1
|
Baker DV, Bernal-Escalante J, Traaseth C, Wang Y, Tran MV, Keenan S, Algar WR. Smartphones as a platform for molecular analysis: concepts, methods, devices and future potential. LAB ON A CHIP 2025; 25:884-955. [PMID: 39918205 DOI: 10.1039/d4lc00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Over the past 15 years, smartphones have had a transformative effect on everyday life. These devices also have the potential to transform molecular analysis over the next 15 years. The cameras of a smartphone, and its many additional onboard features, support optical detection and other aspects of engineering an analytical device. This article reviews the development of smartphones as platforms for portable chemical and biological analysis. It is equal parts conceptual overview, technical tutorial, critical summary of the state of the art, and outlook on how to advance smartphones as a tool for analysis. It further discusses the motivations for adopting smartphones as a portable platform, summarizes their enabling features and relevant optical detection methods, then highlights complementary technologies and materials such as 3D printing, microfluidics, optoelectronics, microelectronics, and nanoparticles. The broad scope of research and key advances from the past 7 years are reviewed as a prelude to a perspective on the challenges and opportunities for translating smartphone-based lab-on-a-chip devices from prototypes to authentic applications in health, food and water safety, environmental monitoring, and beyond. The convergence of smartphones with smart assays and smart apps powered by machine learning and artificial intelligence holds immense promise for realizing a future for molecular analysis that is powerful, versatile, democratized, and no longer just the stuff of science fiction.
Collapse
Affiliation(s)
- Daina V Baker
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Jasmine Bernal-Escalante
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Christine Traaseth
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Yihao Wang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Seth Keenan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
2
|
Metternich JT, Patjoshi SK, Kistwal T, Kruss S. High-Throughput Approaches to Engineer Fluorescent Nanosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411067. [PMID: 39533494 PMCID: PMC11707575 DOI: 10.1002/adma.202411067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Optical sensors are powerful tools to identify and image (biological) molecules. Because of their optoelectronic properties, nanomaterials are often used as building blocks. To transduce the chemical interaction with the analyte into an optical signal, the interplay between surface chemistry and nanomaterial photophysics has to be optimized. Understanding these aspects promises major opportunities for tailored sensors with optimal performance. However, this requires methods to create and explore the many chemical permutations. Indeed, many current approaches are limited in throughput. This affects the chemical design space that can be studied, the application of machine learning approaches as well as fundamental mechanistic understanding. Here, an overview of selection-limited and synthesis-limited approaches is provided to create and identify molecular nanosensors. Bottlenecks are discussed and opportunities of non-classical recognition strategies are highlighted such as corona phase molecular recognition as well as the requirements for high throughput and scalability. Fluorescent carbon nanotubes are powerful building blocks for sensors and their huge chemical design space makes them an ideal platform for high throughput approaches. Therefore, they are the focus of this article, but the insights are transferable to any nanosensor system. Overall, this perspective aims to provide a fresh perspective to overcome current challenges in the nanosensor field.
Collapse
Affiliation(s)
- Justus T. Metternich
- Fraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
| | - Sujit K. Patjoshi
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
| | - Tanuja Kistwal
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
| | - Sebastian Kruss
- Fraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
- Center for Nanointegration Duisburg‐Essen (CENIDE)Carl‐Benz‐Strasse 19947057DuisburgGermany
| |
Collapse
|
3
|
Xiong Z, Fang G, Mondal RK, Liao Y, Nie N, Chen YC, Kim M. On-Chip NADH Detection in Multicellular Models Using an AlGaN/GaN Photodetector Array with Enhanced Sensitivity. NANO LETTERS 2024; 24:14993-15000. [PMID: 39475050 DOI: 10.1021/acs.nanolett.4c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a pivotal coenzyme, existing in its oxidized form (NAD+) and reduced form (NADH). Both are essential in cellular redox reactions and are implicated in energy production and cancer. Current NADH detection methods often involve complex optical measurements. We propose a miniaturized, on-chip photoelectric sensor array using AlGaN/GaN two-dimensional electron gas (2DEG) photodetectors for NADH quantification. The device exhibits an ultralow dark current and ultrahigh UV light responsivity, enabling sensitive NADH detection. By exploiting the absorbance disparity between NADH and NAD+, our sensor achieves rapid, sensitive detection, surpassing commercial assays. It effectively detects NADH levels in 3D multicellular models, promising cancer screening and monitoring. This sensor platform offers a significant advancement in NADH quantification, with the potential for high-throughput testing and point-of-care diagnostics. Our study presents an efficient approach for NADH sensing, addressing the need for rapid and sensitive detection methods in biomedical research and clinical practice.
