1
|
Xie XJ, Zhang ZH, Cao QY, Huang YL, Luo D, Zeng H, Lu W, Li D. Surface Chemistry Regulation in Cu 4I 4-Triazolate Metal-Organic Frameworks for One-Step C 3H 6 Purification from Quaternary C 3 Mixtures. J Am Chem Soc 2024; 146:30155-30163. [PMID: 39324803 DOI: 10.1021/jacs.4c08530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
C3H6 is a crucial building block for many chemicals, yet separating it from other C3 hydrocarbons presents a significant challenge. Herein, we report a hydrolytically stable Cu4I4-triazolate metal-organic framework (MOF) (JNU-9-CH3) featuring 1D channels decorated with readily accessible iodine and nitrogen atoms from Cu4I4 clusters and triazolate linkers, respectively. The exposed iodine and nitrogen atoms allow for cooperative binding of C3 hydrocarbons, as evidenced by in situ single-crystal crystallography and Raman spectroscopy studies. As a result, JNU-9-CH3 exhibits substantially stronger binding affinity for C3H4, CH2═C═CH2, and C3H8 than that for C3H6. Breakthrough experiments confirm its ability to directly separate C3H6 (≥99.99%) from C3H4/CH2═C═CH2/C3H8/C3H6 mixtures at varying ratios and flow rates. Overall, we illustrate the cooperative binding of C3 hydrocarbons in a Cu4I4-triazolate MOF and its highly efficient C3H6 purification from quaternary C3 mixtures. The study highlights the potential of MOF adsorbents with metal-iodide clusters for cooperative bindings and hydrocarbon separations.
Collapse
Affiliation(s)
- Xiao-Jing Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Zhi-Hao Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Qi-Yun Cao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Heng Zeng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Weigang Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Li JH, Gan YW, Chen JX, Lin RB, Yang Y, Wu H, Zhou W, Chen B, Chen XM. Reverse Separation of Carbon Dioxide and Acetylene in Two Isostructural Copper Pyridine-Carboxylate Frameworks. Angew Chem Int Ed Engl 2024; 63:e202400823. [PMID: 38735839 DOI: 10.1002/anie.202400823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Separating acetylene from carbon dioxide is important but highly challenging due to their similar molecular shapes and physical properties. Adsorptive separation of carbon dioxide from acetylene can directly produce pure acetylene but is hardly realized because of relatively polarizable acetylene binds more strongly. Here, we reverse the CO2 and C2H2 separation by adjusting the pore structures in two isoreticular ultramicroporous metal-organic frameworks (MOFs). Under ambient conditions, copper isonicotinate (Cu(ina)2), with relatively large pore channels shows C2H2-selective adsorption with a C2H2/CO2 selectivity of 3.4, whereas its smaller-pore analogue, copper quinoline-5-carboxylate (Cu(Qc)2) shows an inverse CO2/C2H2 selectivity of 5.6. Cu(Qc)2 shows compact pore space that well matches the optimal orientation of CO2 but is not compatible for C2H2. Neutron powder diffraction experiments confirmed that CO2 molecules adopt preferential orientation along the pore channels during adsorption binding, whereas C2H2 molecules bind in an opposite fashion with distorted configurations due to their opposite quadrupole moments. Dynamic breakthrough experiments have validated the separation performance of Cu(Qc)2 for CO2/C2H2 separation.
Collapse
Affiliation(s)
- Jing-Hong Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - You-Wei Gan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jun-Xian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
3
|
Zhang Y, Han Y, Luan B, Wang L, Yang W, Jiang Y, Ben T, He Y, Chen B. Metal-Organic Framework with Space-Partition Pores by Fluorinated Anions for Benchmark C 2H 2/CO 2 Separation. J Am Chem Soc 2024; 146:17220-17229. [PMID: 38861589 DOI: 10.1021/jacs.4c03442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The efficient separation of C2H2 from C2H2/CO2 or C2H2/CO2/CH4 mixtures is crucial for achieving high-purity C2H2 (>99%), essential in producing contemporary commodity chemicals. In this report, we present ZNU-12, a metal-organic framework with space-partitioned pores formed by inorganic fluorinated anions, for highly efficient C2H2/CO2 and C2H2/CO2/CH4 separation. The framework, partitioned by fluorinated SiF62- anions into three distinct cages, enables both a high C2H2 capacity (176.5 cm3/g at 298 K and 1.0 bar) and outstanding C2H2 selectivity over CO2 (13.4) and CH4 (233.5) simultaneously. Notably, we achieve a record-high C2H2 productivity (132.7, 105.9, 98.8, and 80.0 L/kg with 99.5% purity) from C2H2/CO2 (v/v = 50/50) and C2H2/CO2/CH4 (v/v = 1/1/1, 1/1/2, or 1/1/8) mixtures through a cycle of adsorption-desorption breakthrough experiments with high recovery rates. Theoretical calculations suggest the presence of potent "2 + 2" collaborative hydrogen bonds between C2H2 and two hexafluorosilicate (SiF62-) anions in the confined cavities.
Collapse
Affiliation(s)
- Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Yan Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Binquan Luan
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, United States
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Wenlei Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Teng Ben
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P.R. China
| |
Collapse
|
4
|
Sikdar N, Laha S, Jena R, Dey A, Rahimi FA, Maji TK. An adsorbate biased dynamic 3D porous framework for inverse CO 2 sieving over C 2H 2. Chem Sci 2024; 15:7698-7706. [PMID: 38784756 PMCID: PMC11110155 DOI: 10.1039/d3sc06611h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/07/2024] [Indexed: 05/25/2024] Open
Abstract
Separating carbon dioxide (CO2) from acetylene (C2H2) is one of the most critical and complex industrial separations due to similarities in physicochemical properties and molecular dimensions. Herein, we report a novel Ni-based three-dimensional framework {[Ni4(μ3-OH)2(μ2-OH2)2(1,4-ndc)3](3H2O)}n (1,4-ndc = 1,4-naphthalenedicarboxylate) with a one-dimensional pore channel (3.05 × 3.57 Å2), that perfectly matches with the molecular size of CO2 and C2H2. The dehydrated framework shows structural transformation, decorated with an unsaturated Ni(ii) centre and pendant oxygen atoms. The dynamic nature of the framework is evident by displaying a multistep gate opening type CO2 adsorption at 195, 273, and 298 K, but not for C2H2. The real time breakthrough gas separation experiments reveal a rarely attempted inverse CO2 selectivity over C2H2, attributed to open metal sites with a perfect pore aperture. This is supported by crystallographic analysis, in situ spectroscopic inspection, and selectivity approximations. In situ DRIFTS measurements and DFT-based theoretical calculations confirm CO2 binding sites are coordinatively unsaturated Ni(ii) and carboxylate oxygen atoms, and highlight the influence of multiple adsorption sites.
