1
|
Guo X, Ran L, Huang X, Wang X, Zhu J, Tan Y, Shu Q. Identification and functional analysis of two serotonin N-acetyltransferase genes in maize and their transcriptional response to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1478200. [PMID: 39416480 PMCID: PMC11481039 DOI: 10.3389/fpls.2024.1478200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Introduction Melatonin, a tryptophan-derived indoleamine metabolite with important roles in plant growth and defense, has recently been regarded as a new plant hormone. Maize is one of the most important cereal crops in the world. Although the melatonin receptor gene, ZmPMTR1, has already been identified, the genetic basis of melatonin biosynthesis in maize has still not been elucidated. Serotonin N-acetyltransferase (SNAT) is the enzyme that converts serotonin to N-acetylserotonin (NAS) or 5-methoxytryptamine (5MT) to melatonin in Arabidopsis and rice, but no SNAT encoding gene has been identified yet in maize. Methods The bioinformatics analysis was used to identify maize SNAT genes and the enzyme activity of the recombinant proteins was determined through in vitro assay. The expression levels of ZmSNAT1 and ZmSNAT3 under drought and heat stresses were revealed by public RNA-seq datasets and qRT-PCR analysis. Results We first identified three maize SNAT genes, ZmSNAT1, ZmSNAT2, and ZmSNAT3, through bioinformatics analysis, and demonstrated that ZmSNAT2 was present in only eight of the 26 cultivars analyzed. We then determined the enzyme activity of ZmSNAT1 and ZmSNAT3 using their recombinant proteins through in vitro assay. The results showed that both ZmSNAT1 and ZmSNAT3 could convert serotonin to NAS and 5-MT to melatonin. Recombinant ZmSNAT1 catalyzed serotonin into NAS with a higher catalytic activity (K m, 8.6 mM; V max, 4050 pmol/min/mg protein) than ZmSNAT3 (K m, 11.51 mM; V max, 142 pmol/min/mg protein). We further demonstrated that the 228th amino acid Tyr (Y228) was essential for the enzymatic activity of ZmSNAT1. Finally, we revealed that the expression of ZmSNAT1 and ZmSNAT3 varied among different maize cultivars and different tissues of a plant, and was responsive to drought and heat stresses. Discussion In summary, the present study identified and characterized the first two functional SNAT genes in maize, laying the foundation for further research on melatonin biosynthesis and its regulatory role in plant growth and response to abiotic stresses.
Collapse
Affiliation(s)
- Xiaohao Guo
- State Key Laboratory of Rice Biology and Breeding, and Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Exploitation, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Le Ran
- State Key Laboratory of Rice Biology and Breeding, and Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Exploitation, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Xinyu Huang
- State Key Laboratory of Rice Biology and Breeding, and Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Exploitation, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Xiuchen Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuanyuan Tan
- State Key Laboratory of Rice Biology and Breeding, and Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Exploitation, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
- Zhejiang University – Wuxi Xishan Joint Modern Agricultural Research Centre, Zhejiang University, Hangzhou, China
| | - Qingyao Shu
- State Key Laboratory of Rice Biology and Breeding, and Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Exploitation, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
- Zhejiang University – Wuxi Xishan Joint Modern Agricultural Research Centre, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
3
|
Brünje A, Füßl M, Eirich J, Boyer JB, Heinkow P, Neumann U, Konert M, Ivanauskaite A, Seidel J, Ozawa SI, Sakamoto W, Meinnel T, Schwarzer D, Mulo P, Giglione C, Finkemeier I. The plastidial protein acetyltransferase GNAT1 forms a complex with GNAT2, yet their interaction is dispensable for state transitions. Mol Cell Proteomics 2024:100850. [PMID: 39349166 DOI: 10.1016/j.mcpro.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 08/18/2024] [Indexed: 10/02/2024] Open
Abstract
