charge transfer between Cl and Fe than that between O and Fe in conventionally impregnated single-atom Fe/Al2O3 catalysts, resulting in higher effective magnetic moments for Fe-Cl/Al2O3 compared to Fe/Al2O3. When tested in PDH, the durability of Fe-Cl/Al2O3 exceptionally lasted for 250 h under continuous regeneration conditions comprising 60 % C3H8 (40 % N2), followed by pure C3H8 at 600 °C while maintaining a high propylene space-time yield of 1.2 molC3H6 gFe -1 h-1, surpassing the performance of previously developed Fe-based PDH catalysts. We demonstrate that anchoring Fe-Cl into Al3+ vacancies simultaneously enhances stability and suppresses coke formation, owing to unique atomically dispersed Fe-Cl active structures. Compared with Fe/Al2O3 catalysts, charge transfer between Cl and Fe active centers reduces the activation energy barrier for C-H activation during C3H8 dehydrogenation, thereby improving catalytic activity; this may be related to their spin state as observed in in-situ X-ray emission spectroscopy studies during PDH.
Collapse
Affiliation(s)
- Fan Xue
- Key Laboratory of Luminescence and Optical Information Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Jingnan Wang
- Molecular Engineering Plus, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Panpan Li
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan, 451162, P. R. China
| | - Yongbin Yao
- Key Laboratory of Luminescence and Optical Information Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Junmeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | - Zongjing Lu
- Institute of Photochemistry and Photofunctional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Ding Yi
- Key Laboratory of Luminescence and Optical Information Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Fangli Yuan
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| |
Collapse
|
3
|
Winzely M, Clark AH, Diercks JS, Safonova O, Rüttimann P, Leidinger PM, Phadke S, Schmidt TJ, Herranz J. Electrochemical Cell for Operando Grazing-Incidence X-ray Absorption Spectroscopic Studies of Low-Loaded Electrodes. Anal Chem 2024. [PMID: 39687941 DOI: 10.1021/acs.analchem.4c04233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
X-ray absorption spectroscopy (XAS) is a powerful technique that provides information about the electronic and local geometric structural properties of newly developed electrocatalysts, especially when it is performed under operating conditions (i.e., operando). However, the large amounts of catalyst typically needed to achieve sufficiently high spectral quality and temporal resolution can result in working electrodes of several micrometers in thickness. This can in turn lead to an inhomogeneous potential distribution across the electrode, delamination, and/or incomplete utilization of the catalyst layer (CL), as well as to the (partial) shielding of the CL with electrochemically evolved bubbles trapped within its pores. These limitations can be tackled by performing such spectrochemical measurements with low-loaded (and thus thin) electrodes, which call for the acquisition of XAS spectra in fluorescence mode and using an X-ray beam incidence angle of ≤0.1° with regards to the working electrode's substrate plane in a grazing-incidence (GI) configuration. Thus, in this work, we introduce a new spectroelectrochemical flow cell that allows one to perform such measurements in this GI mode and verify its functionality by tracking the potential-induced formation of palladium hydride (PdHx) in a Pd nanoparticle-based electrocatalyst. A time resolution of 10 s per spectrum was achieved with a very low Pd-loading of only 30 μgPd/cm2. Moreover, the implementation of an ion-conductive membrane to separate the working- and counter-electrode compartments enables the quantification of reaction products, which, in the case of gaseous species, can be detected in a time-resolved manner by means of mass spectrometry. Chiefly, this allows us to determine the electrocatalytic activity and selectivity of a given material in the same cell configuration used for the spectroscopic measurements and assures a reliable comparison among the results derived from both techniques.