Collapse
Affiliation(s)
- Nivedita Sikdar
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Subhajit Laha
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Rohan Jena
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Anupam Dey
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| |
Collapse
|
5
|
Geng S, Fu C, Wang X, Yang Y, Wang S, Ren P, Zhang Z. A Microporous Mn(II) MOF Based on 5-(4H-1,2,4-triazol-4-yl) Isophthalic Acid for CO 2/N 2 Separation. Inorg Chem 2024; 63:8636-8641. [PMID: 38687978 DOI: 10.1021/acs.inorgchem.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Removal of carbon dioxide (CO2) from a CO2/N2 mixture by utilizing CO2-selective sorbents is important from the perspective of energy security and environmental sustainability. Herein, a microporous metal-organic framework (MOF) composed of manganese(II) and a bifunctional linker 5-(4H-1,2,4-triazol-4-yl)benzene-1,3-dicarboxylic acid (H2L), [Mn(HL)2] (1) is designed and synthesized using a hydrothermal method. Characterized by single-crystal X-ray diffraction (SCXRD), a microporous channel was found in the structure of compound 1 along the a-axis. Attributed to hydrogen-binding interactions between CO2 molecules and N- and O-donor ligands in its microporous one-dimensional (1D) channel, compound 1 exhibits favorable adsorption of CO2 over N2. Further, verified by experimental breakthrough tests, the CO2/N2 mixture can be separated efficiently. This work provides potential guidance for designing CO2-selective MOFs for CO2/N2 separation.
Collapse
Affiliation(s)
- Shubo Geng
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Chuya Fu
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Xintian Wang
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Yang Yang
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Sa Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Peng Ren
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Wang JW, Mu XB, Fan SC, Xiao Y, Fan GJ, Pan DC, Yuan W, Zhai QG. Maximizing Electrostatic Interaction in Ultramicroporous Metal-Organic Frameworks for the One-Step Purification of Acetylene from Ternary Mixture. Inorg Chem 2024; 63:3436-3443. [PMID: 38306691 DOI: 10.1021/acs.inorgchem.3c04156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Developing efficient adsorbents for acetylene purification from multicomponent mixtures is of critical significance in the chemical industry, but the trade-off between regenerability and selectivity significantly restricts practical industrial applications. Here, we report ultramicroporous metal-organic frameworks with acetylene-affinity channels to enhance electrostatic interaction between C2H2 and frameworks for the efficient one-step purification of C2H2 from C2H2/CO2/C2H4 mixtures, in which the electrostatic interaction led to high regenerability. The obtained SNNU-277 exhibits significantly higher adsorption capacity for C2H2 than that for both C2H4 and CO2 at 298 K and 0.1 bar, while an ultrahigh selectivity of C2H2/C2H4 (100.6 at 298 K) and C2H2/CO2 (32.8 at 298 K) were achieved at 1 bar. Breakthrough experiments validated that SNNU-277 can efficiently separate C2H2 from C2H2/C2H4/CO2 mixtures. CO2 and C2H4 broke through the adsorption column at 4 and 14.8 min g-1, whereas C2H2 was detected until 177.6 min g-1 at 298 K. Theoretical calculations suggest that the framework is electrostatically compatible with C2H2 and electrostatically repels C2H4 and CO2 in the mixed components. This work highlights the importance of rational pore engineering for maximizing the electrostatic effect with the preferentially absorbed guest molecule for efficient multicomponent separation.
Collapse
Affiliation(s)
- Jia-Wen Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xiao-Bing Mu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Shu-Cong Fan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Yi Xiao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Guan-Jiang Fan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Dong-Chen Pan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Wenyu Yuan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
7
|
Zhang L, Song L, Meng LL, Guo YN, Zhu XY, Qin LZ, Chen CX, Xiong XH, Wei ZW, Su CY. Anionic Ni-Based Metal-Organic Framework with Li(I) Cations in the Pores for Efficient C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:847-852. [PMID: 38153916 DOI: 10.1021/acsami.3c16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Acetylene (C2H2) is widely used as a raw material for producing various downstream commodities in the petrochemical and electronic industry. Therefore, the acquisition of high-purity C2H2 from a C2H2/CO2 mixture produced by partial methane combustion or thermal hydrocarbon cracking is of great significance yet highly challenging due to their similar physical and chemical properties. Herein, we report an anionic metal-organic framework (MOF) named LIFM-210, which has Li+ cations in the pores and shows a higher adsorption affinity for C2H2 than CO2. LIFM-210 is constructed by a unique tetranuclear Ni(II) cluster acting as a 10-connected node and an organic ligand acting as a 5-connected node. Single-component adsorption and transient breakthrough experiments demonstrate the good C2H2 selective separation performance of LIFM-210. Theoretical calculations revealed that Li+ ions strongly prefer C2H2 to CO2 and are primary adsorption sites, playing vital roles in the selective separation of C2H2/CO2.
Collapse
Affiliation(s)
- Liang Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liang Song
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liu-Li Meng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ya-Nan Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Yan Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lu-Zhu Qin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Jeong SM, Kim D, Park JY, Yoon JW, Lee SK, Lee JS, Jo D, Cho KH, Lee UH. Separation of High-Purity C 2H 2 from Binary C 2H 2/CO 2 Using Robust Al-Based MOFs Comprising Nitrogen-Containing Heterocyclic Dicarboxylate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1342-1350. [PMID: 38116929 DOI: 10.1021/acsami.3c16849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this study, three nitrogen-containing aluminum-based metal-organic frameworks (Al-MOFs), namely, CAU-10pydc, MOF-303, and KMF-1, were investigated for the efficient separation of a C2H2/CO2 gas mixture. Among these three Al-MOFs, KMF-1 demonstrated the highest selectivity for C2H2/CO2 separation (6.31), primarily owing to its superior C2H2 uptake (7.90 mmol g-1) and lower CO2 uptake (2.82 mmol g-1) compared to that of the other two Al-MOFs. Dynamic breakthrough experiments, using an equimolar binary C2H2/CO2 gas mixture, demonstrated that KMF-1 achieved the highest separation performance. It yielded 3.42 mmol g-1 of high-purity C2H2 (>99.95%) through a straightforward desorption process under He purging at 298 K and 1 bar. To gain insights into the distinctive characteristics of the pore surfaces of structurally similar CAU-10pydc and KMF-1, we conducted computational simulations using canonical Monte Carlo and dispersion-corrected density functional theory methods. These simulations revealed that the secondary amine (C2N-H) groups in KMF-1 played a more significant role in differentiating between C2H2 and CO2 compared to that of the N atoms in CAU-10pydc and MOF-303. Consequently, KMF-1 emerged as a promising adsorbent for the separation of high-purity C2H2 from binary C2H2/CO2 gas mixtures.