Protein N-acetylation is one of the most abundant co- and post-translational modifications in eukaryotes, extending its occurrence to chloroplasts within vascular plants. Recently, a novel plastidial enzyme family comprising eight acetyltransferases that exhibit dual lysine and N-terminus acetylation activities was unveiled in Arabidopsis. Among these, GNAT1, GNAT2, and GNAT3 reveal notable phylogenetic proximity, forming a subgroup termed NAA90. Our study focused on characterizing GNAT1, closely related to the state transition acetyltransferase GNAT2. In contrast to GNAT2, GNAT1 did not prove essential for state transitions and displayed no discernible phenotypic difference compared to the wild type under high light conditions, while gnat2 mutants were severely affected. However, gnat1 mutants exhibited a tighter packing of the thylakoid membranes akin to gnat2 mutants. In vitro studies with recombinant GNAT1 demonstrated robust N-terminus acetylation activity on synthetic substrate peptides. This activity was confirmed in vivo through N-terminal acetylome profiling in two independent gnat1 knockout lines. This attributed several acetylation sites on plastidial proteins to GNAT1, reflecting a subset of GNAT2's substrate spectrum. Moreover, co-immunoprecipitation coupled to mass spectrometry revealed a robust interaction between GNAT1 and GNAT2, as well as a significant association of GNAT2 with GNAT3 - the third acetyltransferase within the NAA90 subfamily. This study unveils the existence of at least two acetyltransferase complexes within chloroplasts, whereby complex formation might have a critical effect on the fine-tuning of the overall acetyltransferase activities. These findings introduce a novel layer of regulation in acetylation-dependent adjustments in plastidial metabolism.
Collapse
Affiliation(s)
- Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, D-48149 Münster, Germany
| | - Magdalena Füßl
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, D-48149 Münster, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, D-48149 Münster, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France
| | - Paulina Heinkow
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, D-48149 Münster, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, D-50829 Köln, Germany
| | - Minna Konert
- Department of Life Technologies, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland
| | - Aiste Ivanauskaite
- Department of Life Technologies, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland
| | - Julian Seidel
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany
| | - Paula Mulo
- Department of Life Technologies, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
4
|
Lee HY, Back K. Melatonin-Regulated Chaperone Binding Protein Plays a Key Role in Cadmium Stress Tolerance in Rice, Revealed by the Functional Characterization of a Novel Serotonin N-Acetyltransferase 3 ( SNAT3) in Rice. Int J Mol Sci 2024; 25:5952. [PMID: 38892140 PMCID: PMC11172786 DOI: 10.3390/ijms25115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The study of the mechanisms by which melatonin protects against cadmium (Cd) toxicity in plants is still in its infancy, particularly at the molecular level. In this study, the gene encoding a novel serotonin N-acetyltransferase 3 (SNAT3) in rice, a pivotal enzyme in the melatonin biosynthetic pathway, was cloned. Rice (Oryza sativa) OsSNAT3 is the first identified plant ortholog of archaeon Thermoplasma volcanium SNAT. The purified recombinant OsSNAT3 catalyzed the conversion of serotonin and 5-methoxytryptamine to N-acetylserotonin and melatonin, respectively. The suppression of OsSNAT3 by RNAi led to a decline in endogenous melatonin levels followed by a reduction in Cd tolerance in transgenic RNAi rice lines. In addition, the expression levels of genes encoding the endoplasmic reticulum (ER) chaperones BiP3, BiP4, and BiP5 were much lower in RNAi lines than in the wild type. In transgenic rice plants overexpressing OsSNAT3 (SNAT3-OE), however, melatonin levels were higher than in wild-type plants. SNAT3-OE plants also tolerated Cd stress, as indicated by seedling growth, malondialdehyde, and chlorophyll levels. BiP4 expression was much higher in the SNAT3-OE lines than in the wild type. These results indicate that melatonin engineering could help crops withstand Cd stress, resulting in high yields in Cd-contaminated fields.