Collapse
Affiliation(s)
- Zhongshu Xiong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Guocheng Fang
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Ramit Kumar Mondal
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Yikai Liao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Ningyuan Nie
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Munho Kim
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| |
Collapse
|
4
|
Zou R, Li H, Shi J, Sun C, Lu G, Yan X. Dual-enhanced enzyme cascade hybrid hydrogel for the construction of optical biosensor. Biosens Bioelectron 2024; 263:116613. [PMID: 39084044 DOI: 10.1016/j.bios.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The biomimetic enzyme cascade system plays a key role in biosensing as a sophisticated signal transduction and amplification strategy. However, constructing a regulated enzyme cascade sensing system remains challenging due to the mismatch of multiple enzyme activities and poor stability. Herein, we design an efficient dual-enhanced enzyme cascade hybrid system (UFD-DEC) containing DNA-controlled nanozymes (Fe-cdDNA) and enzyme (urease) via combining the electrostatic contact effect with the hydrogel-directed confinement effect. Precise modulation of Fe-cdDNA nanozyme by DNA offers a means to control its catalytic efficiency. This regulated UFD-DEC system accelerates the reaction rate and provides remarkable stability compared with the free enzyme system. Benefiting from the plasticity properties of hydrogels, a "lab-in-a-tube" platform was constructed by encapsulating UFD-DEC in a microcentrifuge tube. Such a UFD-DEC-based hydrogel tube exhibits sufficient adaptability to profile urea when used in conjunction with a smartphone-assisted image processing algorithm, which on-site delivers urea information with a detection limit of 0.12 mmol L-1. This customizable and inexpensive miniaturized biosensor platform for monitoring urea may facilitate point-of-care testing applications.
Collapse
Affiliation(s)
- Ruiqi Zou
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China.
| | - Junxiao Shi
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Geyu Lu
- Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China
| | - Xu Yan
- Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
5
|
Zhang Z, Yu C, Wu Y, Wang Z, Xu H, Yan Y, Zhan Z, Yin S. Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Mater Today Bio 2024; 26:101028. [PMID: 38590985 PMCID: PMC11000120 DOI: 10.1016/j.mtbio.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Haotian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Yining Yan
- Department of Radiology, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| |
Collapse
|
6
|
Zhao X, Lu Y, Li B, Kong M, Sun Y, Li H, Liu X, Lu G. Self-ratiometric fluorescent platform based on upconversion nanoparticles for on-site detection of chlorpyrifos. Food Chem 2024; 439:138100. [PMID: 38041885 DOI: 10.1016/j.foodchem.2023.138100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Monitoring organophosphorus pesticides is significant for food safety assessment. Herein, we developed upconversion nanoparticles (UCNPs)-based self-ratiometric fluorescent platform for the detection of chlorpyrifos. The UCNPs have the ability to confine the detection and reference functions in one nanoparticle. Specifically, the blue upconversion (UC) emission (448 nm) in the shell layer of UCNPs is quenched by the product of the acetylcholinesterase-mediated reaction, while the red UC emission (652 nm) from the core remains constant as a self-calibrated reference signal. Employing the inhibition property of chlorpyrifos, self-proportional fluorescence is employed to detect chlorpyrifos. As proof-of-concept, test strips are fabricated by loading the UCNPs onto filter paper. Combined with the smartphone and image-processing algorithm, chlorpyrifos quantitative testing is achieved with a detection limit of 14.4843 ng mL-1. This portable platform displays anti-interference capability and high stability in the complicated matrix, making it an effective candidate for on-site application.
Collapse
Affiliation(s)
- Xu Zhao
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yang Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Bai Li
- Colorectal & Anal Surgery Department, General Surgery Center, The First Hospital of Jilin University, Xinmin Street, Changchun, Jilin Province 130021, People's Republic of China
| | - Minghui Kong
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yanfeng Sun
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Hongxia Li
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China; Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China.
| | - Xiaomin Liu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China.
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
7
|
Deng S, Men X, Hu M, Liang X, Dai Y, Zhan Z, Huang Z, Chen H, Dong Z. Ratiometric fluorescence sensing NADH using AIE-dots transducers at the point of care. Biosens Bioelectron 2024; 250:116082. [PMID: 38308942 DOI: 10.1016/j.bios.2024.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Reduced nicotinamide adenine dinucleotide (NADH) has a strong impact on physiological metabolism, and its concentration is related to metabolic and neurodegenerative diseases. A more reliable and accurate detection method for NADH quantitation is needed for early disease diagnosis and point-of-care testing. Aggregation-induced emission (AIE) materials are widely used to improve the sensitivity in analytes assays due to their anti-aggregation-caused quenching property. Here we developed TPA-BQD-Py AIE-dots transducers and evaluated its performance in NADH detection. The NADH concentration-dependent ratiometric sensing was based on electron transfer from TPA-BQD-Py AIE-dots to NADH with variable fluorescence intensity at 584 nm and 470 nm, resulting in high sensitivity (limit of detection at 110 nM), photostability, selectivity, and a rapid and reversible response. We further developed the application of TPA-BQD-Py AIE-dots transducers in in vivo NADH imaging using a smartphone and digital camera, respectively, demonstrating the potential for NADH point-of-care testing.
