1
|
Gómez-Oliveira EP, Castells-Gil J, Chinchilla-Garzón C, Uscategui-Linares A, Albero J, Almora-Barrios N, Tatay S, M Padial N, Martí-Gastaldo C. Integrating Compositional and Structural Diversity in Heterometallic Titanium Frameworks by Metal Exchange Methods. J Am Chem Soc 2024. [PMID: 39485814 DOI: 10.1021/jacs.4c10444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The increasing use of Metal-Organic Frameworks (MOFs) in separation, catalysis, or storage is linked to the targeted modification of their composition or porosity metrics. While modification of pore shape and size necessarily implies the assembly of alternative nets, compositional changes often rely on postsynthetic modification adapted to the functionalization or exchange of the organic linker or the modification of the inorganic cluster by metal exchange methods. We describe an alternative methodology that enables the integration of both types of modification, structural and compositional, in titanium MOFs by metal exchange reaction of the heterometallic cluster Ti2Ca2. A systematic analysis of this reactivity with MUV-10 is used to understand which experimental variables are crucial to enable replacement of calcium only or to integrate metal exchange with structural transformation. The isoreticular expanded framework, MUV-30, is next used to template the formation of MUV-301, a titanium framework not accessible by direct synthesis that displays the largest mesoporous cages reported to date. Given that the interest of Ti MOFs in photoredox applications often meets the limitations imposed by the challenges of titanium solution chemistry to design concrete candidates, this soft strategy based on preassembled frameworks will help integrate specific combinations of metals into high porosity architectures.
Collapse
Affiliation(s)
| | - Javier Castells-Gil
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B152TT, United Kingdom
| | | | - Andrés Uscategui-Linares
- Instituto Universitario de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
| | - Josep Albero
- Instituto Universitario de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
| | | | - Sergio Tatay
- Universidad de Valencia (ICMol), Catedrático José Beltrán-2, 46980 Paterna, Spain
| | - Natalia M Padial
- Universidad de Valencia (ICMol), Catedrático José Beltrán-2, 46980 Paterna, Spain
| | | |
Collapse
|
2
|
Pan X, Si X, Zhang X, Yao Q, Li Y, Duan W, Qiu Y, Su J, Huang X. Correction: A robust and porous titanium metal-organic framework for gas adsorption, CO 2 capture and conversion. Dalton Trans 2024; 53:12797-12798. [PMID: 39016624 DOI: 10.1039/d4dt90120g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Correction for 'A robust and porous titanium metal-organic framework for gas adsorption, CO2 capture and conversion' by Xuze Pan, et al., Dalton Trans., 2023, 52, 3896-3906, https://doi.org/10.1039/D2DT03158B.
Collapse
Affiliation(s)
- Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Yunwu Li
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Yi Qiu
- College of Chemistry and molecular engineering, Peking University, Beijing, 100871, PR China.
| | - Jie Su
- College of Chemistry and molecular engineering, Peking University, Beijing, 100871, PR China.
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
3
|
Rubio-Gaspar A, Misturini A, Millan R, Almora-Barrios N, Tatay S, Bon V, Bonneau M, Guillerm V, Eddaoudi M, Navalón S, Kaskel S, Armentano D, Martí-Gastaldo C. Translocation and Confinement of Tetraamines in Adaptable Microporous Cavities. Angew Chem Int Ed Engl 2024; 63:e202402973. [PMID: 38644341 DOI: 10.1002/anie.202402973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Metal-Organic Frameworks can be grafted with amines by coordination to metal vacancies to create amine-appended solid adsorbents, which are being considered as an alternative to using aqueous amine solutions for CO2 capture. In this study, we propose an alternative mechanism that does not rely on the use of neutral metal vacancies as binding sites but is enabled by the structural adaptability of heterobimetallic Ti2Ca2 clusters. The combination of hard (Ti4+) and soft (Ca2+) metal centers in the inorganic nodes of the framework enables MUV-10 to adapt its pore windows to the presence of triethylenetetramine molecules. This dynamic cluster response facilitates the translocation and binding of tetraamine inside the microporous cavities to enable the formation of bis-coordinate adducts that are stable in water. The extension of this grafting concept from MUV-10 to larger cavities not restrictive to CO2 diffusion will complement other strategies available for the design of molecular sorbents for decarbonization applications.