Collapse
Affiliation(s)
| | - Kyoungwhan Back
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| |
Collapse
|
5
|
Sawazaki T, Sasaki D, Sohma Y. Catalysis driven by an amyloid-substrate complex. Proc Natl Acad Sci U S A 2024; 121:e2314704121. [PMID: 38691589 PMCID: PMC11087796 DOI: 10.1073/pnas.2314704121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Amine modification through nucleophilic attack of the amine functionality is a very common chemical transformation. Under biorelevant conditions using acidic-to-neutral pH buffer, however, the nucleophilic reaction of alkyl amines (pKa ≈ 10) is not facile due to the generation of ammonium ions lacking nucleophilicity. Here, we disclose a unique molecular transformation system, catalysis driven by amyloid-substrate complex (CASL), that promotes amine modifications in acidic buffer. Ammonium ions attached to molecules with amyloid-binding capability were activated through deprotonation due to the close proximity to the amyloid catalyst formed by Ac-Asn-Phe-Gly-Ala-Ile-Leu-NH2 (NL6), derived from islet amyloid polypeptide (IAPP). Under the CASL conditions, alkyl amines underwent various modifications, i.e., acylation, arylation, cyclization, and alkylation, in acidic buffer. Crystallographic analysis and chemical modification studies of the amyloid catalysts suggested that the carbonyl oxygen of the Phe-Gly amide bond of NL6 plays a key role in activating the substrate amine by forming a hydrogen bond. Using CASL, selective conversion of substrates possessing equivalently reactive amine functionalities was achieved in catalytic reactions using amyloids. CASL provides a unique method for applying nucleophilic conversion reactions of amines in diverse fields of chemistry and biology.
Collapse
Affiliation(s)
- Taka Sawazaki
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| | - Daisuke Sasaki
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| | - Youhei Sohma
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| |
Collapse
|
6
|
Wang Q, Li C, Yuan B, Yu A, Qu G, Sun Z. Engineering the Activity of a Newly Identified Arylalkylamine N-Acetyltransferase in the Acetylation of 5-Hydroxytryptamine. Chembiochem 2024; 25:e202400069. [PMID: 38504591 DOI: 10.1002/cbic.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Arylalkylamine N-acetyltransferase (AANAT) serves as a key enzyme in the biosynthesis of melatonin by transforming 5-hydroxytryptamine (5-HT) to N-acetyl-5-hydroxytryptamine (NAS), while its low activity may hinder melatonin yield. In this study, a novel AANAT derived from Sus scrofa (SsAANAT) was identified through data mining using 5-HT as a model substrate, and a rational design of SsAANAT was conducted in the quest to improving its activity. After four rounds of mutagenesis procedures, a triple combinatorial dominant mutant M3 was successfully obtained. Compared to the parent enzyme, the conversion of the whole-cell reaction bearing the best variant M3 exhibted an increase from 50 % to 99 % in the transformation of 5-HT into NAS. Additionally, its catalytic efficiency (kcat/Km) was enhanced by 2-fold while retaining the thermostability (Tm>45 °C). In the up-scaled reaction with a substrate loading of 50 mM, the whole-cell system incorporating variant M3 achieved a 99 % conversion of 5-HT in 30 h with an 80 % yield. Molecular dynamics simulations were ultilized to shed light on the origin of improved activity. This study broadens the repertoire of AANAT for the efficient biosynthesis of melatonin.
