1
|
Qiao H, Zhao K, Wang S, Xu X, Chen S, Kong X, Yang L, Jiao M, Zhai L. Construction of Covalent Triazine Frameworks with Electronic Donor-Acceptor System for Efficient Photocatalytic C-H Hydroxylation of Imidazole[1,2-α]Pyridine Derivatives. Chemistry 2024; 30:e202402246. [PMID: 39143661 DOI: 10.1002/chem.202402246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Covalent triazine frameworks (CTFs) are promising heterogeneous photocatalyst candidates owing to their excellent stability, conjugacy, and tunability. In this study, a series of CTFs decorated with different substituents (H, MeO, and F) were synthesised and utilised as photocatalysts for C-H activation reactions. The corresponding optoelectronic properties could be precisely regulated by the electronic effects of different substituents in the nanopore channels of the CTFs; these CTFs were effective photocatalysts for C-H activation in organic synthesis due to their unique structures and optoelectronic properties. Methoxy-substituted CTF (MeO-CTF) exhibited extraordinary catalytic performance and reusability in C-H functionalization by constructing an electronic donor-acceptor system, achieving the highest yield in the photocatalytic C3-H hydroxylation of 2-phenylimidazole[1,2-α]pyridine. This strategy provides a new scaffold for the rational design of CTFs as efficient photocatalysts for organic synthesis.
Collapse
Affiliation(s)
- Huijie Qiao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Kun Zhao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Shixing Wang
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Xiaoxu Xu
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Sicheng Chen
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China
| | - Liting Yang
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Mingli Jiao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Lipeng Zhai
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| |
Collapse
|
2
|
Chen Y, Li C, Wang X, Fan L, Zhang Y, Zhao X, Li QY, Wang XJ. Tetraphenylethene-Based Ni 8-Pyrazolate Metal-Organic Framework for Photoredox/Nickel Dual Catalysis of C-S Cross-Coupling. Inorg Chem 2024; 63:19924-19930. [PMID: 39388724 DOI: 10.1021/acs.inorgchem.4c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
As a prototypical aggregation-induced emission luminogen (AIEgen), the tetraphenylethene (TPE) moiety has been judiciously modified as organic linkers for constructing various functional metal-organic frameworks (MOFs). However, these AIEgen-based MOFs have rarely received research attention in photocatalytic applications due to their limited stability in harsh reaction conditions. In this work, we report a robust Ni8-pyrazolate-based MOF (denoted as TPE4Pz-Ni) under the guidance of reticular chemistry, which is assembled by an AIE-active tetratopic linker of 1,1,2,2-tetrakis(4-(1H-pyrazol-4-yl)phenyl)ethane (H4-TPE4Pz) with a 12-connected Ni8-cluster of [Ni8(OH)4(H2O)2Pz12] (Pz = pyrazolate) in a (4,12)-connected ftw-a topological network. Notably, MOF TPE4Pz-Ni exhibits excellent stability in a wide range of solvents and even in a saturated NaOH solution. Moreover, its luminescent emission is effectively quenched via a ligand-to-metal charge transfer (LMCT) process originating from the TPE-cored linker to the Ni8 cluster, which enables TPE4Pz-Ni to act as an efficient photoredox/nickel dual catalyst for light-mediated C-S cross-coupling reactions between various aryl iodides and thiols.
Collapse
Affiliation(s)
- Yun Chen
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Changyun Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xuefei Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Li Fan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yongxia Zhang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xinsheng Zhao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Qiu-Yan Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xiao-Jun Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
3
|
Mohit, Kumar S, Justin Thomas KR. Hydrazone-Linked Donor-Acceptor Covalent Organic Polymer as a Heterogeneous Photocatalyst for C-S Bond Formation. Chemistry 2024; 30:e202402196. [PMID: 39034289 DOI: 10.1002/chem.202402196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
In the realm of solar energy utilization, there is a growing focus on designing and implementing effective photocatalytic systems, for the conversion of solar energy into valuable chemical fuels. The potential of Covalent Organic Polymers (COPs) as photocatalysts for visible-light-driven organic transformation has been widely investigated, positioning them as promising candidates in this field. In the design of COPs, introducing a donor-acceptor arrangement facilitates the transfer of electrons from the donor to the acceptor, creating a charge transfer complex and leading to enhanced conductivity and improved charge separation. Here we present a novel hydrazone-linked covalent organic polymer ETBC-PyHz containing TPE donor and pyridine acceptor. Utilizing this, an efficient method has been developed for an oxidative cross-coupling reaction involving C-S bond formation. This process involves arylhydrazines and arenethiols, and results in the production of unsymmetrical diaryl sulfides via the formation of aryl and thioarene radicals. This conversion holds significant importance because the byproducts produced during the process are nitrogen and water, making it environmentally benign.