Collapse
Affiliation(s)
- Maximilian Winzely
- Paul Scherrer Institut, Center for Energy and Environmental Science, CH-5232 Villigen, Switzerland
| | - Adam H Clark
- Paul Scherrer Institut, Center for Photon Science, CH-5232 Villigen, Switzerland
| | - Justus S Diercks
- Paul Scherrer Institut, Center for Energy and Environmental Science, CH-5232 Villigen, Switzerland
| | - Olga Safonova
- Paul Scherrer Institut, Center for Energy and Environmental Science, CH-5232 Villigen, Switzerland
- Paul Scherrer Institut, Center for Photon Science, CH-5232 Villigen, Switzerland
| | - Peter Rüttimann
- Paul Scherrer Institut, Center for Accelerator Science and Engineering, CH-5232 Villigen, Switzerland
| | - Paul M Leidinger
- Paul Scherrer Institut, Center for Energy and Environmental Science, CH-5232 Villigen, Switzerland
| | - Sumant Phadke
- Paul Scherrer Institut, Center for Energy and Environmental Science, CH-5232 Villigen, Switzerland
- Paul Scherrer Institut, Center for Photon Science, CH-5232 Villigen, Switzerland
| | - Thomas J Schmidt
- Paul Scherrer Institut, Center for Energy and Environmental Science, CH-5232 Villigen, Switzerland
- ETH Zürich, Institute for Molecular Physical Science, CH-8093 Zürich, Switzerland
| | - Juan Herranz
- Paul Scherrer Institut, Center for Energy and Environmental Science, CH-5232 Villigen, Switzerland
| |
Collapse
|
4
|
Liu Y, Su X, Ding J, Zhou J, Liu Z, Wei X, Yang HB, Liu B. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chem Soc Rev 2024; 53:11850-11887. [PMID: 39434695 DOI: 10.1039/d3cs00967j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Single-atom catalysts (SACs) represent the ultimate size limit of nanoscale catalysts, combining the advantages of homogeneous and heterogeneous catalysts. SACs have isolated single-atom active sites that exhibit high atomic utilization efficiency, unique catalytic activity, and selectivity. Over the past few decades, synchrotron radiation techniques have played a crucial role in studying single-atom catalysis by identifying catalyst structures and enabling the understanding of reaction mechanisms. The profound comprehension of spectroscopic techniques and characteristics pertaining to SACs is important for exploring their catalytic activity origins and devising high-performance and stable SACs for industrial applications. In this review, we provide a comprehensive overview of the recent advances in X-ray based synchrotron radiation techniques for structural characterization and in situ/operando observation of SACs under reaction conditions. We emphasize the correlation between spectral fine features and structural characteristics of SACs, along with their analytical limitations. The development of IMST with spatial and temporal resolution is also discussed along with their significance in revealing the structural characteristics and reaction mechanisms of SACs. Additionally, this review explores the study of active center states using spectral fine characteristics combined with theoretical simulations, as well as spectroscopic analysis strategies utilizing machine learning methods to address challenges posed by atomic distribution inhomogeneity in SACs while envisaging potential applications integrating artificial intelligence seamlessly with experiments for real-time monitoring of single-atom catalytic processes.
Collapse
Affiliation(s)
- Yuhang Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jing Zhou
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhen Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Xiangjun Wei
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Martini A, Timoshenko J, Grosse P, Rettenmaier C, Hursán D, Deplano G, Jeon HS, Bergmann A, Roldan Cuenya B. Adsorbate Configurations in Ni Single-Atom Catalysts during CO_{2} Electrocatalytic Reduction Unveiled by Operando XAS, XES, and Machine Learning. PHYSICAL REVIEW LETTERS 2024; 133:228001. [PMID: 39672148 DOI: 10.1103/physrevlett.133.228001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/17/2024] [Indexed: 12/15/2024]
Abstract
Nickel and nitrogen co-doped carbon (Ni-N-C) catalysts are attracting attention due to their exceptionally high performance in the electrocatalytic reduction of CO_{2}(CO_{2}RR) to CO. However, the direct experimental insight into the working mechanism of these catalysts is missing, hindering our fundamental understanding and their further improvement. This work sheds light on the nature of adsorbates forming under CO_{2}RR at singly dispersed Ni sites. In particular, operando high energy resolution fluorescence detected x-ray absorption near edge structure (HERFD-XANES) at the Ni K-edge together with valence-to-core x-ray emission spectroscopy (vtc-XES) and x-ray absorption (XAS) at the Ni L_{3}-edge were employed to unveil the structure and electronic properties of the reaction intermediates. These techniques, coupled with unsupervised and supervised machine learning methodologies and density functional theory, enabled a comprehensive characterization of the local atomistic and electronic structure of the working Ni-N-C catalysts. Specifically, we were able to distinguish between the structural and electronic changes of the Ni sites associated with the CO_{2}RR functionality from the effect of radiation-induced damage, providing direct insight into the bond formation between the Ni centers and CO_{2}RR intermediates such as CO adsorbates.