Collapse
Affiliation(s)
- Se-Min Jeong
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-Ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Donghyun Kim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-Ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ju Yeon Park
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ji Woong Yoon
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Su-Kyung Lee
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-Ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Donghui Jo
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Kyung Ho Cho
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - U-Hwang Lee
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-Ro 217, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
9
|
Song D, Jiang F, Yuan D, Chen Q, Hong M. Optimizing Sieving Effect for CO 2 Capture from Humid Air Using an Adaptive Ultramicroporous Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302677. [PMID: 37357172 DOI: 10.1002/smll.202302677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Indexed: 06/27/2023]
Abstract
Excessive CO2 in the air can not only lead to serious climate problems but also cause serious damage to humans in confined spaces. Here, a novel metal-organic framework (FJI-H38) with adaptive ultramicropores and multiple active sites is prepared. It can sieve CO2 from air with the very high adsorption capacity/selectivity but the lowest adsorption enthalpy among the reported physical adsorbents. Such excellent adsorption performances can be retained even at high humidity. Mechanistic studies show that the polar ultramicropore is very suitable for molecular sieving of CO2 from N2 , and the distinguishable adsorption sites for H2 O and CO2 enable them to be co-adsorbed. Notably, the adsorbed-CO2 -driven pore shrinkage can further promote CO2 capture while the adsorbed-H2 O-induced phase transitions in turn inhibit H2 O adsorption. Moreover, FJI-H38 has excellent stability and recyclability and can be synthesized on a large scale, making it a practical trace CO2 adsorbent. This will provide a new strategy for developing practical adsorbents for CO2 capture from the air.
Collapse
Affiliation(s)
- Danhua Song
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
10
|
Li Y, Wang X, Zhang H, He L, Huang J, Wei W, Yuan Z, Xiong Z, Chen H, Xiang S, Chen B, Zhang Z. A Microporous Hydrogen Bonded Organic Framework for Highly Selective Separation of Carbon Dioxide over Acetylene. Angew Chem Int Ed Engl 2023; 62:e202311419. [PMID: 37563095 DOI: 10.1002/anie.202311419] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
The separation of acetylene (C2 H2 ) from carbon dioxide (CO2 ) is a very important but challenging task due to their similar molecular dimensions and physical properties. In terms of porous adsorbents for this separation, the CO2 -selective porous materials are superior to the C2 H2 -selective ones because of the cost- and energy-efficiency but have been rarely achieved. Herein we report our unexpected discovery of the first hydrogen bonded organic framework (HOF) constructed from a simple organic linker 2,4,6-tri(1H-pyrazol-4-yl)pyridine (PYTPZ) (termed as HOF-FJU-88) as the highly CO2 -selective porous material. HOF-FJU-88 is a two-dimensional HOFs with a pore pocket of about 7.6 Å. The activated HOF-FJU-88 takes up a high amount of CO2 (59.6 cm3 g-1 ) at ambient conditions with the record IAST selectivity of 1894. Its high performance for the CO2 /C2 H2 separation has been further confirmed through breakthrough experiments, in situ diffuse reflectance infrared spectroscopy and molecular simulations.
Collapse
Affiliation(s)
- Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Xue Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lei He
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Jiali Huang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Wuji Wei
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Huadan Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
11
|
Wang W, Wang GD, Zhang B, Li XY, Hou L, Yang QY, Liu B. Discriminatory Gate-Opening Effect in a Flexible Metal-Organic Framework for Inverse CO 2 /C 2 H 2 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302975. [PMID: 37194973 DOI: 10.1002/smll.202302975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/12/2012] [Indexed: 05/18/2023]
Abstract
Considering the significant application of acetylene (C2 H2 ) in the manufacturing and petrochemical industries, the selective capture of impurity carbon dioxide (CO2 ) is a crucial task and an enduring challenge. Here, a flexible metal-organic framework (Zn-DPNA) accompanied by a conformation change of the Me2 NH2 + ions in the framework is reported. The solvate-free framework provides a stepped adsorption isotherm and large hysteresis for C2 H2 , but type-I adsorption for CO2 . Owing to their uptakes difference before gate-opening pressure, Zn-DPNA demonstrated favorable inverse CO2 /C2 H2 separation. According to molecular simulation, the higher adsorption enthalpy of CO2 (43.1 kJ mol-1 ) is due to strong electrostatic interactions with Me2 NH2 + ions, which lock the hydrogen-bond network and narrow pores. Furthermore, the density contours and electrostatic potential verifies the middle of the cage in the large pore favors C2 H2 and repels CO2 , leading to the expansion of the narrow pore and further diffusion of C2 H2 . These results provide a new strategy that optimizes the desired dynamic behavior for one-step purification of C2 H2 .
Collapse
Affiliation(s)
- Weize Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Bin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiu-Yuan Li
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, P. R. China
| |
Collapse
|
12
|
Yang SQ, Krishna R, Chen H, Li L, Zhou L, An YF, Zhang FY, Zhang Q, Zhang YH, Li W, Hu TL, Bu XH. Immobilization of the Polar Group into an Ultramicroporous Metal-Organic Framework Enabling Benchmark Inverse Selective CO 2/C 2H 2 Separation with Record C 2H 2 Production. J Am Chem Soc 2023. [PMID: 37311069 DOI: 10.1021/jacs.3c03265] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One-step harvest of high-purity light hydrocarbons without the desorption process represents an advanced and highly efficient strategy for the purification of target substances. The separation and purification of acetylene (C2H2) from carbon dioxide (CO2) by CO2-selective adsorbents are urgently demanded yet are very challenging owing to their similar physicochemical properties. Here, we employ the pore chemistry strategy to adjust the pore environment by immobilizing polar groups into an ultramicroporous metal-organic framework (MOF), achieving one-step manufacture of high-purity C2H2 from CO2/C2H2 mixtures. Embedding methyl groups into prototype stable MOF (Zn-ox-trz) not only changes the pore environment but also improves the discrimination of guest molecules. The methyl-functionalized Zn-ox-mtz thus exhibits the benchmark reverse CO2/C2H2 uptake ratio of 12.6 (123.32/9.79 cm3 cm-3) and an exceptionally high equimolar CO2/C2H2 selectivity of 1064.9 at ambient conditions. Molecular simulations reveal that the synergetic effect of pore confinement and surfaces decorated with methyl groups provides high recognition of CO2 molecules through multiple van der Waals interactions. The column breakthrough experiments suggest that Zn-ox-mtz dramatically achieved the one-step purification capacity of C2H2 from the CO2/C2H2 mixture with a record C2H2 productivity of 2091 mmol kg-1, surpassing all of the CO2-selective adsorbents reported so far. In addition, Zn-ox-mtz exhibits excellent chemical stability under different pH values of aqueous solutions (pH = 1-12). Moreover, the highly stable framework and excellent inverse selective CO2/C2H2 separation performance showcase its promising application as a C2H2 splitter for industrial manufacture. This work paves the way to developing reverse-selective adsorbents for the challenging gas separation process.