Collapse
Affiliation(s)
- Ana Rubio-Gaspar
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Alechania Misturini
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Reisel Millan
- Instituto de Tecnología Química (ITQ), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, 46022, Spain
| | - Neyvis Almora-Barrios
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Sergio Tatay
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Volodymyr Bon
- Technische Universität Dresden, Department of Inorganic Chemistry, Dresden, 01069, Germany
| | - Mickaele Bonneau
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Stefan Kaskel
- Technische Universität Dresden, Department of Inorganic Chemistry, Dresden, 01069, Germany
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Carlos Martí-Gastaldo
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| |
Collapse
|
4
|
Qi C, Bi Y, Wang Y, Yu H, Tian Y, Zong P, Zhang Q, Zhang H, Wang M, Xing T, Wu M, Tu X, Wu W. Unveiling the Mechanism of Plasma-Catalyzed Oxidation of Methane to C 2+ Oxygenates over Cu/UiO-66-NH 2. ACS Catal 2024; 14:7707-7716. [PMID: 38779184 PMCID: PMC11106747 DOI: 10.1021/acscatal.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 05/25/2024]
Abstract
Nonthermal plasma (NTP) offers the potential for converting CH4 with CO2 into liquid products under mild conditions, but controlling liquid selectivity and manipulating intermediate species remain significant challenges. Here, we demonstrate the effectiveness of the Cu/UiO-66-NH2 catalyst in promising the conversion of CH4 and CO2 into oxygenates within a dielectric barrier discharge NTP reactor under ambient conditions. The 10% Cu/UiO-66-NH2 catalyst achieved an impressive 53.4% overall liquid selectivity, with C2+ oxygenates accounting for ∼60.8% of the total liquid products. In situ plasma-coupled Fourier-transform infrared spectroscopy (FTIR) suggests that Cu facilitates the cleavage of surface adsorbed COOH species (*COOH), generating *CO and enabling its migration to the surface of Cu particles. This surface-bound *CO then undergoes C-C coupling and hydrogenation, leading to ethanol production. Further analysis using CO diffuse reflection FTIR and 1H nuclear magnetic resonance spectroscopy indicates that in situ generated surface *CO is more effective than gas-phase CO (g) in promoting C-C coupling and C2+ liquid formation. This work provides valuable mechanistic insights into C-C coupling and C2+ liquid production during plasma-catalytic CO2 oxidation of CH4 under ambient conditions. These findings hold broader implications for the rational design of more efficient catalysts for this reaction, paving the way for advancements in sustainable fuel and chemical production.
Collapse
Affiliation(s)
- Chong Qi
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering,
Institute of New Energy, China University
of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yifu Bi
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering,
Institute of New Energy, China University
of Petroleum (East China), Qingdao 266580, P. R. China
- Sinopec
Qingdao Refining & Chemical CO., LTD, Qingdao 266500, P. R. China
| | - Yaolin Wang
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Hong Yu
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering,
Institute of New Energy, China University
of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yuanyu Tian
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering,
Institute of New Energy, China University
of Petroleum (East China), Qingdao 266580, P. R. China
| | - Peijie Zong
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering,
Institute of New Energy, China University
of Petroleum (East China), Qingdao 266580, P. R. China
| | - Qinhua Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering,
Institute of New Energy, China University
of Petroleum (East China), Qingdao 266580, P. R. China
| | - Haonan Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering,
Institute of New Energy, China University
of Petroleum (East China), Qingdao 266580, P. R. China
| | - Mingqing Wang
- National
Engineering Research Center of Coal Gasification and Coal-Based Advanced
Materials, ShanDong Energy Group CO., LTD, Jinan 250101, P. R. China
| | - Tao Xing
- National
Engineering Research Center of Coal Gasification and Coal-Based Advanced
Materials, ShanDong Energy Group CO., LTD, Jinan 250101, P. R. China
| | - Mingbo Wu
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering,
Institute of New Energy, China University
of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xin Tu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Wenting Wu
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering,
Institute of New Energy, China University
of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
5
|
Zhou Y, Lv S, Feng M, Qian C, Liu S, Chen Z. Ligand-assisted formation of mesoporous Zn-N-C to realize superior catalytic activity in solvent-free CO 2 cycloaddition reactions. Chem Commun (Camb) 2024; 60:2641-2644. [PMID: 38348751 DOI: 10.1039/d4cc00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Mesoporous nitrogen-doped carbon-anchored single atom Zn was synthesized through etching of ZIF-8 with 1,10-phenanthroline and subsequent pyrolysis based on the Kirkendall effect. The abundant pores and increased surface area promote CO2 adsorption and mass transfer, thus significantly improving the catalytic activity in solvent-free cycloaddition of epoxides with CO2.