Collapse
|
6
|
Xu X, Guan J. Spin effect in dual-atom catalysts for electrocatalysis. Chem Sci 2024:d4sc04370g. [PMID: 39246370 PMCID: PMC11376133 DOI: 10.1039/d4sc04370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
The development of high-efficiency atomic-level catalysts for energy-conversion and -storage technologies is crucial to address energy shortages. The spin states of diatomic catalysts (DACs) are closely tied to their catalytic activity. Adjusting the spin states of DACs' active centers can directly modify the occupancy of d-orbitals, thereby influencing the bonding strength between metal sites and intermediates as well as the energy transfer during electro reactions. Herein, we discuss various techniques for characterizing the spin states of atomic catalysts and strategies for modulating their active center spin states. Next, we outline recent progress in the study of spin effects in DACs for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), electrocatalytic nitrogen/nitrate reduction reaction (eNRR/NO3RR), and electrocatalytic carbon dioxide reduction reaction (eCO2RR) and provide a detailed explanation of the catalytic mechanisms influenced by the spin regulation of DACs. Finally, we offer insights into the future research directions in this critical field.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
7
|
Wang Y, Sun J, Sun N, Zhang M, Liu X, Zhang A, Wang L. The spin polarization strategy regulates heterogeneous catalytic activity performance: from fundamentals to applications. Chem Commun (Camb) 2024; 60:7397-7413. [PMID: 38946499 DOI: 10.1039/d4cc02012j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In recent years, there has been significant attention towards the development of catalysts that exhibit superior performance and environmentally friendly attributes. This surge in interest is driven by the growing demands for energy utilization and storage as well as environmental preservation. Spin polarization plays a crucial role in catalyst design, comprehension of catalytic mechanisms, and reaction control, offering novel insights for the design of highly efficient catalysts. However, there are still some significant research gaps in the current study of spin catalysis. Therefore, it is urgent to understand how spin polarization impacts catalytic reactions to develop superior performance catalysts. Herein, we present a comprehensive summary of the application of spin polarization in catalysis. Firstly, we summarize the fundamental mechanism of spin polarization in catalytic reactions from two aspects of kinetics and thermodynamics. Additionally, we review the regulation mechanism of spin polarization in various catalytic applications and several approaches to modulate spin polarization. Moreover, we discuss the future development of spin polarization in catalysis and propose several potential avenues for further progress. We aim to improve current catalytic systems through implementing a novel and distinctive spin engineering strategy.
Collapse
Affiliation(s)
- Yan Wang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Junkang Sun
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Ning Sun
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Mengyang Zhang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Xianya Liu
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Anlei Zhang
- College of Science, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Longlu Wang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| |
Collapse
|
8
|
Martini A, Timoshenko J, Rüscher M, Hursán D, Monteiro MCO, Liberra E, Roldan Cuenya B. Revealing the structure of the active sites for the electrocatalytic CO 2 reduction to CO over Co single atom catalysts using operando XANES and machine learning. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:741-750. [PMID: 38917021 PMCID: PMC11226159 DOI: 10.1107/s1600577524004739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Transition-metal nitrogen-doped carbons (TM-N-C) are emerging as a highly promising catalyst class for several important electrocatalytic processes, including the electrocatalytic CO2 reduction reaction (CO2RR). The unique local environment around the singly dispersed metal site in TM-N-C catalysts is likely to be responsible for their catalytic properties, which differ significantly from those of bulk or nanostructured catalysts. However, the identification of the actual working structure of the main active units in TM-N-C remains a challenging task due to the fluctional, dynamic nature of these catalysts, and scarcity of experimental techniques that could probe the structure of these materials under realistic working conditions. This issue is addressed in this work and the local atomistic and electronic structure of the metal site in a Co-N-C catalyst for CO2RR is investigated by employing time-resolved operando X-ray absorption spectroscopy (XAS) combined with advanced data analysis techniques. This multi-step approach, based on principal component analysis, spectral decomposition and supervised machine learning methods, allows the contributions of several co-existing species in the working Co-N-C catalysts to be decoupled, and their XAS spectra deciphered, paving the way for understanding the CO2RR mechanisms in the Co-N-C catalysts, and further optimization of this class of electrocatalytic systems.
Collapse
Affiliation(s)
- Andrea Martini
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Janis Timoshenko
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Martina Rüscher
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Dorottya Hursán
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Mariana C. O. Monteiro
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Eric Liberra
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Beatriz Roldan Cuenya
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| |
Collapse
|
9
|
Gallenkamp C, Kramm UI, Krewald V. FeN 4 Environments upon Reduction: A Computational Analysis of Spin States, Spectroscopic Properties, and Active Species. JACS AU 2024; 4:940-950. [PMID: 38559729 PMCID: PMC10976608 DOI: 10.1021/jacsau.3c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 04/04/2024]
Abstract
FeN4 motifs, found, for instance, in bioinorganic chemistry as heme-type cofactors, play a crucial role in man-made FeNC catalysts for the oxygen reduction reaction. Such single-atom catalysts are a potential alternative to platinum-based catalysts in fuel cells. Since FeNC catalysts are prepared via pyrolysis, the resulting materials are amorphous and contain side phases and impurities. Therefore, the geometric and electronic nature of the catalytically active FeN4 site remains to be clarified. To further understand the behavior of FeN4 centers in electrochemistry and their expected spectroscopic behavior upon reduction, we investigate two FeN4 environments (pyrrolic and pyridinic). These are represented by the model complexes [Fe(TPP)Cl] and [Fe(phen2N2)Cl], where TPP = tetraphenylporphyrin and phen = 1,10-phenanthroline. We predict their Mössbauer, UV-vis, and NRV spectral data using density functional theory as windows into their electronic structure differences. By varying the axial ligand, we further show how well small chemical changes in both complexes can be discerned. We find that the differences in ligand field strength in pyrrolic and pyridinic coordination result in different spin ground states, which in turn leads to distinct Mössbauer spectroscopic properties. As a result, pyrrolic nitrogen donors with a weaker ligand field are predicted to show more pronounced spectroscopic differences under in situ and operando conditions, while pyridinic nitrogen donors are expected to show less pronounced spectroscopic changes upon reduction and/or ligand loss. We therefore suggest that a weaker ligand field leads to better detectability of catalytic intermediates in in situ and operando experiments.