Collapse
Affiliation(s)
- Sile Deng
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Xiaoju Men
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, College of Pharmacy, Changsha Medical University, Changsha, 410219, China
| | - Muhua Hu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Xiao Liang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Yujuan Dai
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Zhengkun Zhan
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Zhongchao Huang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Haobin Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Furong Laboratory, Changsha, Hunan, China.
| | - Zhuxin Dong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Furong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
8
|
Wei L, He X, Zhao D, Kandawa-Shultz M, Shao G, Wang Y. Biotin-conjugated Ru(II) complexes with AIE characteristics as mitochondria-targeted photosensitizers for enhancing photodynamic therapy by disrupting cellular redox balance. Eur J Med Chem 2024; 264:115985. [PMID: 38016298 DOI: 10.1016/j.ejmech.2023.115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
The potential use of Ru(II) complexes as photosensitizers (PSs) in photodynamic therapy (PDT) has gained significant attention. In comparison with fluorophores with aggregation-caused quenching (ACQ), fluorophores with aggregation-induced emission (AIE) characteristics exhibit sustained fluorescence and dispersibility in aqueous solutions. PSs with AIE characteristics have received much attention in recent years. Herein, we reported two novel biotin-conjugated Ru(II) polypyridyl complexes (Ru1 and Ru2) with AIE characteristics. When exposed to 460 nm (10 mW cm-2) light, Ru1 and Ru2 exhibited outstanding photostability and photocatalytic activity. Ru1 and Ru2 could efficiently generate singlet oxygen and induce pUC19 DNA photolysis when exposed to 460 nm light. Interestingly, both Ru1 and Ru2 also functioned as catalysts for NADH oxidation when exposed to 460 nm light. The presence of biotin fragments in Ru1 and Ru2 enhanced the specific uptake of these complexes by tumor cells. Both complexes showed minimal toxicity to selected cells in the dark. Nevertheless, the phototoxicity of both complexes significantly increased upon 460 nm light irradiation for 15 min. Further experiments revealed that Ru2 primarily accumulated in mitochondria and might bind to mitochondrial DNA. Under 460 nm light irradiation, Ru2 induced the generation of reactive oxygen species (ROS) and NADH depletion disrupting intracellular redox homeostasis in A549 cells, activating the mitochondrial apoptosis pathway resulting in up-regulation of apoptotic marker caspase-3, effectively damaged A549 cell DNA and arrested A549 cell cycle in the S phase. In vivo anti-tumor experiments were conducted to assess the effects of Ru2 on tumor growth in A549 tumor-bearing mice. The results showed that Ru2 effectively inhibited tumor growth under 460 nm light irradiation conditions. These findings indicate that Ru2 has great potential as a targeted photosensitizer for mitochondrial targeting imaging and photodynamic therapy of tumors.
Collapse
Affiliation(s)
- Lai Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiangdong He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Deming Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Martha Kandawa-Shultz
- Department of Chemistry and Biochemistry, University of Namibia, Windhoek, 13301, Namibia
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China.
| | - Yihong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
9
|
Wang N, Cao X, Sun D, Li X, Tian G, Feng J, Wei P. A polymer dot-based NADH-sensitive electrochemiluminescence biosensor for analysis of metabolites in serum. Talanta 2024; 267:125149. [PMID: 37690417 DOI: 10.1016/j.talanta.2023.125149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Nicotinamide adenine dinucleotide (NADH) plays a pivotal role in metabolism. Convenient detection of NADH and its related metabolites has the pursuit of point-of-care and clinical analysis. Here, we propose a polymer dots (Pdots)-based NADH-sensitive electrochemiluminescence (ECL) biosensor for detection of NADH and three metabolites. Pdots acted as the efficient ECL emitters without additional modification to construct this biosensor. Specially, NADH both acted as the final detection target and at the same time as the bio-coreactants to sensitively influence the ECL intensities, in which NADH was generated or consumed in the presence of the target analyte and their specific enzyme. For glucose and lactic acid detection, NAD+ was reduced to NADH to generate an enhanced ECL signal. Conversely, for pyruvate detection, NADH was consumed to further decrease the ECL. The designed Pdots-based ECL biosensor showed wide detection ranges, high selectivity and low limits of detection of 4.6 μM, 0.7 μM and 0.5 μM for the analysis of three analytes, respectively. This strategy was successfully applied in quantifying the concentrations of glucose, lactic acid and pyruvate in human serum, which also has the potential to be implemented as a powerful and fast tool for ECL sensing of NADH and other related metabolites for point-of-care use and disease monitoring.