Collapse
Affiliation(s)
- Yan Zhou
- School of Materials Science and Engineering, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Shanshan Lv
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Mengmeng Feng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Changjin Qian
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Padial NM, Chinchilla-Garzón C, Almora-Barrios N, Castells-Gil J, González-Platas J, Tatay S, Martí-Gastaldo C. Isoreticular Expansion and Linker-Enabled Control of Interpenetration in Titanium-Organic Frameworks. J Am Chem Soc 2023; 145:21397-21407. [PMID: 37733631 PMCID: PMC10853965 DOI: 10.1021/jacs.3c06590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 09/23/2023]
Abstract
Titanium-organic frameworks offer distinctive opportunities in the realm of metal-organic frameworks (MOFs) due to the integration of intrinsic photoactivity or redox versatility in porous architectures with ultrahigh stability. Unfortunately, the high polarizing power of Ti4+ cations makes them prone to hydrolysis, thus preventing the systematic design of these types of frameworks. We illustrate the use of heterobimetallic cluster Ti2Ca2 as a persistent building unit compatible with the isoreticular design of titanium frameworks. The MUV-12(X) and MUV-12(Y) series can be all synthesized as single crystals by using linkers of varying functionalization and size for the formation of the nets with tailorable porosity and degree of interpenetration. Following the generalization of this approach, we also gain rational control over interpenetration in these nets by designing linkers with varying degrees of steric hindrance to eliminate stacking interactions and access the highest gravimetric surface area reported for titanium(IV) MOFs (3000 m2 g-1).
Collapse
Affiliation(s)
- Natalia M. Padial
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, València 46980, Spain
| | - Clara Chinchilla-Garzón
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, València 46980, Spain
| | - Neyvis Almora-Barrios
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, València 46980, Spain
| | - Javier Castells-Gil
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, València 46980, Spain
- School
of Chemistry,University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Javier González-Platas
- Departamento
de Física, Universitario de Estudios
Avanzados en Física Atómica, Molecular y Fotónica
(IUDEA). MALTA Consolider Team, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez
s/n, La Laguna, Tenerife E-38204, Spain
| | - Sergio Tatay
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, València 46980, Spain
| | - Carlos Martí-Gastaldo
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, València 46980, Spain
| |
Collapse
|
7
|
Komiyama M. Ce-based solid-phase catalysts for phosphate hydrolysis as new tools for next-generation nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2250705. [PMID: 37701758 PMCID: PMC10494760 DOI: 10.1080/14686996.2023.2250705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
This review comprehensively covers synthetic catalysts for the hydrolysis of biorelevant phosphates and pyrophosphates, which bridge between nanoarchitectonics and biology to construct their interdisciplinary hybrids. In the early 1980s, remarkable catalytic activity of Ce4+ ion for phosphate hydrolysis was found. More recently, this finding has been extended to Ce-based solid catalysts (CeO2 and Ce-based metal-organic frameworks (MOFs)), which are directly compatible with nanoarchitectonics. Monoesters and triesters of phosphates, as well as pyrophosphates, were effectively cleaved by these catalysts. With the use of either CeO2 nanoparticles or elegantly designed Ce-based MOF, highly stable phosphodiester linkages were also hydrolyzed. On the surfaces of all these solid catalysts, Ce4+ and Ce3+ coexist and cooperate for the catalysis. The Ce4+ activates phosphate substrates as a strong acid, whereas the Ce3+ provides metal-bound hydroxide as an eminent nucleophile. Applications of these Ce-based catalysts to practical purposes are also discussed.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Castells-Gil J, Almora-Barrios N, Lerma-Berlanga B, Padial NM, Martí-Gastaldo C. Chemical complexity for targeted function in heterometallic titanium-organic frameworks. Chem Sci 2023; 14:6826-6840. [PMID: 37389254 PMCID: PMC10306077 DOI: 10.1039/d3sc01550e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Research on metal-organic frameworks is shifting from the principles that control the assembly, structure, and porosity of these reticular solids, already established, into more sophisticated concepts that embrace chemical complexity as a tool for encoding their function or accessing new properties by exploiting the combination of different components (organic and inorganic) into these networks. The possibility of combining multiple linkers into a given network for multivariate solids with tunable properties dictated by the nature and distribution of the organic connectors across the solid has been well demonstrated. However, the combination of different metals remains still comparatively underexplored due to the difficulties in controlling the nucleation of heterometallic metal-oxo clusters during the assembly of the framework or the post-synthetic incorporation of metals with distinct chemistry. This possibility is even more challenging for titanium-organic frameworks due to the additional difficulties intrinsic to controlling the chemistry of titanium in solution. In this perspective article we provide an overview of the synthesis and advanced characterization of mixed-metal frameworks and emphasize the particularities of those based in titanium with particular focus on the use of additional metals to modify their function by controlling their reactivity in the solid state, tailoring their electronic structure and photocatalytic activity, enabling synergistic catalysis, directing the grafting of small molecules or even unlocking the formation of mixed oxides with stoichiometries not accessible to conventional routes.