Collapse
Affiliation(s)
- Charlotte Gallenkamp
- Theoretische
Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Ulrike I. Kramm
- Anorganische
Chemie, Technische Universität Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Vera Krewald
- Theoretische
Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| |
Collapse
|
10
|
Wu HR, Chen MY, Li WD, Lu BA. Recent Progress on Durable Metal-N-C Catalysts for Proton Exchange Membrane Fuel Cells. Chem Asian J 2024; 19:e202300862. [PMID: 37966013 DOI: 10.1002/asia.202300862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
It is essential for the widespread application of proton exchange membrane fuel cells (PEMFCs) to investigate low-cost, extremely active, and long-lasting oxygen reduction catalysts. Initial performance of PGM-free metal-nitrogen-carbon (M-N-C) catalysts for oxygen reduction reaction (ORR) has advanced significantly, particularly for Fe-N-C-based catalysts. However, the insufficient stability of M-N-C catalysts still impedes their use in practical fuel cells. In this review, we focus on the understanding of the structure-stability relationship of M-N-C ORR catalysts and summarize valuable guidance for the rational design of durable M-N-C catalysts. In the first section of this review, we discuss the inherent degrading mechanisms of M-N-C catalysts, such as carbon corrosion, demetallation, H2 O2 attack, etc. As we gain a thorough comprehension of these deterioration mechanisms, we shift our attention to the investigation of strategies that can mitigate catalyst deterioration and increase its stability. These strategies include enhancing the anti-oxidation of carbon, fortifying M-N bonds, and maximizing the effectiveness of free radical scavengers. This review offers a prospective view on the enhancement of the stability of non-noble metal catalysts.
Collapse
Affiliation(s)
- Hao-Ran Wu
- College of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Miao-Ying Chen
- College of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Wei-Dong Li
- College of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Bang-An Lu
- College of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, P. R. China
| |
Collapse
|
11
|
Zheng X, Yang J, Li P, Wang Q, Wu J, Zhang E, Chen S, Zhuang Z, Lai W, Dou S, Sun W, Wang D, Li Y. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. SCIENCE ADVANCES 2023; 9:eadi8025. [PMID: 37851800 PMCID: PMC10584348 DOI: 10.1126/sciadv.adi8025] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023]
Abstract
The anode corrosion induced by the harsh acidic and oxidative environment greatly restricts the lifespan of catalysts. Here, we propose an antioxidation strategy to mitigate Ir dissolution by triggering strong electronic interaction via elaborately constructing a heterostructured Ir-Sn pair-site catalyst. The formation of Ir-Sn dual-site at the heterointerface and the resulting strong electronic interactions considerably reduce d-band holes of Ir species during both the synthesis and the oxygen evolution reaction processes and suppress their overoxidation, enabling the catalyst with substantially boosted corrosion resistance. Consequently, the optimized catalyst exhibits a high mass activity of 4.4 A mgIr-1 at an overpotential of 320 mV and outstanding long-term stability. A proton-exchange-membrane water electrolyzer using this catalyst delivers a current density of 2 A cm-2 at 1.711 V and low degradation in an accelerated aging test. Theoretical calculations unravel that the oxygen radicals induced by the π* interaction between Ir 5d-O 2p might be responsible for the boosted activity and durability.
Collapse
Affiliation(s)
- Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peng Li
- School of Science, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - Qishun Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Erhuan Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weihong Lai
- Institute for Superconducting and Electronic Materials, Australia Institute for Innovation Material, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
12
|
Wang J, Hsu CS, Wu TS, Chan TS, Suen NT, Lee JF, Chen HM. In situ X-ray spectroscopies beyond conventional X-ray absorption spectroscopy on deciphering dynamic configuration of electrocatalysts. Nat Commun 2023; 14:6576. [PMID: 37852958 PMCID: PMC10584842 DOI: 10.1038/s41467-023-42370-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Realizing viable electrocatalytic processes for energy conversion/storage strongly relies on an atomic-level understanding of dynamic configurations on catalyst-electrolyte interface. X-ray absorption spectroscopy (XAS) has become an indispensable tool to in situ investigate dynamic natures of electrocatalysts but still suffers from limited energy resolution, leading to significant electronic transitions poorly resolved. Herein, we highlight advanced X-ray spectroscopies beyond conventional XAS, with emphasis on their unprecedented capabilities of deciphering key configurations of electrocatalysts. The profound complementarities of X-ray spectroscopies from various aspects are established in a probing energy-dependent "in situ spectroscopy map" for comprehensively understanding the solid-liquid interface. This perspective establishes an indispensable in situ research model for future studies and offers exciting research prospects for scientists and spectroscopists.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Shuo Hsu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, 225002, Yangzhou, China
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan.