Collapse
Affiliation(s)
- Ningning Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Xuewei Cao
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China; Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Daxi Sun
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Xinyu Li
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Geng Tian
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China.
| | - Jiankai Feng
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China.
| | - Pengfei Wei
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
10
|
Munyayi TA, Mulder DW, Conradie EH, Johannes Smit F, Vorster BC. Quantitative Galactose Colorimetric Competitive Assay Based on Galactose Dehydrogenase and Plasmonic Gold Nanostars. BIOSENSORS 2023; 13:965. [PMID: 37998140 PMCID: PMC10669336 DOI: 10.3390/bios13110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
We describe a competitive colorimetric assay that enables rapid and sensitive detection of galactose and reduced nicotinamide adenine dinucleotide (NADH) via colorimetric readouts and demonstrate its usefulness for monitoring NAD+-driven enzymatic reactions. We present a sensitive plasmonic sensing approach for assessing galactose concentration and the presence of NADH using galactose dehydrogenase-immobilized gold nanostars (AuNS-PVP-GalDH). The AuNS-PVP-GalDH assay remains turquoise blue in the absence of galactose and NADH; however, as galactose and NADH concentrations grow, the reaction well color changes to a characteristic red color in the presence of an alkaline environment and a metal ion catalyst (detection solution). As a result, when galactose is sensed in the presence of H2O2, the colored response of the AuNS-PVP-GalDH assay transforms from turquoise blue to light pink, and then to wine red in a concentration-dependent manner discernible to the human eye. This competitive AuNS-PVP-GalDH assay could be a viable analytical tool for rapid and convenient galactose quantification in resource-limited areas.
Collapse
Affiliation(s)
| | - Danielle Wingrove Mulder
- Center for Human Metabolomics, North-West University Potchefstroom Campus, Potchefstroom 2531, South Africa; (D.W.M.); (E.H.C.); (B.C.V.)
| | - Engela Helena Conradie
- Center for Human Metabolomics, North-West University Potchefstroom Campus, Potchefstroom 2531, South Africa; (D.W.M.); (E.H.C.); (B.C.V.)
| | - Frans Johannes Smit
- Research Focus Area for Chemical Resource Beneficiation, North-West University, Potchefstroom 2520, South Africa;
| | - Barend Christiaan Vorster
- Center for Human Metabolomics, North-West University Potchefstroom Campus, Potchefstroom 2531, South Africa; (D.W.M.); (E.H.C.); (B.C.V.)
| |
Collapse
|
11
|
Jo S, Lee H, Park JH, Yang JK, Lee WJ, Lim J, Kim S, Lee S, Lee TS. Silica-Based Platform Decorated with Conjugated Polymer Dots and Prussian Blue for Improved Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43455-43467. [PMID: 37682242 DOI: 10.1021/acsami.3c08404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
To advance cancer treatment, we have developed a novel composite material consisting of conjugated polymer dots (CPDs) and Prussian blue (PB) particles, which were immobilized on, and encapsulated within, silica particles, respectively. The CPDs functioned as both a photosensitizer and a photodynamic agent, and the PB acted as a photothermal agent. The silica platform provided a biocompatible matrix that brought the two components into close proximity. Under laser irradiation, the fluorescence from the CPDs in the composite material enabled cell imaging and was subsequently converted to thermal energy by PB. This efficient energy transfer was accomplished because of the spectral overlap between the emission of donor CPDs and the absorbance of acceptor PB. The increase in local temperature in the cells resulted in a significant increase in the amount of reactive oxygen species (ROS) generated by CPDs, in which their independent use did not produce sufficient ROS for cancer cell treatment. To assess the impact of the enhanced ROS generation by the composite material, we conducted experiments using cancer cells under 532 nm laser irradiation. The results showed that with the increase in local temperature, the generated ROS increased by 30% compared with the control, which did not contain PB. When the silica-based composite material was positioned at the periphery of the tumor for 120 h, it led to a much slower tumor growth than other materials tested. By using a CPD-based photodynamic therapy platform, a new simplified approach to designing and preparing cancer treatments could be achieved, which included photothermal PB-assisted enhanced ROS generation using a single laser. This advancement opens up an exciting new opportunity for effective cancer treatment.
Collapse
Affiliation(s)
- Seonyoung Jo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Hyeonhee Lee
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Ji Hwan Park
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jin-Kyoung Yang
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Won-Jong Lee
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jongchul Lim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Soojin Lee
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Taek Seung Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
12
|
Jiang Y, Zhang J, Jung SR, Chen H, Xu S, Chiu DT. High-Precision Mapping of Membrane Proteins on Synaptic Vesicles using Spectrally Encoded Super-Resolution Imaging. Angew Chem Int Ed Engl 2023; 62:e202217889. [PMID: 36581589 PMCID: PMC9908834 DOI: 10.1002/anie.202217889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The spatial resolution of single-molecule localization microscopy is limited by the photon number of a single switching event because of the difficulty of correlating switching events dispersed in time. Here we overcome this limitation by developing a new class of photoswitching semiconducting polymer dots (Pdots) with structured and highly dispersed single-particle spectra. We imaged the Pdots at the first and the second vibronic emission peaks and used the ratio of peak intensities as a spectral coding. By correlating switching events using the spectral coding and performing 4-9 frame binning, we achieved a 2-3 fold experimental resolution improvement versus conventional superresolution imaging. We applied this method to count and map SV2 and proton ATPase proteins on synaptic vesicles (SVs). The results reveal that these proteins are trafficked and organized with high precision, showing unprecedented level of detail about the composition and structure of SVs.