Collapse
Affiliation(s)
- Shan-Qing Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Rajamani Krishna
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Hongwei Chen
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Libo Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Lei Zhou
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yi-Feng An
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Fei-Yang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Ying-Hui Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Wei Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
13
|
Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
14
|
Zhang Z, Deng Z, Evans HA, Mullangi D, Kang C, Peh SB, Wang Y, Brown CM, Wang J, Canepa P, Cheetham AK, Zhao D. Exclusive Recognition of CO 2 from Hydrocarbons by Aluminum Formate with Hydrogen-Confined Pore Cavities. J Am Chem Soc 2023; 145:11643-11649. [PMID: 37196352 DOI: 10.1021/jacs.3c01705] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Exclusive capture of carbon dioxide (CO2) from hydrocarbons via adsorptive separation is an important technology in the petrochemical industry, especially for acetylene (C2H2) production. However, the physicochemical similarities between CO2 and C2H2 hamper the development of CO2-preferential sorbents, and CO2 is mainly discerned via C recognition with low efficiency. Here, we report that the ultramicroporous material Al(HCOO)3, ALF, can exclusively capture CO2 from hydrocarbon mixtures, including those containing C2H2 and CH4. ALF shows a remarkable CO2 capacity of 86.2 cm3 g-1 and record-high CO2/C2H2 and CO2/CH4 uptake ratios. The inverse CO2/C2H2 separation and exclusive CO2 capture performance from hydrocarbons are validated via adsorption isotherms and dynamic breakthrough experiments. Notably, the hydrogen-confined pore cavities with appropriate dimensional size provide an ideal pore chemistry to specifically match CO2 via a hydrogen bonding mechanism, with all hydrocarbons rejected. This molecular recognition mechanism is unveiled by in situ Fourier-transform infrared spectroscopy, X-ray diffraction studies, and molecular simulations.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zeyu Deng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Hayden A Evans
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - Dinesh Mullangi
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Craig M Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Pieremanuele Canepa
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Anthony K Cheetham
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
15
|
Liu X, Zhang P, Xiong H, Zhang Y, Wu K, Liu J, Krishna R, Chen J, Chen S, Zeng Z, Deng S, Wang J. Engineering Pore Environments of Sulfate-Pillared Metal-Organic Framework for Efficient C 2 H 2 /CO 2 Separation with Record Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210415. [PMID: 36856017 DOI: 10.1002/adma.202210415] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/14/2023] [Indexed: 05/19/2023]
Abstract
Engineering pore environments exhibit great potential in improving gas adsorption and separation performances but require specific means for acetylene/carbon dioxide (C2 H2 /CO2 ) separation due to their identical dynamic diameters and similar properties. Herein, a novel sulfate-pillared MOF adsorbent (SOFOUR-TEPE-Zn) using 1,1,2,2-tetra(pyridin-4-yl) ethene (TEPE) ligand with dense electronegative pore surfaces is reported. Compared to the prototype SOFOUR-1-Zn, SOFOUR-TEPE-Zn exhibits a higher C2 H2 uptake (89.1 cm3 g-1 ), meanwhile the CO2 uptake reduces to 14.1 cm3 g-1 , only 17.4% of that on SOFOUR-1-Zn (81.0 cm3 g-1 ). The high affinity toward C2 H2 than CO2 is demonstrated by the benchmark C2 H2 /CO2 selectivity (16 833). Furthermore, dynamic breakthrough experiments confirm its application feasibility and good cyclability at various flow rates. During the desorption cycle, 60.1 cm3 g-1 C2 H2 of 99.5% purity or 33.2 cm3 g-1 C2 H2 of 99.99% purity can be recovered by stepped purging and mild heating. The simulated pressure swing adsorption processes reveal that 75.5 cm3 g-1 C2 H2 of 99.5+% purity with a high gas recovery of 99.82% can be produced in a counter-current blowdown process. Modeling studies disclose four favorable adsorption sites and dense packing for C2 H2 .
Collapse
Affiliation(s)
- Xing Liu
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Peixin Zhang
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hanting Xiong
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yan Zhang
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Ke Wu
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Junhui Liu
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, Netherlands
| | - Jingwen Chen
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shixia Chen
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zheling Zeng
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Jun Wang
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
16
|
Metal-organic frameworks for C2H2/CO2 separation: Recent development. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
17
|
Liang RR, Tan K, Xiao Z, Wang KY, Cai P, Jia C, Ullah S, Thonhauser T, Drake HF, Chen F, Powell JA, Zhou HC. Two three-dimensional robust hydrogen-bonded organic frameworks for ultra-high CO2 uptake. Chem 2023. [DOI: 10.1016/j.chempr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Åhlén M, Cheung O, Xu C. Low-concentration CO 2 capture using metal-organic frameworks - current status and future perspectives. Dalton Trans 2023; 52:1841-1856. [PMID: 36723043 DOI: 10.1039/d2dt04088c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ever-increasing atmospheric CO2 level is considered to be the major cause of climate change. Although the move away from fossil fuel-based energy generation to sustainable energy sources would significantly reduce the release of CO2 into the atmosphere, it will most probably take time to be fully implemented on a global scale. On the other hand, capturing CO2 from emission sources or directly from the atmosphere are robust approaches that can reduce the atmospheric CO2 concentration in a relatively short time. Here, we provide a perspective on the recent development of metal-organic framework (MOF)-based solid sorbents that have been investigated for application in CO2 capture from low-concentration (<10 000 ppm) CO2 sources. We summarized the different sorbent engineering approaches adopted by researchers, both from the sorbent development and processing viewpoints. We also discuss the immediate challenges of using MOF-based CO2 sorbents for low-concentration CO2 capture. MOF-based materials, with tuneable pore properties and tailorable surface chemistry, and ease of handling, certainly deserve continued development into low-cost, efficient CO2 sorbents for low-concentration CO2 capture.
Collapse
Affiliation(s)
- Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Ångström Laboratory, SE-751 03 Uppsala, Box 35, Sweden.
| | - Ocean Cheung
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Ångström Laboratory, SE-751 03 Uppsala, Box 35, Sweden.
| | - Chao Xu
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Ångström Laboratory, SE-751 03 Uppsala, Box 35, Sweden.
| |
Collapse
|
19
|
Thermodynamic and kinetic synergetic separation of CO2/C2H2 in an ultramicroporous metal-organic framework. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
20
|
Guo ST, Cui PF, Liu XR, Jin GX. Synthesis of Carborane-Backbone Metallacycles for Highly Selective Capture of n-Pentane. J Am Chem Soc 2022; 144:22221-22228. [PMID: 36442076 DOI: 10.1021/jacs.2c10201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The specific recognition and separation of alkanes with similar molecular structures and close boiling points face significant scientific challenges and industrial demands. Here, rectangular carborane-based metallacycles were designed to selectively encapsulate n-pentane from n-pentane, iso-pentane, and cyclo-pentane mixtures in a simple-to-operate and more energy-efficient way. Metallacycle 1, bearing 1,2-di(4-pyridyl) ethylene, can selectively separate n-pentane from these three-component mixtures with a purity of 97%. The selectivity is ascribed to the capture of the preferred guest with matching size, C-H···π interactions, and potential B-Hδ-···Hδ+-C interactions. Besides, the removal of n-pentane gives rise to original guest-free carborane-based metallacycles, which can be recycled without losing performance. Considering the variety of substituted carborane derivatives, metal ions, and organic linkers, these new carborane-based supramolecular coordination complexes (SCCs) may be broadly applicable to other challenging recognition and separation systems with good performance.