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
13
|
Jiang J, Liu S, Shi D, Sun T, Wang Y, Fu S, Liu Y, Li M, Zhou D, Dong S. Spin state-dependent in-situ photo-Fenton-like transformation from oxygen molecule towards singlet oxygen for selective water decontamination. WATER RESEARCH 2023; 244:120502. [PMID: 37651870 DOI: 10.1016/j.watres.2023.120502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
The development of 1O2-dominanted selective decontamination for water purification was hampered by extra H2O2 consumption and poor 1O2 generation. Herein, we proposed the reconstruction of Fe spin state using near-range N atom and long-range N vacancies to enable efficient generation of H2O2 and sequential activation of H2O2 into 1O2 after visible-light irradiation. Theoretical and experimental results revealed that medium-spin Fe(III) strengthened O2 adsorption, penetrated eg electrons to antibonding p-orbital of oxygen, and lowered the free energy of O2 activation, enabling the oxygen protonation for H2O2 generation. Thereafter, the electrons of H2O2 could be extracted by low-spin Fe(III) and rapidly converted into 1O2 in a nonradical path. The developed 1O2-dominated in-situ photo-Fenton-like system had an excellent pH universality and anti-interference to inorganic ions, dissolved organic matter, and even real water matrixes (e.g., tap water and secondary effluent). This work provided a novel insight for sustainable and efficient 1O2 generation, which motivated the development of new-generation selective water treatment technology.
Collapse
Affiliation(s)
- Jingjing Jiang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Shengda Liu
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
| | - Donglong Shi
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Tongze Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Yakun Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Shaozhu Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yansong Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Mingyu Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
14
|
Martini A, Hursán D, Timoshenko J, Rüscher M, Haase F, Rettenmaier C, Ortega E, Etxebarria A, Roldan Cuenya B. Tracking the Evolution of Single-Atom Catalysts for the CO 2 Electrocatalytic Reduction Using Operando X-ray Absorption Spectroscopy and Machine Learning. J Am Chem Soc 2023; 145:17351-17366. [PMID: 37524049 PMCID: PMC10416299 DOI: 10.1021/jacs.3c04826] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 08/02/2023]
Abstract
Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stability, and evolution of the Ni active sites during the reaction. In this work, we address this issue by combining operando X-ray absorption spectroscopy with advanced data analysis. In particular, we show that the combination of unsupervised and supervised machine learning approaches is able to decipher the X-ray absorption near edge structure (XANES) of the TMNCs, disentangling the contributions of different metal sites coexisting in the working TMNC catalyst. Moreover, quantitative structural information about the local environment of active species, including their interaction with adsorbates, has been obtained, shedding light on the complex dynamic mechanism of the CO2 electroreduction.
Collapse
Affiliation(s)
- Andrea Martini
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | | | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Felix Haase
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Eduardo Ortega
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Ane Etxebarria
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| |
Collapse
|
15
|
Kumar K, Dubau L, Jaouen F, Maillard F. Review on the Degradation Mechanisms of Metal-N-C Catalysts for the Oxygen Reduction Reaction in Acid Electrolyte: Current Understanding and Mitigation Approaches. Chem Rev 2023; 123:9265-9326. [PMID: 37432676 DOI: 10.1021/acs.chemrev.2c00685] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
One bottleneck hampering the widespread use of fuel cell vehicles, in particular of proton exchange membrane fuel cells (PEMFCs), is the high cost of the cathode where the oxygen reduction reaction (ORR) occurs, due to the current need of precious metals to catalyze this reaction. Electrochemists tackle this issue in the short/medium term by developing catalysts with improved utilization or efficiency of platinum, and in the longer term, by developing catalysts based on Earth-abundant elements. Considerable progress has been achieved in the initial performance of Metal-nitrogen-carbon (Metal-N-C) catalysts for the ORR, especially with Fe-N-C materials. However, until now, this high performance cannot be maintained for a sufficiently long time in an operating PEMFC. The identification and mitigation of the degradation mechanisms of Metal-N-C electrocatalysts in the acidic environment of PEMFCs has therefore become an important research topic. Here, we review recent advances in the understanding of the degradation mechanisms of Metal-N-C electrocatalysts, including the recently identified importance of combined oxygen and electrochemical potential. Results obtained in a liquid electrolyte and a PEMFC device are discussed, as well as insights gained from in situ and operando techniques. We also review the mitigation approaches that the scientific community has hitherto investigated to overcome the durability issues of Metal-N-C electrocatalysts.