Collapse
Affiliation(s)
- Yifei Jiang
- Departments of Chemistry and Bioengineering, University of Washington, Seattle, Washington 98195, USA
- Institute of Basic Medicine and Cancer, Chinese Academy of Science, Hangzhou, Zhejiang 310016, China
| | - Jicheng Zhang
- Departments of Chemistry and Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Seung-Ryoung Jung
- Departments of Chemistry and Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Haobin Chen
- Departments of Chemistry and Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Shihan Xu
- Departments of Chemistry and Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Daniel T. Chiu
- Departments of Chemistry and Bioengineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
13
|
Deng S, Li L, Zhang J, Wang Y, Huang Z, Chen H. Semiconducting Polymer Dots for Point-of-Care Biosensing and In Vivo Bioimaging: A Concise Review. BIOSENSORS 2023; 13:bios13010137. [PMID: 36671972 PMCID: PMC9855952 DOI: 10.3390/bios13010137] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 05/28/2023]
Abstract
In recent years, semiconducting polymer dots (Pdots) have attracted much attention due to their excellent photophysical properties and applicability, such as large absorption cross section, high brightness, tunable fluorescence emission, excellent photostability, good biocompatibility, facile modification and regulation. Therefore, Pdots have been widely used in various types of sensing and imaging in biological medicine. More importantly, the recent development of Pdots for point-of-care biosensing and in vivo imaging has emerged as a promising class of optical diagnostic technologies for clinical applications. In this review, we briefly outline strategies for the preparation and modification of Pdots and summarize the recent progress in the development of Pdots-based optical probes for analytical detection and biomedical imaging. Finally, challenges and future developments of Pdots for biomedical applications are given.
Collapse
|
14
|
Preparation of fluorescein-modified polymer dots and their application in chiral discrimination of lysine enantiomers. Mikrochim Acta 2022; 190:29. [PMID: 36522482 DOI: 10.1007/s00604-022-05608-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Fluorescein-functionalized fluorescent polymer dots (F-PDs) were prepared by a facile one-pot method by magnetic stirring under mild conditions based on carboxymethylcellulose (CMC) and fluorescein as the precursors. The obtained F-PDs exhibited a nanoscale size of 3.2 ± 1.1 nm, excellent water solubility, and bright yellow fluorescence emission with a fluorescence quantum yield of 12.0%. The fluorescent probe displays rapid and sensitive chiral discrimination for lysine focused on different complexation abilities between lysine enantiomers and Cu2+. The concentration of L-lysine in the range 4 to 14 mM (R2 = 0.997) was measured by the fluorescence intensity ratio (I513/I429); the exitation wavelength was set to λex = 365 nm. The detection limit was 0.28 mM (3σ/slope). Importantly, this sensor accurately predicted the enantiomeric excess (ee) of lysine enantiomers at the designed concentration (lysine: 20 mM; Cu2+: 10 mM) ranges. The proposed sensor was successfully applied to determine L-lys (recovery: 95.8-101%; RSD: 0.465-3.34%) and ee values (recovery: 98.5-102%; RSD: 2.61-3.21%) in human urine samples using the standard addition method.
Collapse
|
15
|
Yu P, Yan K, Wang S, Yao C, Lei Z, Tang Y, Zhang F. NIR-II Dyad-Doped Ratiometric Nanosensor with Enhanced Spectral Fidelity in Biological Media for In Vivo Biosensing. NANO LETTERS 2022; 22:9732-9740. [PMID: 36454944 DOI: 10.1021/acs.nanolett.2c04084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ratiometric fluorescence nanosensors provide quantitative biological information. However, spectral shift and distortion of ratiometric nanosensors in biological media often compromise sensing accuracy, limiting in vivo applications. Here, we develop a fluorescent dyad (aBOP-IR1110) in the second near-infrared (NIR-II) window by covalently linking an asymmetric aza-BODIPY with a ONOO--responsive meso-thiocyanine. The dyad encapsulated in the PEGylated nanomicelle largely improves spectral fidelity in serum culture by >9.4 times compared to that of its noncovalent counterpart. The increased molecular weights (>1480 Da) and hydrophobicity (LogP of 7.87-12.36) lock dyads inside the micelles, which act as the shield against the external environment. ONOO--altered intramolecular Förster resonance energy transfer (FRET) generates linear ratiometric response with better serum tolerance, enabling us to monitor the dynamics of oxidative stress in traumatic brain injury and evaluate therapeutic efficiency. The results show high correlation with in vitro triphenyltetrazolium chloride staining, suggesting the potential of NIR-II dyad-doped nanosensor for in vivo high-fidelity sensing applications.