Collapse
Affiliation(s)
- Qing Wang
- College of Biotechnology, Tianjin University of Science and Technology, 300457, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, 300308, Tianjin, China
| | - Congcong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, 300308, Tianjin, China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Aiqun Yu
- College of Biotechnology, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| |
Collapse
|
7
|
Li M, Wu L, Shi Y, Wu L, Afzal F, Jia Y, Huang Y, Hu B, Chen J, Huang J. Bioinformatics and Functional Analysis of OsASMT1 Gene in Response to Abiotic Stress. Biochem Genet 2024:10.1007/s10528-024-10774-w. [PMID: 38582819 DOI: 10.1007/s10528-024-10774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024]
Abstract
The study aimed to elucidate the functional characteristics of OsASMT1 gene under copper (Cu) or sodium chloride (NaCl) stress. Bioinformatics scrutiny unveiled that OsASMT1 is situated on chromosome 9. Its protein architecture, comprising dimerization and methyltransferase domains, showed significant similarities to OsASMT2 and OsASMT3. High expression in roots and panicles, along with abiotic stress putative cis-regulatory elements in the promoter, indicated potential stress responsiveness. Real-time quantitative PCR confirmed OsASMT1 induction under Cu and NaCl stress in rice. Surprisingly, yeast expressing OsASMT1 did not exhibit enhanced resistance to abiotic stresses. The results of subcellular localization analysis indicated that OsASMT1 plays a role in the cytoplasm. While OsASMT1 responded to Cu and NaCl stress in rice, its heterologous expression in yeast failed to confer abiotic stress resistance, highlighting the need for further investigation of its functional implications.
Collapse
Affiliation(s)
- Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Lijuan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Farhan Afzal
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Yanru Jia
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 61130, Sichuan, China
| | - Binhua Hu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| |
Collapse
|
8
|
Jia K, Yang M, Liu X, Zhang Q, Cao G, Ge F, Zhao J. Deciphering the structure, function, and mechanism of lysine acetyltransferase cGNAT2 in cyanobacteria. PLANT PHYSIOLOGY 2024; 194:634-661. [PMID: 37770070 DOI: 10.1093/plphys/kiad509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
Lysine acetylation is a conserved regulatory posttranslational protein modification that is performed by lysine acetyltransferases (KATs). By catalyzing the transfer of acetyl groups to substrate proteins, KATs play critical regulatory roles in all domains of life; however, no KATs have yet been identified in cyanobacteria. Here, we tested all predicted KATs in the cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) and demonstrated that A1596, which we named cyanobacterial Gcn5-related N-acetyltransferase (cGNAT2), can catalyze lysine acetylation in vivo and in vitro. Eight amino acid residues were identified as the key residues in the putative active site of cGNAT2, as indicated by structural simulation and site-directed mutagenesis. The loss of cGNAT2 altered both growth and photosynthetic electron transport in Syn7002. In addition, quantitative analysis of the lysine acetylome identified 548 endogenous substrates of cGNAT2 in Syn7002. We further demonstrated that cGNAT2 can acetylate NAD(P)H dehydrogenase J (NdhJ) in vivo and in vitro, with the inability to acetylate K89 residues, thus decreasing NdhJ activity and affecting both growth and electron transport in Syn7002. In summary, this study identified a KAT in cyanobacteria and revealed that cGNAT2 regulates growth and photosynthesis in Syn7002 through an acetylation-mediated mechanism.