Collapse
Affiliation(s)
- Kavita Kumar
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| | - Laetitia Dubau
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| | - Frédéric Jaouen
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34293 Montpellier, France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| |
Collapse
|
16
|
Bates JS, Johnson MR, Khamespanah F, Root TW, Stahl SS. Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chem Rev 2023; 123:6233-6256. [PMID: 36198176 PMCID: PMC10073352 DOI: 10.1021/acs.chemrev.2c00424] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nonprecious metal heterogeneous catalysts composed of first-row transition metals incorporated into nitrogen-doped carbon matrices (M-N-Cs) have been studied for decades as leading alternatives to Pt for the electrocatalytic O2 reduction reaction (ORR). More recently, similar M-N-C catalysts have been shown to catalyze the aerobic oxidation of organic molecules. This Focus Review highlights mechanistic similarities and distinctions between these two reaction classes and then surveys the aerobic oxidation reactions catalyzed by M-N-Cs. As the active-site structures and kinetic properties of M-N-C aerobic oxidation catalysts have not been extensively studied, the array of tools and methods used to characterize ORR catalysts are presented with the goal of supporting further advances in the field of aerobic oxidation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Mathew R. Johnson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Fatemeh Khamespanah
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Thatcher W. Root
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
17
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
18
|
Giulimondi V, Mitchell S, Pérez-Ramírez J. Challenges and Opportunities in Engineering the Electronic Structure of Single-Atom Catalysts. ACS Catal 2023; 13:2981-2997. [PMID: 36910873 PMCID: PMC9990067 DOI: 10.1021/acscatal.2c05992] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 02/16/2023]
Abstract
Controlling the electronic structure of transition-metal single-atom heterogeneous catalysts (SACs) is crucial to unlocking their full potential. The ability to do this with increasing precision offers a rational strategy to optimize processes associated with the adsorption and activation of reactive intermediates, charge transfer dynamics, and light absorption. While several methods have been proposed to alter the electronic characteristics of SACs, such as the oxidation state, band structure, orbital occupancy, and associated spin, the lack of a systematic approach to their application makes it difficult to control their effects. In this Perspective, we examine how the electronic configuration of SACs can be engineered for thermochemical, electrochemical, and photochemical applications, exploring the relationship with their activity, selectivity, and stability. We discuss synthetic and analytical challenges in controlling and discriminating the electronic structure of SACs and possible directions toward closing the gap between computational and experimental efforts. By bringing this topic to the center, we hope to stimulate research to understand, control, and exploit electronic effects in SACs and ultimately spur technological developments.
Collapse
Affiliation(s)
- Vera Giulimondi
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
19
|
Koshy DM, Hossain MD, Masuda R, Yoda Y, Gee LB, Abiose K, Gong H, Davis R, Seto M, Gallo A, Hahn C, Bajdich M, Bao Z, Jaramillo TF. Investigation of the Structure of Atomically Dispersed NiN x Sites in Ni and N-Doped Carbon Electrocatalysts by 61Ni Mössbauer Spectroscopy and Simulations. J Am Chem Soc 2022; 144:21741-21750. [DOI: 10.1021/jacs.2c09825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- David M. Koshy
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Md Delowar Hossain
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ryo Masuda
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Leland B. Gee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kabir Abiose
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Huaxin Gong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Ryan Davis
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Makoto Seto
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
- National Institutes for Quantum Science and Technology (QST), Sayo, Hyogo 679-5148, Japan
| | - Alessandro Gallo
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Christopher Hahn
- Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Michal Bajdich
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Thomas F. Jaramillo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
20
|
Wang R, Zhang L, Shan J, Yang Y, Lee J, Chen T, Mao J, Zhao Y, Yang L, Hu Z, Ling T. Tuning Fe Spin Moment in Fe-N-C Catalysts to Climb the Activity Volcano via a Local Geometric Distortion Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203917. [PMID: 36057997 PMCID: PMC9631079 DOI: 10.1002/advs.202203917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Indexed: 05/26/2023]
Abstract
As the most promising alternative to platinum-based catalysts for cathodic oxygen reduction reaction (ORR) in proton exchange membrane fuel cells, further performance enhancement of Fe-N-C catalysts is highly expected to promote their wide application. In Fe-N-C catalysts, the single Fe atom forms a square-planar configuration with four adjacent N atoms (D4h symmetry). Breaking the D4h symmetry of the FeN4 active center provides a new route to boost the activity of Fe-N-C catalysts. Herein, for the first time, the deformation of the square-planar coordination of FeN4 moiety achieved by introducing chalcogen oxygen groups (XO2 , X = S, Se, Te) as polar functional groups in the Fe-N-C catalyst is reported. The theoretical and experimental results demonstrate that breaking the D4h symmetry of FeN4 results in the rearrangement of Fe 3d electrons and increases spin moment of Fe centers. The efficient spin state manipulation optimizes the adsorption energetics of ORR intermediates, thereby significantly promoting the intrinsic ORR activity of Fe-N-C catalysts, among which the SeO2 modified catalyst lies around the peak of the ORR volcano plot. This work provides a new strategy to tune the local coordination and thus the electronic structure of single-atom catalysts.