Collapse
Affiliation(s)
- Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Chenzhi Yao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Zuhai Lei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai 200433, China
| | - Yaohui Tang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Wei Q, Xu D, Li T, He X, Wang J, Zhao Y, Chen L. Recent Advances of NIR-II Emissive Semiconducting Polymer Dots for In Vivo Tumor Fluorescence Imaging and Theranostics. BIOSENSORS 2022; 12:bios12121126. [PMID: 36551093 PMCID: PMC9775418 DOI: 10.3390/bios12121126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 05/31/2023]
Abstract
Accurate diagnosis and treatment of tumors, one of the top global health problems, has always been the research focus of scientists and doctors. Near-infrared (NIR) emissive semiconducting polymers dots (Pdots) have demonstrated bright prospects in field of in vivo tumor fluorescence imaging owing to some of their intrinsic advantages, including good water-dispersibility, facile surface-functionalization, easily tunable optical properties, and good biocompatibility. During recent years, much effort has been devoted to developing Pdots with emission bands located in the second near-infrared (NIR-II, 1000-1700 nm) region, which hold great advantages of higher spatial resolution, better signal-to-background ratios (SBR), and deeper tissue penetration for solid-tumor imaging in comparison with the visible region (400-680 nm) and the first near-infrared (NIR-I, 680-900 nm) window, by virtue of the reduced tissue autofluorescence, minimal photon scattering, and low photon absorption. In this review, we mainly summarize the latest advances of NIR-II emissive semiconducting Pdots for in vivo tumor fluorescence imaging, including molecular engineering to improve the fluorescence quantum yields and surface functionalization to elevate the tumor-targeting capability. We also present several NIR-II theranostic Pdots used for integrated tumor fluorescence diagnosis and photothermal/photodynamic therapy. Finally, we give our perspectives on future developments in this field.
Collapse
Affiliation(s)
- Qidong Wei
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Dingshi Xu
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Tianyu Li
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xuehan He
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yi Zhao
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Lei Chen
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
17
|
Yan X, Wang T, Li H, Zhang L, Xin H, Lu G. Flexible Aggregation-Induced Emission-Active Hydrogel for On-Site Monitoring of Pesticide Degradation. ACS NANO 2022; 16:18421-18429. [PMID: 36282203 DOI: 10.1021/acsnano.2c06544] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Benefiting from the stimuli-responsive property and powerful loading capacity, functionalized hydrogels are favorable for the fabrication of sensing devices. Herein, we design aggregation-induced emission (AIE)-active hydrogel discs by embedding gold nanoclusters@zeolite-like imidazole framework (AuNCs@ZIF) composites in double-network hydrogels to build a sensitive pesticide biosensor. The hydrogel discs integrate an AIE effect of AuNCs, a stimuli-responsive property of ZIF, and a porous network structure of the hydrogel, which enhances the sensing sensitivity via boosting the stable fluorescent signal and antifouling performance. In conjunction with a homemade device, the fluorescence images of hydrogel discs could be transduced into data information for accurate quantification of chlorpyrifos pesticide with a detection limit of 0.2 ng/mL. The dynamic degradation of chlorpyrifos in Chinese cabbage is demonstrated to confirm the practical application of hydrogel discs. Such AIE-active hydrogel discs could be a plant health sensor for the on-site quantification of pesticide residues on crops, holding great promise for precision agriculture.
Collapse
Affiliation(s)
- Xu Yan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Tuhui Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, P. R. China
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Lening Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, P. R. China
| | - Hua Xin
- Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, P. R. China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
18
|
Chen J, Zhou Z, Luo S, Liu G, Xiang J, Tian Z. Progress of advanced nanomaterials in diagnosis of neurodegenerative diseases. Biosens Bioelectron 2022; 217:114717. [PMID: 36179434 DOI: 10.1016/j.bios.2022.114717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 12/22/2022]
Abstract
Neurodegenerative diseases (NDDs) encompass a wide range of clinically and pathologically diverse diseases characterized by progressive long-term cognitive decline, memory and function loss in daily life. Due to the lack of effective drugs and therapeutic strategies for preventing or delaying neurodegenerative progression, it is urgent to diagnose NDDs as early and accurately as possible. Nanomaterials, emerged as one of the most promising materials in the 21st century, have been widely applied and play a significant role in diagnosis and treatment of NDDs because of their remarkable properties including stability, prominent biocompatibility, unique structure, novel physical and chemical characteristics. In this review, we outlined general strategies for the application of different types of advanced materials in early and staged diagnosis of NDDs in vivo and in vitro. According to applied technology, in vivo research mainly involves magnetic resonance, fluorescence, and surface enhanced Raman imaging on structures of brain tissues, cerebral vessels and related distributions of biomarkers. In vitro research is focused on the detection of fluid biomarkers in cerebrospinal fluid and peripheral blood based on fluorescence, electrochemical, Raman and surface plasmon resonance techniques. Finally, we discussed the current challenges and future perspectives of biomarker-based NDDs diagnosis as well as potential applications regarding advanced nanomaterials.