Collapse
Affiliation(s)
- Kun Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430070, China
| | - Qi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxiang Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Wang L, Jiang Z, Zhang J, Chen K, Zhang M, Wang Z, Wang B, Ye M, Qiao X. Characterization and structure-based protein engineering of a regiospecific saponin acetyltransferase from Astragalus membranaceus. Nat Commun 2023; 14:5969. [PMID: 37749089 PMCID: PMC10519980 DOI: 10.1038/s41467-023-41599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
Acetylation contributes to the bioactivity of numerous medicinally important natural products. However, little is known about the acetylation on sugar moieties. Here we report a saponin acetyltransferase from Astragalus membranaceus. AmAT7-3 is discovered through a stepwise gene mining approach and characterized as the xylose C3'/C4'-O-acetyltransferse of astragaloside IV (1). To elucidate its catalytic mechanism, complex crystal structures of AmAT7-3/1 and AmAT7-3A310G/1 are obtained, which reveal a large active pocket decided by a specific sequence AADAG. Combining with QM/MM computation, the regiospecificity of AmAT7-3 is determined by sugar positioning modulated by surrounding amino acids including #A310 and #L290. Furthermore, a small mutant library is built using semi-rational design, where variants A310G and A310W are found to catalyze specific C3'-O and C4'-O acetylation, respectively. AmAT7-3 and its variants are also employed to acetylate other bioactive saponins. This work expands the understanding of saponin acetyltransferases, and provide efficient catalytic tools for saponin acetylation.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zhihui Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jiahe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zilong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing, 100191, China.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
10
|
Kwak MJ, Chae KS, Kim JN, Whang KY, Kim Y. Dietary effects of melatonin on growth performance by modulation of protein bioavailability and behavior in early weaned rats and pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1053-1064. [PMID: 37969335 PMCID: PMC10640933 DOI: 10.5187/jast.2023.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 11/17/2023]
Abstract
Melatonin, which is produced from tryptophan, exerts various biological functions, including the regulation of circadian rhythm, sedative agents, and antioxidant ability. Therefore, we conducted two experiments with early-weaned rats and pigs to investigate the antioxidant and sedative effects of melatonin. In the rat experiment, a total of 42 rats (21 days old) were used, and the antioxidant capacity was determined. Next, we used 120 early-weaned piglets (21 days old) to conduct a 5-week experiment to evaluate the reductive effect of melatonin on energy-wasting movement, including roaming and fight states. Dietary melatonin supplementation significantly improved growth in both rats and pigs compared to the control groups. Additionally, rats fed a melatonin-supplemented diet showed advanced antioxidant capacity with a decrease in hepatic malondialdehyde concentration compared to rats fed a basal diet. Moreover, dietary melatonin ingestion increased resting and feeding behaviors and reduced roaming and fight behaviors during Days 8-21 compared to the control diet group. Collectively, early weaned animals given dietary melatonin supplementation showed improved growth through upregulation of hepatic antioxidant capacity and minimization of energy-wasting behavior, including roaming and fight states, after pigs' social hierarchy establishment.
Collapse
Affiliation(s)
- Min-Jin Kwak
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Kyeong Su Chae
- Division of Biotechnology, College of Life
Science and Biotechnology, Korea University, Seoul 02841,
Korea
| | - Jong Nam Kim
- Department of Food Science &
Nutrition, Dongseo University, Busan 47011, Korea
| | - Kwang-Youn Whang
- Division of Biotechnology, College of Life
Science and Biotechnology, Korea University, Seoul 02841,
Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
11
|
Wang Y, Chen Y, Zhang A, Chen K, Ouyang P. Advances in the microbial synthesis of the neurotransmitter serotonin. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12584-3. [PMID: 37326681 DOI: 10.1007/s00253-023-12584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Serotonin, as a monoamine neurotransmitter, modulates the activity of the nervous system. Due to its importance in the coordination of movement and regulation of mood, impairments in the synthesis and homeostasis of serotonin are involved in numerous disorders, including depression, Parkinson's disease, and anxiety. Currently, serotonin is primarily obtained via natural extraction. But this method is time-consuming and low yield, as well as unstable supply of raw materials. With the development of synthetic biology, researchers have established the method of microbial synthesis of serotonin. Compared with natural extraction, microbial synthesis has the advantages of short production cycle, continuous production, not limited by season and source, and environment-friendly; hence, it has garnered considerable research attention. However, the yield of serotonin is still too low to industrialization. Therefore, this review provides the latest progress and examples that illustrate the synthesis pathways of serotonin as well as proposes strategies for increasing the production of serotonin. KEY POINTS: • Two biosynthesis pathways of serotonin are introduced. • L-tryptophan hydroxylation is the rate-limiting step in serotonin biosynthesis. • Effective strategies are proposed to improve serotonin production.