Collapse
Affiliation(s)
- Ruguang Wang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Lifu Zhang
- School of PhysicsNankai UniversityTianjin300071China
| | - Jieqiong Shan
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Yuanyuan Yang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Jyh‐Fu Lee
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Tsan‐Yao Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Jing Mao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Yang Zhao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Liujing Yang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Zhenpeng Hu
- School of PhysicsNankai UniversityTianjin300071China
| | - Tao Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| |
Collapse
|
21
|
Ni L, Gallenkamp C, Wagner S, Bill E, Krewald V, Kramm UI. Identification of the Catalytically Dominant Iron Environment in Iron- and Nitrogen-Doped Carbon Catalysts for the Oxygen Reduction Reaction. J Am Chem Soc 2022; 144:16827-16840. [PMID: 36036727 DOI: 10.1021/jacs.2c04865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For large-scale utilization of fuel cells in a future hydrogen-based energy economy, affordable and environmentally benign catalysts are needed. Pyrolytically obtained metal- and nitrogen-doped carbon (MNC) catalysts are key contenders for this task. Their systematic improvement requires detailed knowledge of the active site composition and degradation mechanisms. In FeNC catalysts, the active site is an iron ion coordinated by nitrogen atoms embedded in an extended graphene sheet. Herein, we build an active site model from in situ and operando 57Fe Mössbauer spectroscopy and quantum chemistry. A Mössbauer signal newly emerging under operando conditions, D4, is correlated with the loss of other Mössbauer signatures (D2, D3a, D3b), implying a direct structural correspondence. Pyrrolic N-coordination, i.e., FeN4C12, is found as a spectroscopically and thermodynamically consistent model for the entire catalytic cycle, in contrast to pyridinic nitrogen coordination. These findings thus overcome the previously conflicting structural assignments for the active site and, moreover, identify and structurally assign a previously unknown intermediate in the oxygen reduction reaction at FeNC catalysts.
Collapse
Affiliation(s)
- Lingmei Ni
- Department of Chemistry and Department of Materials and Earth Sciences, Catalysts and Electrocatalysts Group, TU Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Charlotte Gallenkamp
- Department of Chemistry and Department of Materials and Earth Sciences, Catalysts and Electrocatalysts Group, TU Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany.,Department of Chemistry, Theoretical Chemistry, TU Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Stephan Wagner
- Department of Chemistry and Department of Materials and Earth Sciences, Catalysts and Electrocatalysts Group, TU Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Ulrike I Kramm
- Department of Chemistry and Department of Materials and Earth Sciences, Catalysts and Electrocatalysts Group, TU Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany.,Graduate School of Excellence Energy Science and Engineering, TU Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| |
Collapse
|
22
|
Diercks JS, Herranz J, Georgi M, Diklić N, Chauhan P, Ebner K, Clark AH, Nachtegaal M, Eychmüller A, Schmidt TJ. Interplay between Surface-Adsorbed CO and Bulk Pd Hydride under CO 2-Electroreduction Conditions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justus S. Diercks
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Juan Herranz
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Maximilian Georgi
- Physical Chemistry, Technical University Dresden, 01062 Dresden, Germany
| | - Nataša Diklić
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Piyush Chauhan
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Kathrin Ebner
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Adam H. Clark
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Maarten Nachtegaal
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | - Thomas J. Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
23
|
Yu Y, Xue D, Xia H, Zhang X, Zhao S, Wei Y, Du Y, Zhou Y, Yan W, Zhang J. Electron spin modulation engineering in oxygen-involved electrocatalysis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:364002. [PMID: 35709712 DOI: 10.1088/1361-648x/ac7995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reduction (OER) are regarded as the key reactions via the sustainable system (fuel cell and water splitting), respectively. In OER, the transition from singlet oxygen species to triplet oxygen molecules is involved, meanwhile the ORR involves the transition from triplet oxygen molecules to singlet oxygen species. However, in these processes, the number of unpaired electrons is not conserved, which is not thermodynamically favorable and creates an additional energy barrier. Fortunately, regulating the electrocatalysis by spin-state modulation enables a unique effect on the catalytic performance, but the current understanding on spin-state engineering for electro-catalyzing ORR and OER is still insufficient. Herein, this review summarized the in-spin engineering for the state-of-the-art ORR and OER electrocatalysts. It began by introducing engineering of spin-state to egfilling for ORR and OER process, and then moved to spin polarization and spin-pinning effect for OER process. Various designed strategies focusing on how to regulate the spin-state of the active center have been summarized up. The connectivity of the structures of typical ORR (e.g. metal-nitrogen-carbon) and OER (e.g. design strategies oxides, metal organic frameworks) catalysts depending on the spin level is also discussed. Finally, we present the outlook from the aspects of template catalysts, characterization methods, regulation strategies, theoretical calculations, which will further expand the possibility of better electrocatalytic performance through spin-state modulation. This review concluded some open suggestions and prospects, which are worthy of the community's future work.