Collapse
Affiliation(s)
- Jia Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhifang Zhou
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Siheng Luo
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Juan Xiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, PR China.
| | - Zhongqun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
19
|
Men X, Fang X, Liu Z, Zhang Z, Wu C, Chen H. Anisotropic assembly and fluorescence enhancement of conjugated polymer nanostructures. VIEW 2022. [DOI: 10.1002/viw.20220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Xiaoju Men
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation Changsha Medical University Changsha Hunan China
| | - Xiaofeng Fang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Zhihe Liu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Zhe Zhang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Haobin Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences Central South University Changsha Hunan China
| |
Collapse
|
20
|
Ratiometric fluorescent detection of miRNA-21 via pH-regulated adsorption of DNA on polymer dots and exonuclease III-assisted amplification. Anal Chim Acta 2022; 1232:340450. [DOI: 10.1016/j.aca.2022.340450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 11/01/2022]
|
21
|
Qin T, Zhao X, Lv T, Yao G, Xu Z, Wang L, Zhao C, Xu H, Liu B, Peng X. General Method for Pesticide Recognition Using Albumin-Based Host-Guest Ensembles. ACS Sens 2022; 7:2020-2027. [PMID: 35776632 DOI: 10.1021/acssensors.2c00803] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The massive use of pesticides nowadays has led to serious consequences for the environment and public health. Fluorescence analytical methods for pesticides are particularly advantageous with respect to simplicity and portability; however, currently available fluorescence methods (enzyme-based assays and indicator displacement assays) with poor universality are only able to detect few specific pesticides (e.g., organophosphorus). Making use of the multiple flexible and asymmetrical binding sites in albumin, we herein report a set of multicolor albumin-based host-guest ensembles. These ensembles exhibit a universal but distinctive fluorescent response to most of the common pesticides and allow array-based identification of pesticides with high accuracy. Furthermore, the simplicity, portability, and visualization of this method enable on-site determination of pesticides in a practical setting. This albumin host strategy largely expands the toolbox of traditional indicator displacement assays (synthetic macrocycles as hosts), and we expect it to inspire a series of sensor designs for pesticide detection.
Collapse
Affiliation(s)
- Tianyi Qin
- College of Materials Science and Engineering, Shenzhen University, 518000 Shenzhen, People's Republic of China.,Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, 510642 Guangzhou, People's Republic of China
| | - Xiongfei Zhao
- College of Materials Science and Engineering, Shenzhen University, 518000 Shenzhen, People's Republic of China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Guangkai Yao
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, 510642 Guangzhou, People's Republic of China
| | - Zhongyong Xu
- College of Materials Science and Engineering, Shenzhen University, 518000 Shenzhen, People's Republic of China
| | - Lei Wang
- College of Materials Science and Engineering, Shenzhen University, 518000 Shenzhen, People's Republic of China
| | - Chen Zhao
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, 510642 Guangzhou, People's Republic of China
| | - Hanhong Xu
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, 510642 Guangzhou, People's Republic of China
| | - Bin Liu
- College of Materials Science and Engineering, Shenzhen University, 518000 Shenzhen, People's Republic of China
| | - Xiaojun Peng
- College of Materials Science and Engineering, Shenzhen University, 518000 Shenzhen, People's Republic of China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, People's Republic of China
| |
Collapse
|
22
|
Liu F, Wang D, Wang J, Ma L, Yu C, Wei H. Construction of Enzyme-Responsive Micelles Based on Theranostic Zwitterionic Conjugated Bottlebrush Copolymers with Brush-on-Brush Architecture for Cell Imaging and Anticancer Drug Delivery. Molecules 2022; 27:molecules27093016. [PMID: 35566368 PMCID: PMC9101325 DOI: 10.3390/molecules27093016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bottlebrush copolymers with different chemical structures and compositions as well as diverse architectures represent an important kind of material for various applications, such as biomedical devices. To our knowledge, zwitterionic conjugated bottlebrush copolymers integrating fluorescence imaging and tumor microenvironment-specific responsiveness for efficient intracellular drug release have been rarely reported, likely because of the lack of an efficient synthetic approach. For this purpose, in this study, we reported the successful preparation of well-defined theranostic zwitterionic bottlebrush copolymers with unique brush-on-brush architecture. Specifically, the bottlebrush copolymers were composed of a fluorescent backbone of polyfluorene derivate (PFONPN) possessing the fluorescence resonance energy transfer with doxorubicin (DOX), primary brushes of poly(2-hydroxyethyl methacrylate) (PHEMA), and secondary graft brushes of an enzyme-degradable polytyrosine (PTyr) block as well as a zwitterionic poly(oligo (ethylene glycol) monomethyl ether methacrylate-co-sulfobetaine methacrylate) (P(OEGMA-co-SBMA)) chain with super hydrophilicity and highly antifouling ability via elegant integration of Suzuki coupling, NCA ROP and ATRP techniques. Notably, the resulting bottlebrush copolymer, PFONPN9-g-(PHEMA15-g-(PTyr16-b-P(OEGMA6-co-SBMA6)2)) (P2) with a lower MW ratio of the hydrophobic side chains of PTyr and hydrophilic side chains of P(OEGMA-co-SBMA) could self-assemble into stabilized unimolecular micelles in an aqueous phase. The resulting unimolecular micelles showed a fluorescence quantum yield of 3.9% that is mainly affected by the pendant phenol groups of PTyr side chains and a drug-loading content (DLC) of approximately 15.4% and entrapment efficiency (EE) of 90.6% for DOX, higher than the other micelle analogs, because of the efficient supramolecular interactions of π–π stacking between the PTyr blocks and drug molecules, as well as the moderate hydrophilic chain length. The fluorescence of the PFONPN backbone enables fluorescence resonance energy transfer (FRET) with DOX and visualization of intracellular trafficking of the theranostic micelles. Most importantly, the drug-loaded micelles showed accelerated drug release in the presence of proteinase K because of the enzyme-triggered degradation of PTyr blocks and subsequent deshielding of P(OEGMA-co-SBMA) corona for micelle destruction. Taken together, we developed an efficient approach for the synthesis of enzyme-responsive theranostic zwitterionic conjugated bottlebrush copolymers with a brush-on-brush architecture, and the resulting theranostic micelles with high DLC and tumor microenvironment-specific responsiveness represent a novel nanoplatform for simultaneous cell image and drug delivery.