Collapse
Affiliation(s)
- Javier Castells-Gil
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Neyvis Almora-Barrios
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Belén Lerma-Berlanga
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Natalia M Padial
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
9
|
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208309. [PMID: 36525617 DOI: 10.1002/adma.202208309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Indexed: 06/02/2023]
Abstract
As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
10
|
Ji J, Qi C, Zhao H, Yan X, Chai Z, Wang S, Zheng T. Regulating the Porosity of Uranyl Phosphonate Frameworks with Quaternary Ammonium: Structure, Characterization, and Fluorescent Temperature Sensors. Inorg Chem 2022; 61:16794-16804. [PMID: 36214515 DOI: 10.1021/acs.inorgchem.2c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulating the porosity of metal phosphonate frameworks is still challenging, even though this is not an issue for carboxylate-based metal-organic frameworks (MOFs). Quaternary ammonium cations are common template reagents widely used for structure control. However, it is not successful for uranyl phosphonate frameworks (UPFs) because the large volume sizes of templates make it challenging to enter the channels constructed by phosphonate ligands with small pore sizes and low dimensions. In this work, three new porous three-dimensional UPFs were synthesized using the phosphonate ligand and template reagents with the same geometry, namely, (TEA)2(UO2)3(TppmH4)2·2H2O (UPF-106), (TPA)2(UO2)3(TppmH4)2 (UPF-107), and (TBA)2(UO2)5(TppmH2)2(H2O)2·4H2O (UPF-108). The porosity of the UPFs in this work showed a positive relation with the sizes of the template ammonium cations. Thermogravimetric analysis and infrared and ultraviolet spectroscopy were performed. The variable-temperature fluorescence spectra of the three compounds showed that the fluorescence intensity has an excellent relation to temperature with a potential application as fluorescence temperature sensors.
Collapse
Affiliation(s)
- Jinyan Ji
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Suzhou215400, People's Republic of China.,School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an710072, People's Republic of China.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, People's Republic of China
| | - Chao Qi
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Suzhou215400, People's Republic of China.,School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an710072, People's Republic of China.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, People's Republic of China
| | - Hongxia Zhao
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Suzhou215400, People's Republic of China.,School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an710072, People's Republic of China.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, People's Republic of China
| | - Xuewu Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, People's Republic of China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou215123, People's Republic of China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou215123, People's Republic of China
| | - Tao Zheng
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Suzhou215400, People's Republic of China.,School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an710072, People's Republic of China
| |
Collapse
|
11
|
Vasile R, Godoy AA, Puente Orench I, Nemes NM, de la Peña O’Shea VA, Gutiérrez-Puebla E, Martínez JL, Monge MÁ, Gándara F. Influence of the Synthesis and Crystallization Processes on the Cation Distribution in a Series of Multivariate Rare-Earth Metal-Organic Frameworks and Their Magnetic Characterization. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7029-7041. [PMID: 35965890 PMCID: PMC9367679 DOI: 10.1021/acs.chemmater.2c01481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The incorporation of multiple metal atoms in multivariate metal-organic frameworks is typically carried out through a one-pot synthesis procedure that involves the simultaneous reaction of the selected elements with the organic linkers. In order to attain control over the distribution of the elements and to be able to produce materials with controllable metal combinations, it is required to understand the synthetic and crystallization processes. In this work, we have completed a study with the RPF-4 MOF family, which is made of various rare-earth elements, to investigate and determine how the different initial combinations of metal cations result in different atomic distributions in the obtained materials. Thus, we have found that for equimolar combinations involving lanthanum and another rare-earth element, such as ytterbium, gadolinium, or dysprosium, a compositional segregation takes place in the products, resulting in crystals with different compositions. On the contrary, binary combinations of ytterbium, gadolinium, erbium, and dysprosium result in homogeneous distributions. This dissimilar behavior is ascribed to differences in the crystallization pathways through which the MOF is formed. Along with the synthetic and crystallization study and considering the structural features of this MOF family, we also disclose here a comprehensive characterization of the magnetic properties of the compounds and the heat capacity behavior under different external magnetic fields.