Collapse
Affiliation(s)
- Yue Yu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Dongping Xue
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Huicong Xia
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Xiaoyu Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Shuyan Zhao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Yifan Wei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Yu Du
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Ying Zhou
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Jianan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| |
Collapse
|
24
|
Cutsail III GE, DeBeer S. Challenges and Opportunities for Applications of Advanced X-ray Spectroscopy in Catalysis Research. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- George E. Cutsail III
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Zhang B, Li X, Akiyama K, Bingham PA, Kubuki S. Elucidating the Mechanistic Origin of a Spin State-Dependent FeN x-C Catalyst toward Organic Contaminant Oxidation via Peroxymonosulfate Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1321-1330. [PMID: 34939799 DOI: 10.1021/acs.est.1c05980] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atomically dispersed metals on nitrogen-doped carbon matrices have attracted extensive interest in the removal of refractory organic pollutants. However, a thorough exploration of the particular structure for each active site and specific effects of these sites still remains elusive. Herein, an Fe-pyridinic N4 structure in a single-atom catalyst (FeNx-C) was constructed using a facile pyrolysis strategy, and it exhibited superior catalytic activity in peroxymonosulfate (PMS) activation toward organic contaminant oxidation. The various Fe species and relative amounts of each Fe site in the FeNx-C catalyst were validated using X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy, which showed critical dependencies on the precursor ratio and calcination temperature. The positive correlations between relative content of high-spin state species (FeII and FeIII) and catalytic performance were found to determine the reactive species generation and electron transfer pathway in the FeNx-C/PMS system. Moreover, catalytic performance and theoretical calculation results revealed that FeII-N4 in the high-spin state (S = 2) tends to activate PMS to form sulfate and hydroxyl radicals via a one-electron transfer process, while the FeIII-N4 moiety (S = 5/2) is prone to high-valent iron species generation with lower free energy. Benefiting from finely tuned active sites, a single-atom FeNx-C catalyst achieved favorable applicability in actual wastewater treatment with efficient resistance of the common water matrix. The present work advances the mechanistic understanding of spin state-dependent persulfate activation in single-atom catalysts and provides guidance to design a superior catalyst based on spin state descriptions.
Collapse
Affiliation(s)
- Bofan Zhang
- Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Xianquan Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kazuhiko Akiyama
- Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Paul A Bingham
- College of Business, Technology and Engineering, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, U.K
| | - Shiro Kubuki
- Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
26
|
Chen G, Zhong H, Feng X. Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction. Chem Sci 2021; 12:15802-15820. [PMID: 35024105 PMCID: PMC8672718 DOI: 10.1039/d1sc05867c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022] Open
Abstract
The electrocatalytic oxygen reduction reaction (ORR) is the vital process at the cathode of next-generation electrochemical storage and conversion technologies, such as metal-air batteries and fuel cells. Single-metal-atom and nitrogen co-doped carbonaceous electrocatalysts (M-N-C) have emerged as attractive alternatives to noble-metal platinum for catalyzing the kinetically sluggish ORR due to their high electrical conductivity, large surface area, and structural tunability at the atomic level, however, their application is limited by the low intrinsic activity of the metal-nitrogen coordination sites (M-N x ) and inferior site density. In this Perspective, we summarize the recent progress and milestones relating to the active site engineering of single atom carbonous electrocatalysts for enhancing the ORR activity. Particular emphasis is placed on the emerging strategies for regulating the electronic structure of the single metal site and populating the site density. In addition, challenges and perspectives are provided regarding the future development of single atom carbonous electrocatalysts for the ORR and their utilization in practical use.
Collapse
Affiliation(s)
- Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstr. 4 01062 Dresden Germany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstr. 4 01062 Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstr. 4 01062 Dresden Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics Weinberg 2 Halle (Saale) D-06120 Germany
| |
Collapse
|
27
|
|