Collapse
Affiliation(s)
- Fangjun Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (F.L.); (L.M.)
| | - Dun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China; (D.W.); (J.W.)
| | - Jiaqi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China; (D.W.); (J.W.)
| | - Liwei Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (F.L.); (L.M.)
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China; (D.W.); (J.W.)
- Correspondence: (C.Y.); (H.W.)
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (F.L.); (L.M.)
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China; (D.W.); (J.W.)
- Correspondence: (C.Y.); (H.W.)
| |
Collapse
|
23
|
Lee S, Park CS, Yoon H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022; 23:4949. [PMID: 35563340 PMCID: PMC9100005 DOI: 10.3390/ijms23094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Recent interest in research on photoluminescent molecules due to their unique properties has played an important role in advancing the bioimaging field. In particular, small molecules and organic dots as probes have great potential for the achievement of bioimaging because of their desirable properties. In this review, we provide an introduction of probes consisting of fluorescent small molecules and polymers that emit light across the ultraviolet and near-infrared wavelength ranges, along with a brief summary of the most recent techniques for bioimaging. Since photoluminescence probes emitting light in different ranges have different goals and targets, their respective strategies also differ. Diverse and novel strategies using photoluminescence probes against targets have gradually been introduced in the related literature. Among recent papers (published within the last 5 years) on the topic, we here concentrate on the photophysical properties and strategies for the design of molecular probes, with key examples of in vivo photoluminescence research for practical applications. More in-depth studies on these probes will provide key insights into how to control the molecular structure and size/shape of organic probes for expanded bioimaging research and applications.
Collapse
Affiliation(s)
- Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Chul Soon Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
24
|
Zhao L, Zhao C, Zhou J, Ji H, Qin Y, Li G, Wu L, Zhou X. Conjugated Polymers-based Luminescent Probes for Ratiometric Detection of Biomolecules. J Mater Chem B 2022; 10:7309-7327. [DOI: 10.1039/d2tb00937d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate monitoring of the biomolecular changes in biological and physiological environments is of great significance for pathogenesis, development, diagnosis and treatment of diseases. Compared with traditional luminescent probes on the...
Collapse
|
25
|
Chen H, Yu J, Zhang J, Sun K, Ding Z, Jiang Y, Hu Q, Wu C, Chiu DT. Monitoring Metabolites Using an NAD(P)H‐sensitive Polymer Dot and a Metabolite‐Specific Enzyme. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Haobin Chen
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Jicheng Zhang
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Kai Sun
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Zhaoyang Ding
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Yifei Jiang
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Qiongzheng Hu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 510855 China
| | - Daniel T. Chiu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
26
|
Chen H, Yu J, Zhang J, Sun K, Ding Z, Jiang Y, Hu Q, Wu C, Chiu DT. Monitoring Metabolites Using an NAD(P)H-sensitive Polymer Dot and a Metabolite-Specific Enzyme. Angew Chem Int Ed Engl 2021; 60:19331-19336. [PMID: 34146440 DOI: 10.1002/anie.202106156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Indexed: 12/24/2022]
Abstract
We introduce an NAD(P)H-sensitive polymer dot (Pdot) biosensor for point-of-care monitoring of metabolites. The Pdot is combined with a metabolite-specific NAD(P)H-dependent enzyme that catalyzes the oxidation of the metabolite, generating NAD(P)H. Upon UV illumination, the NAD(P)H quenches the fluorescence emission of Pdot at 627 nm via electron transfer, and also fluoresces at 458 nm, resulting in a shift from red to blue emission at higher NAD(P)H concentrations. Metabolite concentration is quantified ratiometrically-based on the ratio of blue-to-red channel emission intensities, with a digital camera-with high sensitivity and specificity. We demonstrate phenylalanine biosensing in human plasma for a phenylketonuria screening test, quantifying several other disease-related metabolites (lactate, glucose, glutamate, and β-hydroxybutyrate), and a paper-based assay with smartphore imaging for point-of-care use.
Collapse
Affiliation(s)
- Haobin Chen
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jicheng Zhang
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Kai Sun
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Zhaoyang Ding
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Yifei Jiang
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Qiongzheng Hu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 510855, China
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|