Collapse
Affiliation(s)
- Mohit
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sunil Kumar
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
4
|
Fu P, Chen C, Wu C, Meng B, Yue Q, Chen T, Yin W, Chi X, Yu X, Li R, Wang Y, Zhang Y, Luo W, Liu X, Han Y, Wang J, Xi S, Zhou Y. Covalent Organic Framework Stabilized Single CoN 4Cl 2 Site Boosts Photocatalytic CO 2 Reduction into Tunable Syngas. Angew Chem Int Ed Engl 2024:e202415202. [PMID: 39193917 DOI: 10.1002/anie.202415202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Solar carbon dioxide (CO2) reduction provides an attractive alternative to producing sustainable chemicals and fuel. However, the construction of a highly active photocatalyst was challenging because of the rapid charge recombination and sluggish surface CO2 reduction. Herein, a unique Co-N4Cl2 single site was fabricated by loading Co species into the 2,2'-bipyridine and triazine-containing covalent organic framework (COF) for CO2 conversion into syngas under visible light irradiation. The resulting champion catalyst TPy-COF-Co enabled a record-high CO production rate of 426 mmol g-1 h-1, associated with the unprecedented turnover number (TON) and turnover frequency (TOF) of 2095 and 1607 h-1, respectively. The catalyst also exhibited favorable recycling performance and widely adjustable syngas production (CO/H2 ratio: 1.8 : 1-1 : 16). A systematical investigation including operando synchrotron X-ray absorption fine structure (XAFS) spectroscopy, in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and theoretical calculation indicated that the triazine-based COF framework promoted the charge transfer towards the single Co-N4Cl2 sites that greatly promoted the CO2 activation by lowering the energy barrier of *COOH generation, facilitating the CO2 transformation. This work highlights the great potential of the molecular regulation of COF-derived single-atom catalysts to boost CO2 photoreduction efficiency.
Collapse
Affiliation(s)
- Ping Fu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Chao Wu
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Biao Meng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qihong Yue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Tao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wen Yin
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 101408, P. R. China
- Spallation Neutron Source Science Center, Dongguan, 523803, P. R. China
| | - Xiao Chi
- Department of Physics, National University of Singapore, 117576, Singapore, Republic of Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, 117603, Singapore, Republic of Singapore
| | - Ruiting Li
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yao Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yifan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wen Luo
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xiaoling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
5
|
Zhu YY, He YY, Li YX, Liu CH, Lin W. Heterogeneous Porous Synergistic Photocatalysts for Organic Transformations. Chemistry 2024; 30:e202400842. [PMID: 38691421 DOI: 10.1002/chem.202400842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini-review summarizes recent advancements in developing heterogeneous carriers, including metal-organic frameworks, covalent-organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.
Collapse
Affiliation(s)
- Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yuan-Yuan He
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yan-Xiang Li
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Zhao X, Chen J, Mao X, Li C, He L, Zhang F, Zhang M, Diwu J, Wu G, Chai Z, Wang S. One-Pot Synthesis of a Mixed-Valent Copper(I/II)-Coordinated Covalent Organic Framework Induced by γ-Ray Radiation. Inorg Chem 2024; 63:12333-12341. [PMID: 38898577 DOI: 10.1021/acs.inorgchem.4c01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Metal-anchored covalent organic frameworks (COFs), as a class of significant derivatives of COFs, are widely used as heterogeneous catalysts in diverse chemical reactions. However, they are typically synthesized via post-treatment strategies, which often lead to the decline of COF crystallinity, decrease of porous properties, instability in catalytic performances, generation of additional chemical waste, and consumption of excess time and energy. In this work, we demonstrate an approach to construct a metal-functionalized COF via a one-pot method induced by γ-ray radiation. Specifically, copper-coordinated COF was in situ synthesized by irradiating a mixture of monomers and copper salt under ambient conditions. Interestingly, the initial Cu2+ ions were reduced to Cu+ ions by the radiation-generated reducing species, affording a unique mixed-valent copper(I/II)-coordinated COF. Additionally, the copper-coordinated COF displayed enhanced crystallinity and porous properties compared to those of the parent COF, displaying an opposite trend to the postsynthetic method. Notably, the introduced copper on the COF skeleton endowed the parent COF with catalytic ability. The resulting copper-coordinated COF exhibited remarkable catalytic performances in the reduction of 4-nitrophenol to 4-aminophenol and maintained almost unchanged catalytic performance after five catalytic cycles.