Collapse
Affiliation(s)
- Shu-Ting Guo
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
21
|
Jiang K, Gao Y, Zhang P, Lin S, Zhang L. A new perchlorate-based hybrid ultramicroporous material with rich bare oxygen atoms for high C2H2/CO2 separation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Zeng H, Xie XJ, Wang Y, Luo D, Wei RJ, Lu W, Li D. Spatial disposition of square-planar mononuclear nodes in metal-organic frameworks for C 2H 2/CO 2 separation. Chem Sci 2022; 13:12876-12882. [PMID: 36519039 PMCID: PMC9645388 DOI: 10.1039/d2sc04324f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/16/2022] [Indexed: 01/25/2024] Open
Abstract
The efficient separation of acetylene (C2H2) from its mixture with carbon dioxide (CO2) remains a challenging industrial process due to their close molecular sizes/shapes and similar physical properties. Herein, we report a microporous metal-organic framework (JNU-4) with square-planar mononuclear copper(ii) centers as nodes and tetrahedral organic linkers as spacers, allowing for two accessible binding sites per metal center for C2H2 molecules. Consequently, JNU-4 exhibits excellent C2H2 adsorption capacity, particularly at 298 K and 0.5 bar (200 cm3 g-1). Detailed computational studies confirm that C2H2 molecules are indeed predominantly located in close proximity to the square-planar copper centers on both sides. Breakthrough experiments demonstrate that JNU-4 is capable of efficiently separating C2H2 from a 50 : 50 C2H2/CO2 mixture over a broad range of flow rates, affording by far the largest C2H2 capture capacity (160 cm3 g-1) and fuel-grade C2H2 production (105 cm3 g-1, ≥98% purity) upon desorption. Simply by maximizing accessible open metal sites on mononuclear metal centers, this work presents a promising strategy to improve the C2H2 adsorption capacity and address the challenging C2H2/CO2 separation.
Collapse
Affiliation(s)
- Heng Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Xiao-Jing Xie
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Ying Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Rong-Jia Wei
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
23
|
Reverse-selective metal–organic framework materials for the efficient separation and purification of light hydrocarbons. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Cui J, Qiu Z, Yang L, Zhang Z, Cui X, Xing H. Kinetic‐Sieving of Carbon Dioxide from Acetylene through a Novel Sulfonic Ultramicroporous Material. Angew Chem Int Ed Engl 2022; 61:e202208756. [DOI: 10.1002/anie.202208756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jiyu Cui
- Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Zhensong Qiu
- Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Lifeng Yang
- Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Zhaoqiang Zhang
- Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Xili Cui
- Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| | - Huabin Xing
- Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
25
|
Navarro-Alapont J, Armentano D, Pardo E, Ferrando-Soria J. Exploring a metalloligand for construction of an oxamato-based metal-organic framework. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2125303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Javier Navarro-Alapont
- Institut de Ciencia Molecular (ICMol), Universitat de Valencia, Paterna, Valencia, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Consenza, Italy
| | - Emilio Pardo
- Institut de Ciencia Molecular (ICMol), Universitat de Valencia, Paterna, Valencia, Spain
| | - Jesus Ferrando-Soria
- Institut de Ciencia Molecular (ICMol), Universitat de Valencia, Paterna, Valencia, Spain
| |
Collapse
|
26
|
Liu Y, Liu J, Xiong H, Chen J, Chen S, Zeng Z, Deng S, Wang J. Negative electrostatic potentials in a Hofmann-type metal-organic framework for efficient acetylene separation. Nat Commun 2022; 13:5515. [PMID: 36127365 PMCID: PMC9489771 DOI: 10.1038/s41467-022-33271-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Efficient adsorptive separation of acetylene (C2H2) from carbon dioxide (CO2) or ethylene (C2H4) is industrially important but challenging due to the identical dynamic diameter or the trace amount. Here we show an electrostatic potential compatible strategy in a nitroprusside-based Hofmann-type metal-organic framework, Cu(bpy)NP (NP = nitroprusside, bpy = 4,4'-bipyridine), for efficient C2H2 separation. The intruding cyanide and nitrosyl groups in undulating one-dimensional channels induce negative electrostatic potentials for preferential C2H2 recognition instead of open metal sites in traditional Hofmann-type MOFs. As a result, Cu(bpy)NP exhibits a 50/50 C2H2/CO2 selectivity of 47.2, outperforming most rigid MOFs. The dynamic breakthrough experiment demonstrates a 99.9% purity C2H4 productivity of 20.57 mmol g-1 from C2H2/C2H4 (1/99, v/v) gas-mixture. Meanwhile, C2H2 can also be captured and recognized from ternary C2H2/CO2/C2H4 (25/25/50, v/v/v) gas-mixture. Furthermore, computational studies and in-situ infrared spectroscopy reveal that the selective C2H2 binding arises from the compatible pore electro-environment generated by the electron-rich N and O atoms from nitroprusside anions.