Collapse
Affiliation(s)
- Yingying Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
12
|
Chen X, Zhao Y, Laborda P, Yang Y, Liu F. Molecular Cloning and Characterization of a Serotonin N-Acetyltransferase Gene, xoSNAT3, from Xanthomonas oryzae pv. oryzae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1865. [PMID: 36767232 PMCID: PMC9914633 DOI: 10.3390/ijerph20031865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Rice bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the top ten bacterial plant diseases worldwide. Serotonin N-acetyltransferase (SNAT) is one of the key rate-limiting enzymes in melatonin (MT) biosynthesis. However, its function in pathogenic bacteria remains unclear. In this study, a Xoo SNAT protein (xoSNAT3) that showed 27.39% homology with sheep SNAT was identified from a collection of 24 members of GCN5-related N-acetyltransferase (GNAT) superfamily in Xoo. This xoSNAT3 could be induced by MT. In tobacco-based transient expression system, xoSNAT3 was found localized on mitochondria. In vitro studies indicated that xoSNAT3 showed the optima enzymatic activity at 50 °C. The recombinant enzyme showed Km and Vmax values of 709.98 μM and 2.21 nmol/min/mg protein, respectively. Mutant △xoSNAT3 showed greater impaired MT biosynthesis than the wild-type strain. Additionally, △xoSNAT3 showed 14.06% less virulence and 26.07% less biofilm formation. Collectively, our results indicated that xoSNAT3 services as a SNAT involved in MT biosynthesis and pathogenicity in Xoo.
Collapse
Affiliation(s)
- Xian Chen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226001, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| |
Collapse
|
13
|
Hafza N, Li N, Luqman A, Götz F. Identification of a serotonin N-acetyltransferase from Staphylococcus pseudintermedius ED99. Front Microbiol 2023; 14:1073539. [PMID: 36910235 PMCID: PMC9992809 DOI: 10.3389/fmicb.2023.1073539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Serotonin N-acetyltransferase (SNAT) catalyzes the biosynthesis of N-acetylserotonin (NAS) and N-acetyltryptamine (NAT), two pleiotropic molecules with neurotransmitter functions. Here, we report the identification of a SNAT protein in the genus Staphylococcus. The SNAT gene identified in Staphylococcus pseudintermedius ED99, namely SPSE_0802, encodes a 140 residues-long cytoplasmic protein. The recombinant protein SPSE_0802 was expressed in E. coli BL21 and found to acetylate serotonin (SER) and tryptamine (TRY) as well as other trace amines in vitro. The production of the neuromodulators NAS and NAT was detected in the cultures of different members of the genus Staphylococcus and the role of SPSE_0802 in this production was confirmed in an ED99 SPSE_0802 deletion mutant. A search for SNAT homologues showed that the enzyme is widely distributed across the genus which correlated with the SNAT activity detected in 22 out of the 40 Staphylococcus strains tested. The N-acetylated products of SNAT are precursors for melatonin synthesis and are known to act as neurotransmitters and activate melatonin receptors, among others, inducing various responses in the human body. The identification of SNAT in staphylococci could contribute to a better understanding of the interaction between those human colonizers and the host peripheral nervous system.
Collapse
Affiliation(s)
- Nourhane Hafza
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Ningna Li
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Genome-wide identification, characterization of Serotonin N-acetyltransferase and deciphering its importance under development, biotic and abiotic stress in soybean. Int J Biol Macromol 2022; 220:942-953. [PMID: 35998857 DOI: 10.1016/j.ijbiomac.2022.08.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme involved in plant melatonin biosynthesis. Identifying its expression under development and stress will reveal the regulatory role in the soybean. To identify and characterize SNAT, we employed genome-wide analysis, gene structure, cis-acting elements, expression, and enzyme activity. We identified seven putative genes by genome-wide analysis and found chloroplast signal peptides in three GmSNATs. To elucidate GmSNATs role, expression datasets of more than a hundred samples related to circadian rhythm, developmental stages, and stress conditions were analysed. Notably, the expression of GmSNAT1 did not show significant expression during biotic and abiotic stress. The GmSNAT1 sequence showed 67.8 and 72.2 % similarities with OsSNAT and AtSNAT, respectively. The Km and Vmax of the purified recombinant GmSNAT1 were 657 μM and 3780 pmol/min/mg, respectively. To further understand the GmSNAT1 role, we supplemented different concentrations of serotonin and melatonin to in-vitro cultures and seed priming. These studies revealed that the GmSNAT1 expression was significantly up-regulated at higher concentrations of serotonin and down-regulated at higher melatonin concentrations. We speculate that a high concentration of melatonin during abiotic, biotic stress, and in-vitro cultures are responsible for regulating GmSNAT1 expression, which may regulate them at the enzyme level during stress in soybean.