Collapse
Affiliation(s)
- Raluca
Loredana Vasile
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Agustín Alejandro Godoy
- Instituto
de Investigación en Tecnología Química (INTEQUI-CONICET),
Universidad Nacional de San Luis, Alte. Brown 1450, D5700HGC San Luis, Argentina
| | - Inés Puente Orench
- Institut
Laue Langevin, 71 Avenue
des Martyrs, Grenoble 38042, France
- Instituto
de Nanociencia y Materiales de Aragón (INMA-CSIC), Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Norbert M. Nemes
- Departamento
de Física de Materiales, Facultad Físicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Víctor A. de la Peña O’Shea
- Photoactivated
Processes Unit IMDEA Energy Institute, Móstoles Technology Park, Avenida Ramón
de la Sagra 3, Móstoles, Madrid 28935, Spain
| | - Enrique Gutiérrez-Puebla
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Jose Luis Martínez
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - M. Ángeles Monge
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Felipe Gándara
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
12
|
Yun R, Li T, Zhang B, He L, Liu S, Yu C, Chen Z, Luo S. Amino induced high-loading atomically dispersed Co sites on N-doped hollow carbon for efficient CO 2 transformation. Chem Commun (Camb) 2022; 58:6602-6605. [PMID: 35583345 DOI: 10.1039/d2cc01941h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein, a novel strategy has been proposed to design a hollow structure via post-modified N sites coordinating to metal species. As a result, an atomically dispersed Co site catalyst with high loading has been obtained and has shown superb performance in CO2 cycloaddition to ethylene carbonate. This novel avenue can be extended to other atomically dispersed metal catalysts with high loading.
Collapse
Affiliation(s)
- Ruirui Yun
- Anhui Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China.
| | - Tuanhui Li
- Anhui Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China.
| | - Beibei Zhang
- Anhui Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China.
| | - Lei He
- Anhui Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China.
| | - Shoujie Liu
- Anhui Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China.
| | - Can Yu
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, P. R. China.
| | - Zheng Chen
- Anhui Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China.
| | - Shizhong Luo
- Anhui Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China.
| |
Collapse
|
13
|
Ding QR, Yu Y, Cao C, Zhang J, Zhang L. Stepwise assembly and reversible structural transformation of ligated titanium coated bismuth-oxo cores: shell morphology engineering for enhanced chemical fixation of CO 2. Chem Sci 2022; 13:3395-3401. [PMID: 35432876 PMCID: PMC8943896 DOI: 10.1039/d1sc06847d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
Herein, we report the stepwise assembly and reversible transformation of atomically precise ligated titanium coated bismuth-oxide core nanostructures. The soluble and stable Bi38O45@Ti6-oxo clusters with weakly coordinated surface salicylate ligands were first prepared as precursors. Owing to the high surface reactivity of the Bi38O45 inner core, its shell composition and morphology could be systemically modified by assembly with various Ti ions and auxiliary ligands (L), especially those with different flexibility, bridging ability and steric hindrance. As a result, a series of new core-shell Bi38O44/45@Ti x L-oxo (x = 14, 16, 18 or 20) clusters containing gradually increasing shell Ti atoms were successfully synthesized. Among them, the Bi38Ti20-oxo cluster is the largest one in the family of heterometallic Bi/Ti-oxo clusters to date. In addition, the sensitized titanium outer shell can effectively improve the photocurrent response under visible light irradiation. More remarkably, the obtained core-shell Bi38O44/45@Ti x L-oxo clusters can serve as stable and efficient catalysts for CO2 cycloaddition with epoxides under ambient conditions, whose activity was significantly influenced by the outer ligated titanium shell structure. This work provides a new insight into the construction of atomically precise heterometallic core-shell nanostructures and also an interesting shell engineering strategy for tuning their physicochemical properties.
Collapse
Affiliation(s)
- Qing-Rong Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yinghua Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Changsheng Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
14
|
Guo P, Chang M, Yan T, Li Y, Liu D. A pillared-layer metal-organic framework for efficient separation of C3H8/C2H6/CH4 in natural gas. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Menzel S, Heinen T, Boldog I, Beglau THY, Xing S, Spieß A, Woschko D, Janiak C. Metal-organic framework structures of fused hexagonal motifs with cuprophilic interactions of a triangular Cu(I)3(pyrazolate-benzoate) metallo-linker. CrystEngComm 2022. [DOI: 10.1039/d2ce00268j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of the N,O-heteroditopic bifunctional ligand 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoic acid (H2mpba) with Cu(NO3)2·2.5H2O and Zn(NO3)2·4H2O or Zn(CH3COO)2·2H2O in N,N-dimethylformamide (DMF) results in concomitant formation of three bimetallic metal-organic frameworks (MOFs) with...