Collapse
Affiliation(s)
- Yuan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Junhui Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hanting Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jingwen Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shixia Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zheling Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, 85287, USA
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
27
|
Ma B, Li D, Zhu Q, Li Y, Ueda W, Zhang Z. A Zeolitic Octahedral Metal Oxide with Ultra‐Microporosity for Inverse CO
2
/C
2
H
2
Separation at High Temperature and Humidity. Angew Chem Int Ed Engl 2022; 61:e202209121. [DOI: 10.1002/anie.202209121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Baokai Ma
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| | - Denan Li
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| | - Qianqian Zhu
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
- Zhejiang Hymater New Materials Co., Ltd. Ningbo Zhejiang, 315034 P. R. China
| | - Wataru Ueda
- Faculty of Engineering Kanagawa University Rokkakubashi Kanagawa-ku, Yokohama-shi Kanagawa, 221-8686 Japan
| | - Zhenxin Zhang
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| |
Collapse
|
28
|
Li Y, Hu J, Cui J, Wang Q, Xing H, Cui X. Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy by anion-pillared hybrid materials. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Cui J, Qiu Z, Yang L, Zhang Z, Cui X, Xing H. Kinetic‐Sieving of Carbon Dioxide from Acetylene through a Novel Sulfonic Ultramicroporous Material. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiyu Cui
- Zhejiang University College of Chemical and Biological Engineering biaohua building 201, Zheda Road No.38, Yuquan Campus, Zhejiang University 310027 Hangzhou CHINA
| | - Zhensong Qiu
- Zhejiang University College of Chemical and Biological Engineering biaohua building 201, Zheda Road No.38, Yuquan Campus, Zhejiang University 310027 Hangzhou CHINA
| | - Lifeng Yang
- Zhejiang University College of Chemical and Biological Engineering biaohua building 201, Zheda Road No.38, Yuquan Campus, Zhejiang University 310027 Hangzhou CHINA
| | - Zhaoqiang Zhang
- Zhejiang University College of Chemical and Biological Engineering biaohua building 201, Zheda Road No.38, Yuquan Campus, Zhejiang University 310027 Hangzhou CHINA
| | - Xili Cui
- Zhejiang University College of Chemical and Biological Engineering biaohua building 201, Zheda Road No.38, Yuquan Campus, Zhejiang University 310027 Hangzhou CHINA
| | - Huabin Xing
- Zhejiang University College of Chemical and Biological Engineering 38 Zheda Road 310027 Hangzhou CHINA
| |
Collapse
|
30
|
Ma B, Li D, Zhu Q, Li Y, Ueda W, Zhang Z. A Zeolitic Octahedral Metal Oxide with Ultra‐Microporosity for Inverse CO2/C2H2 Separation at High Temperature and Humidity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baokai Ma
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Denan Li
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Qianqian Zhu
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Yanshuo Li
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Wataru Ueda
- Kanagawa University: Kanagawa Daigaku Faculty of Engineering JAPAN
| | - Zhenxin Zhang
- Ningbo University School of Material Science and Chemical Engineering Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686, Japan. 315211 Ningbo CHINA
| |
Collapse
|
31
|
Hao C, Ren H, Zhu H, Chi Y, Zhao W, Liu X, Guo W. CO2-favored metal–organic frameworks SU-101(M) (M = Bi, In, Ga, and Al) with inverse and high selectivity of CO2 from C2H2 and C2H4. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Ma LN, Wang GD, Hou L, Zhu Z, Wang YY. Efficient One-Step Purification of C 1 and C 2 Hydrocarbons over CO 2 in a New CO 2-Selective MOF with a Gate-Opening Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26858-26865. [PMID: 35642726 DOI: 10.1021/acsami.2c06744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Removing CO2 impurity is an essential industrial process in the purification of hydrocarbons. The most promising strategy is the one-step collection of high-purity hydrocarbons by employing CO2-selective adsorbents, which requires improving the CO2 adsorption and separation behavior of adsorbents, especially the low-pressure performance under actual industrial conditions. Herein, we constructed a new flexible metal-organic framework [Zn(odip)0.5(bpe)0.5(CH3OH)]·0.5NMF·H2O (1) (H4odip = 5,5'-oxydiisophthalic acid, bpe = 1,2-bi(4-pyridyl)ethylene, and NMF = N-methylformamide) containing rich ether O adsorption sites in the channels that exhibits remarkable adsorption capacity for CO2 (118.7 cm3 g-1) due to the only gate-opening-type abrupt adsorption of CO2 at room temperature. Its low affinity for other competing gases enables it to deliver high selectivity for the adsorption of CO2 over C1 and C2 hydrocarbons. For equimolar mixtures of CO2-CH4 and CO2-C2H2, the selectivities are 376.0 and 13.2, respectively. Molecular simulations disclose more abundant adsorption sites for CO2 than hydrocarbons in 1. The breakthrough separation performances combined with remarkable stability and recyclability further verify that 1 is a promising adsorbent that can efficiently extract high-purity hydrocarbons through selective capture of CO2.
Collapse
Affiliation(s)
- Li-Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
33
|
Chen B, Shi Y, Xie Y, Arman H. A Scandium‐based Microporous Metal‐Organic Framework for Ethane‐Selective Separation. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Banglin Chen
- University of Texas at San Antonio Department of Chemistry One UTSA Circle 78249 San Antonio UNITED STATES
| | | | | | | |
Collapse
|
34
|
Chen Y, Tu S, Fu P, Wu H, Wang X, Wu Y, Li Z, Xia Q. A cobalt‐based metal‐organic framework for efficient separation of propene from propane via electrostatic effect. AIChE J 2022. [DOI: 10.1002/aic.17730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongwei Chen
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Shi Tu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Peng Fu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Houxiao Wu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Xingjie Wang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Ying Wu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong China
| | - Zhibo Li
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Qibin Xia
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| |
Collapse
|
35
|
Ding X, Liu Z, Zhang Y, Ye G, Jia J, Chen J. Binary Solvent Regulated Architecture of Ultra-Microporous Hydrogen-Bonded Organic Frameworks with Tunable Polarization for Highly-Selective Gas Separation. Angew Chem Int Ed Engl 2022; 61:e202116483. [PMID: 35023611 DOI: 10.1002/anie.202116483] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 12/22/2022]
Abstract
A binary solvent synthetic strategy is proposed for the construction of C2 -symmetric molecule-based hydrogen-bonded organic frameworks (HOFs) with permanent ultra-micropores and surface polarization derived from tunable coplanar open oxygen atoms. The activated HOFs BTBA-1 a and PTBA-1 a show highly selective separation of CO2 /N2 with a record high ideal adsorbed solution theory (IAST) selectivity >2000 under ambient temperature and pressure.
Collapse
Affiliation(s)
- Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Zeyu Liu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yusheng Zhang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jianfeng Jia
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
36
|
Ding X, Liu Z, Zhang Y, Ye G, Jia J, Chen J. Binary Solvent Regulated Architecture of Ultra‐Microporous Hydrogen‐Bonded Organic Frameworks with Tunable Polarization for Highly‐Selective Gas Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Zeyu Liu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Yusheng Zhang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Jianfeng Jia
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| |
Collapse
|
37
|
Zhao D, Yu K, Han X, He Y, Chen B. Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing, and information encryption. Chem Commun (Camb) 2022; 58:747-770. [PMID: 34979539 DOI: 10.1039/d1cc06261a] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-organic frameworks (MOFs), as an emerging class of porous materials, excel in designability, regulatability, and modifiability in terms of their composition, topology, pore size, and surface chemistry, thus affording a huge potential for addressing environment and energy-related challenges. In particular, MOFs can be applied as porous adsorbents for the purification of industrially important hydrocarbons through certain process-efficient separation schemes based on selectivity-reversed adsorption and multicomponent separation. Moreover, the vast combination possibilities and controllable and engineerable luminescent units of MOFs make them a versatile platform to develop functionally tailored materials for luminescent sensing and optical data encryption. In this feature article, we summarize the recent progress in the use of porous MOFs for the separation and purification of acetylene (C2H2) and ethylene (C2H4) based on selectivity-reversed adsorption and multicomponent separation strategies. Moreover, we highlight the advances over the past three years in the field of MOF-based luminescent materials for thermometry, turn-on sensing, and information encryption.