Collapse
|
15
|
Hwang OJ, Back K. Functional Characterization of Arylalkylamine N-Acetyltransferase, a Pivotal Gene in Antioxidant Melatonin Biosynthesis from Chlamydomonas reinhardtii. Antioxidants (Basel) 2022; 11:antiox11081531. [PMID: 36009250 PMCID: PMC9405056 DOI: 10.3390/antiox11081531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Arylalkylamine N-acetyltransferase (AANAT) is a pivotal enzyme in melatonin biosynthesis that catalyzes the conversion of serotonin to N-acetylserotonin. Homologs of animal AANAT genes are present in animals, but not in plants. An AANAT homolog was found in Chlamydomonas reinhardtii, but not other green algae. The characteristics of C. reinhardtii AANAT (CrAANAT) are unclear. Here, full-length CrAANAT was chemically synthesized and expressed in Escherichia coli. Recombinant CrAANAT exhibited AANAT activity with a Km of 247 μM and Vmax of 325 pmol/min/mg protein with serotonin as the substrate. CrAANAT was localized to the cytoplasm in tobacco leaf cells. Transgenic rice plants overexpressing CrAANAT (CrAANAT-OE) exhibited increased melatonin production. CrAANAT-OE plants showed a longer seed length and larger second leaf angle than wild-type plants, indicative of the involvement of brassinosteroids (BRs). As expected, BR biosynthesis- and signaling-related genes such as D2, DWARF4, DWARF11, and BZR1 were upregulated in CrAANAT-OE plants. Therefore, an increased endogenous melatonin level by ectopic overexpression of CrAANAT seems to be closely associated with BR biosynthesis, thereby influencing seed size.
Collapse
|
16
|
Function, Mechanism, and Application of Plant Melatonin: An Update with a Focus on the Cereal Crop, Barley (Hordeum vulgare L.). Antioxidants (Basel) 2022; 11:antiox11040634. [PMID: 35453319 PMCID: PMC9028855 DOI: 10.3390/antiox11040634] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Melatonin is a multiple-function molecule that was first identified in animals and later in plants. Plant melatonin regulates versatile processes involved in plant growth and development, including seed germination, root architecture, flowering time, leaf senescence, fruit ripening, and biomass production. Published reviews on plant melatonin have been focused on two model plants: (1) Arabidopsis and (2) rice, in which the natural melatonin contents are quite low. Efforts to integrate the function and the mechanism of plant melatonin and to determine how plant melatonin benefits human health are also lacking. Barley is a unique cereal crop used for food, feed, and malt. In this study, a bioinformatics analysis to identify the genes required for barley melatonin biosynthesis was first performed, after which the effects of exogenous melatonin on barley growth and development were reviewed. Three integrated mechanisms of melatonin on plant cells were found: (1) serving as an antioxidant, (2) modulating plant hormone crosstalk, and (3) signaling through a putative plant melatonin receptor. Reliable approaches for characterizing the function of barley melatonin biosynthetic genes and to modulate the melatonin contents in barley grains are discussed. The present paper should be helpful for the improvement of barley production under hostile environments and for the reduction of pesticide and fungicide usage in barley cultivation. This study is also beneficial for the enhancement of the nutritional values and healthcare functions of barley in the food industry.
Collapse
|