Collapse
|
16
|
Li Y, Tian X, Jiang W, Wu P, Li HS, Wang M, Lin C, Wang J. Amino and triazole-containing metal-organic frameworks for highly efficient CO 2 fixation. Chem Commun (Camb) 2021; 57:10803-10806. [PMID: 34590631 DOI: 10.1039/d1cc04371d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a novel porous metal-organic framework (MOF) functionalized with amino and triazole moieties has been synthesized. Attributed to the high affinity to CO2 and unsaturated zinc centers, the MOF exhibits high catalytic activity for the CO2 to epoxide cycloaddition reaction, with a turnover number value of up to 10 000 per cycle, and can be reused at least for 20 cycles.
Collapse
Affiliation(s)
- Yang Li
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Xueqin Tian
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Weiwei Jiang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Pengyan Wu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Han-Shu Li
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Man Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Chen Lin
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Jian Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
17
|
Lázaro IA, Almora-Barrios N, Tatay S, Popescu C, Martí-Gastaldo C. Linker depletion for missing cluster defects in non-UiO metal-organic frameworks. Chem Sci 2021; 12:11839-11844. [PMID: 34659723 PMCID: PMC8442692 DOI: 10.1039/d1sc02408f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022] Open
Abstract
Defect engineering is a valuable tool to tune the properties of metal-organic frameworks. However, defect chemistry remains still predominantly limited to UiO-type MOFs. We describe the preferential formation of missing cluster defects in heterometallic titanium-organic frameworks of the MUV-10 family when synthesised in sub-stoichiometric linker conditions. Our results show the value of integrating experimental work, computational modelling and thorough characterization in rationalizing the impact of defects over the porosity and structure of this family of materials. Correlation of experiment with computational models reveals the dominance of missing cluster vacancies in the pore size distribution of defective MUV-10. These same models were used to investigate the correlation of defects by synchrotron X-ray diffraction. The diffraction at low reflection angles is dominated by diffuse scattering that is indicative of short-range order and cannot be indexed to the defective structural models generated. In addition to the low atomic scattering factor of titanium, these results confirm the need for high-resolution electron microscopy methods for modelling nanoscale disorder in titanium MOFs.
Collapse
Affiliation(s)
- Isabel Abánades Lázaro
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán-2 46980 Paterna Spain
| | - Neyvis Almora-Barrios
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán-2 46980 Paterna Spain
| | - Sergio Tatay
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán-2 46980 Paterna Spain
| | | | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán-2 46980 Paterna Spain
| |
Collapse
|
18
|
Fabrizio K, Lazarou KA, Payne LI, Twight LP, Golledge S, Hendon CH, Brozek CK. Tunable Band Gaps in MUV-10(M): A Family of Photoredox-Active MOFs with Earth-Abundant Open Metal Sites. J Am Chem Soc 2021; 143:12609-12621. [PMID: 34370478 DOI: 10.1021/jacs.1c04808] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Titanium-based metal-organic frameworks (Ti-MOFs) have attracted intense research attention because they can store charges in the form of Ti3+ and they serve as photosensitizers to cocatalysts through heterogeneous photoredox reactions at the MOF-liquid interface. Both the charge storage and charge transfer depend on the redox potentials of the MOF and the molecular substrate, but the factors controlling these energetic aspects are not well understood. Additionally, photocatalysis involving Ti-MOFs relies on cocatalysts rather than the intrinsic Ti reactivity, in part because Ti-MOFs with open metal sites are rare. Here, we report that the class of Ti-MOFs known as MUV-10 can be synthetically modified to include a range of redox-inactive ions with flexible coordination environments that control the energies of the photoactive orbitals. Lewis acidic cations installed in the MOF cluster (Cd2+, Sr2+, and Ba2+) or introduced to the pores (H+, Li+, Na+, K+) tune the electronic structure and band gaps of the MOFs. Through the use of optical redox indicators, we report the first direct measurement of the Fermi levels (redox potentials) of photoexcited MOFs in situ. Taken together, these results explain the ability of Ti-MOFs to store charges and provide design principles for achieving heterogeneous photoredox chemistry with electrostatic control.
Collapse
|