Collapse
Affiliation(s)
- Dian Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Kuangli Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Xue Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA.
| |
Collapse
|
38
|
Wang J, Zhang Y, Su Y, Liu X, Zhang P, Lin RB, Chen S, Deng Q, Zeng Z, Deng S, Chen B. Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C 2H 2/CO 2 separation. Nat Commun 2022; 13:200. [PMID: 35017555 PMCID: PMC8752597 DOI: 10.1038/s41467-021-27929-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/21/2021] [Indexed: 01/09/2023] Open
Abstract
The separation of C2H2/CO2 is not only industrially important for acetylene purification but also scientifically challenging owing to their high similarities in physical properties and molecular sizes. Ultramicroporous metal-organic frameworks (MOFs) can exhibit a pore confinement effect to differentiate gas molecules of similar size. Herein, we report the fine-tuning of pore sizes in sub-nanometer scale on a series of isoreticular MOFs that can realize highly efficient C2H2/CO2 separation. The subtle structural differences lead to remarkable adsorption performances enhancement. Among four MOF analogs, by integrating appropriate pore size and specific binding sites, [Cu(dps)2(SiF6)] (SIFSIX-dps-Cu, SIFSIX = SiF62-, dps = 4.4'-dipyridylsulfide, also termed as NCU-100) exhibits the highest C2H2 uptake capacity and C2H2/CO2 selectivity. At room temperature, the pore space of SIFSIX-dps-Cu significantly inhibits CO2 molecules but takes up a large amount of C2H2 (4.57 mmol g-1), resulting in a high IAST selectivity of 1787 for C2H2/CO2 separation. The multiple host-guest interactions for C2H2 in both inter- and intralayer cavities are further revealed by dispersion-corrected density functional theory and grand canonical Monte Carlo simulations. Dynamic breakthrough experiments show a clean C2H2/CO2 separation with a high C2H2 working capacity of 2.48 mmol g-1.
Collapse
Affiliation(s)
- Jun Wang
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Yan Zhang
- Jiangxi University of Chinese Medicine, Nanchang, 330031, Jiangxi, PR China
| | - Yun Su
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Xing Liu
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Peixin Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China.
| | - Shixia Chen
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Qiang Deng
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Zheling Zeng
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, AZ, 85287, USA.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0698, USA.
| |
Collapse
|
39
|
Sensharma D, O'Hearn DJ, Koochaki A, Bezrukov AA, Kumar N, Wilson BH, Vandichel M, Zaworotko MJ. The First Sulfate‐Pillared Hybrid Ultramicroporous Material, SOFOUR‐1‐Zn, and Its Acetylene Capture Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Debobroto Sensharma
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Daniel J. O'Hearn
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Amin Koochaki
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre Dublin D02 R590 Republic of Ireland
| | - Andrey A. Bezrukov
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Naveen Kumar
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Benjamin H. Wilson
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Matthias Vandichel
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Michael J. Zaworotko
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre Dublin D02 R590 Republic of Ireland
| |
Collapse
|
40
|
Xiong C, Xiao YH, Liu Q, Chen L, He CT, Liu QY, Wang YL. Robust metal–organic framework with abundant large electronegative sites for removal of CO 2 from a ternary C 2H 2/C 2H 4/CO 2 mixture. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01175a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a MOF with cavities decorated with high-density electronegative F and O sites for the challenging separation of a ternary equimolar mixture of C2H2, C2H4, and CO2 is presented.
Collapse
Affiliation(s)
- Cheng Xiong
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Yan-Hong Xiao
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Qingyou Liu
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ling Chen
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Chun-Ting He
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
41
|
Construction of two new Co(II)-organic frameworks based on diverse metal clusters: Highly selective C2H2 and CO2 capture and magnetic properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Xie Y, Lin R, Chen B. Old Materials for New Functions: Recent Progress on Metal Cyanide Based Porous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104234. [PMID: 34825524 PMCID: PMC8728855 DOI: 10.1002/advs.202104234] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Cyanide is the simplest ligand with strong basicity to construct open frameworks including some of the oldest compounds reported in the history of coordination chemistry. Cyanide can form numerous cyanometallates with different transition metal ions showing diverse geometries. Rational design of robust extended networks is enabled by the strong bonding nature and high directionality of cyanide ligand. By virtue of a combination of cyanometallates and/or organic linkers, multifunctional framework materials can be targeted and readily synthesized for various applications, ranging from molecular adsorptions/separations to energy conversion and storage, and spin-crossover materials. External guest- and stimuli-responsive behaviors in cyanide-based materials are also highlighted for the development of the next-generation smart materials. In this review, an overview of the recent progress of cyanide-based multifunctional materials is presented to demonstrate the great potential of cyanide ligands in the development of modern coordination chemistry and material science.
Collapse
Affiliation(s)
- Yi Xie
- Department of ChemistryUniversity of Texas at San AntonioOne UTSA CircleSan AntonioTX78249‐0698USA
| | - Rui‐Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Banglin Chen
- Department of ChemistryUniversity of Texas at San AntonioOne UTSA CircleSan AntonioTX78249‐0698USA
| |
Collapse
|
43
|
Zaworotko M, Sensharma D, O'Hearn D, Koochaki A, Bezrukov A, Kumar N, Wilson B, Vandichel M. The First Sulfate-Pillared Hybrid Ultramicroporous Material, SOFOUR-1-Zn, and its Acetylene Capture Properties. Angew Chem Int Ed Engl 2021; 61:e202116145. [PMID: 34929064 PMCID: PMC9302121 DOI: 10.1002/anie.202116145] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/21/2022]
Abstract
Hybrid ultramicroporous materials, HUMs, are comprised of metal cations linked by combinations of inorganic and organic ligands. Their modular nature makes them amenable to crystal engineering studies, which have thus far afforded four HUM platforms (as classified by the inorganic linkers). HUMs are of practical interest because of their benchmark gas separation performance for several industrial gas mixtures. We report herein design and gram‐scale synthesis of the prototypal sulfate‐linked HUM, the fsc topology coordination network ([Zn(tepb)(SO4)]n), SOFOUR‐1‐Zn, tepb=(tetra(4‐pyridyl)benzene). Alignment of the sulfate anions enables strong binding to C2H2 via O⋅⋅⋅HC interactions but weak CO2 binding, affording a new benchmark for the difference between C2H2 and CO2 heats of sorption at low loading (ΔQst=24 kJ mol−1). Dynamic column breakthrough studies afforded fuel‐grade C2H2 from trace (1 : 99) or 1 : 1 C2H2/CO2 mixtures, outperforming its SiF62− analogue, SIFSIX‐22‐Zn.
Collapse
Affiliation(s)
- Michael Zaworotko
- University of Limerick, Chemical and Environmental Science, Limerick, na, Limerick, IRELAND
| | - Debobroto Sensharma
- University of Limerick Faculty of Science and Engineering, Chemical Sciences, IRELAND
| | - Daniel O'Hearn
- University of Limerick Faculty of Science and Engineering, Chemical Sciences, IRELAND
| | - Amin Koochaki
- University of Limerick Faculty of Science and Engineering, Chemical Sciences, IRELAND
| | - Andrey Bezrukov
- University of Limerick Faculty of Science and Engineering, Chemical Sciences, IRELAND
| | - Naveen Kumar
- University of Limerick Faculty of Science and Engineering, Chemical Sciences, IRELAND
| | - Benjamin Wilson
- University of Limerick Faculty of Science and Engineering, chemical sciences, IRELAND
| | - Matthias Vandichel
- University of Limerick Faculty of Science and Engineering, chemical sciences, IRELAND
| |
Collapse
|
44
|
Li JH, Xie Y, Zhou MY, Lin RB, Chen XM. Microporous Zinc Formate for Efficient Separation of Acetylene over Carbon Dioxide. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Wang GD, Li YZ, Zhang WF, Hou L, Wang YY, Zhu Z. Acetylene Separation by a Ca-MOF Containing Accessible Sites of Open Metal Centers and Organic Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58862-58870. [PMID: 34870404 DOI: 10.1021/acsami.1c20533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient separation of acetylene from a ternary acetylene-containing mixture is an important and vital task in petrochemical industry, which is difficult to achieve using a single material. Herein, a new Ca2+-based metal-organic framework (MOF) [Ca(dtztp)0.5(DMA)]·2H2O (1) was constructed using the N,O-donor ligand 2,5-di(2H-tetrazol-5-yl)terephthalic acid and the less-studied alkaline earth Ca2+ ions. The MOF shows a 3D honeycomb framework based on unique metal-carboxylate-azolate rod secondary building units. Owing to the presence of high-density organic hydrogen-bonding acceptors and open metal sites (OMSs), the activated MOF shows high adsorption capacity for C2H2 and selectivity for C2H2 over CO2, C2H4, C2H6, and CH4. Dynamic breakthrough experiments indicated the actual C2H2 separation potential of the MOF from binary (C2H2-C2H4 and C2H2-CO2) and ternary (C2H2-C2H4-CO2 and C2H2-C2H4-C2H6) mixtures. Simulations revealed that the synergistic interactions between the OMSs and N atoms in MOF and C2H2 molecules play an important role in the separation of C2H2.
Collapse
Affiliation(s)
- Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wan-Fang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
46
|
Li XY, Song Y, Zhang CX, Zhao CX, He C. Inverse CO2/C2H2 separation in a pillared-layer framework featuring a chlorine-modified channel by quadrupole-moment sieving. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119608] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Cui H, Xie Y, Ye Y, Shi Y, Liang B, Chen B. An Ultramicroporous Metal-Organic Framework with Record High Selectivity for Inverse CO2/C2H2 Separation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hui Cui
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, USA
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, USA
| | - Yingxiang Ye
- Department of Chemistry, University of North Texas, Denton, Texas 76201, USA
| | - Yanshu Shi
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, USA
| | - Bin Liang
- Department of Chemistry, University of North Texas, Denton, Texas 76201, USA
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, USA
| |
Collapse
|
48
|
Lin RB, Zhang Z, Chen B. Achieving High Performance Metal-Organic Framework Materials through Pore Engineering. Acc Chem Res 2021; 54:3362-3376. [PMID: 34399577 DOI: 10.1021/acs.accounts.1c00328] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Achieving high performance functional materials has been a long-term goal for scientists and engineers that can significantly promote science and technology development and thus benefit our society and human beings. As well-known porous materials, metal-organic frameworks (MOFs) are crystalline open frameworks made up of molecular building blocks linked by strong coordination bonds, affording pore space for storing and trapping guest molecules. In terms of porosity, MOFs outperform traditional porous materials including zeolites and activated carbon, showing exceptional porosity with internal surface area up to thousands of square meters per gram of sample and with periodic pore sizes ranging from sub-nanometer to nanometers. Numerous MOFs have been synthesized with potential applications ranging from storing gaseous fuels to separating intractable industrial gas mixtures, sensing physical and chemical stimulus, and transmitting protons for conduction. Compared to traditional porous materials, MOFs are distinguished for their exceptional capability for pore adjustment and interior modification through pore engineering, which have made them a preeminent platform for exploring functional materials with high performance.Rational combinations of rigid building units of different geometry and multibranched organic linkers have provided MOFs with diverse pore structures, ranging from spherical to cylindrical, slit, and tubular ones isolating or interconnecting in different directions, which can be optimized for high-capacity gas storage. Based on the isoreticular principle and building blocks approach in MOF chemistry, the pore adjustment of porous materials can be performed with exquisite precision, making them suitable to address industrially important gas separation. The large pore cavities in MOFs are readily available for encapsulation of different functional guest species, resulting in novel MOF composite materials with various functions.In this Account, we summarize our recent research progress on pore engineering to achieve high-performance MOF materials. We have been able to tune and optimize pore structures, immobilize specific functional sites, and incorporate guest species into target MOF materials for hydrogen storage, methane storage, light-hydrocarbon purification, and proton conduction, especially for various industrially important gas separations including acetylene removal and ethylene and propylene purification. By engineering the porosity and pore chemistry that endows MOFs with multiple functionalities, our research endeavors have brought about the customization of high-performance MOF materials for corresponding application scenarios.
Collapse
Affiliation(s)
- Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhangjing Zhang
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
49
|
Cai LZ, Yao ZZ, Lin SJ, Wang MS, Guo GC. Photoinduced Electron-Transfer (PIET) Strategy for Selective Adsorption of CO 2 over C 2 H 2 in a MOF. Angew Chem Int Ed Engl 2021; 60:18223-18230. [PMID: 34114311 DOI: 10.1002/anie.202105491] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Similarities in sizes, shapes, and physical properties between carbon dioxide (CO2 ) and acetylene (C2 H2 ) make it a great challenge to separate the major impurity CO2 from products in C2 H2 production. The use of porous materials is an appealing path to replace current very costly and energy-consuming technologies, such as solvent extraction and cryogenic distillation; however, high CO2 /C2 H2 uptake ratio with minor adsorption of C2 H2 at standard pressure was only unexpectedly observed in scarce examples in recent years although the related research started early at 1950s, and general design strategies to realize this aim are still absent. This work has successfully developed an efficient PIET strategy and obtained the second highest CO2 /C2 H2 adsorption ratio for porous materials in a proof-of-concept MOF with a photochromism-active bipyridinium zwitterion. An unprecedented photocontrollable gate effect, owing to change of interannular dihedral after photoinduced generation of radical species, was also observed for the first time. These findings will inspire design and synthesis of porous materials for high efficient gas adsorption and separation.
Collapse
Affiliation(s)
- Li-Zhen Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Zi-Zhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou, Fujian, 350002, P. R. China
| | - Shu-Juan Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
50
|
Cai L, Yao Z, Lin S, Wang M, Guo G. Photoinduced Electron‐Transfer (PIET) Strategy for Selective Adsorption of CO
2
over C
2
H
2
in a MOF. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Li‐Zhen Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Zi‐Zhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University 32 Shangsan Road Fuzhou Fujian 350002 P. R. China
| | - Shu‐Juan Lin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Ming‐Sheng Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Guo‐Cong Guo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| |
Collapse
|