Collapse
Affiliation(s)
- Xiaofang Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xuanzhi Mao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunyang Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Linwei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Debruyne M, Van Der Voort P, Van Speybroeck V, Stevens CV. The Application of Porous Organic Polymers as Metal Free Photocatalysts in Organic Synthesis. Chemistry 2024; 30:e202400311. [PMID: 38499471 DOI: 10.1002/chem.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Concerns about increasing greenhouse gas emissions and their effect on our environment highlight the urgent need for new sustainable technologies. Visible light photocatalysis allows the clean and selective generation of reactive intermediates under mild conditions. The more widespread adoption of the current generation of photocatalysts, particularly those using precious metals, is hampered by drawbacks such as their cost, toxicity, difficult separation, and limited recyclability. This is driving the search for alternatives, such as porous organic polymers (POPs). This new class of materials is made entirely from organic building blocks, can possess high surface area and stability, and has a controllable composition and functionality. This review focuses on the application of POPs as photocatalysts in organic synthesis. For each reaction type, a representative material is discussed, with special attention to the mechanism of the reaction. Additionally, an overview is given, comparing POPs with other classes of photocatalysts, and critical conclusions and future perspectives are provided on this important field.
Collapse
Affiliation(s)
- Maarten Debruyne
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Veronique Van Speybroeck
- Department of Applied Physics, Ghent University, Technologiepark Gent, 46, 9052, Zwijnaarde, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
8
|
Kim J, Ling J, Lai Y, Milner PJ. Redox-Active Organic Materials: From Energy Storage to Redox Catalysis. ACS MATERIALS AU 2024; 4:258-273. [PMID: 38737116 PMCID: PMC11083122 DOI: 10.1021/acsmaterialsau.3c00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 05/14/2024]
Abstract
Electroactive materials are central to myriad applications, including energy storage, sensing, and catalysis. Compared to traditional inorganic electrode materials, redox-active organic materials such as porous organic polymers (POPs) and covalent organic frameworks (COFs) are emerging as promising alternatives due to their structural tunability, flexibility, sustainability, and compatibility with a range of electrolytes. Herein, we discuss the challenges and opportunities available for the use of redox-active organic materials in organoelectrochemistry, an emerging area in fine chemical synthesis. In particular, we highlight the utility of organic electrode materials in photoredox catalysis, electrochemical energy storage, and electrocatalysis and point to new directions needed to unlock their potential utility for organic synthesis. This Perspective aims to bring together the organic, electrochemistry, and polymer communities to design new heterogeneous electrocatalysts for the sustainable synthesis of complex molecules.
Collapse
Affiliation(s)
- Jaehwan Kim
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jianheng Ling
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yihuan Lai
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Phillip J. Milner
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Bokotial D, Acharyya K, Chowdhury A, Mukherjee PS. Pt(II)/Pd(II)-Based Metallosupramolecular Architectures as Light Harvesting Systems and their Applications. Angew Chem Int Ed Engl 2024; 63:e202401136. [PMID: 38379203 DOI: 10.1002/anie.202401136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
The development of artificial light-harvesting systems mimicking the natural photosynthesis method is an ever-growing field of research. Numerous systems such as polymers, metal complexes, POFs, COFs, supramolecular frameworks etc. have been fabricated to accomplish more efficient energy transfer and storage. Among them, the supramolecular coordination complexes (SCCs) formed by non-covalent metal-ligand interaction, have shown the capacity to not only undergo single and multistep energy migration but also to utilize the harvested energy for a wide variety of applications such as photocatalysis, tunable emissive systems, encrypted anti-counterfeiting materials, white light emitters etc. This review sheds light on the light-harvesting behavior of both the 2D metallacycles and 3D metallacages where design ingenuity has been executed to afford energy harvesting by both donor ligands as well as metal acceptors.
Collapse
Affiliation(s)
- Dikshit Bokotial
- Department of Industrial Chemistry, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Koushik Acharyya
- Department of Inorganic and Physical Chemistry, Indian Institution of Science, Bangalore, 560012, Karnataka
| | - Aniket Chowdhury
- Department of Industrial Chemistry, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institution of Science, Bangalore, 560012, Karnataka
| |
Collapse
|
10
|
Li T, Zhang PL, Dong LZ, Lan YQ. Post-synthetic Rhodium (III) Complexes in Covalent Organic Frameworks for Photothermal Heterogeneous C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202318180. [PMID: 38242848 DOI: 10.1002/anie.202318180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Although photocatalytic C-H activation has been realized by using heterogeneous catalysts, most of them require high-temperature conditions to provide the energy required for C-H bond breakage. The catalysts with photothermal conversion properties can catalyze this reaction efficiently at room temperature, but so far, these catalysts have been rarely developed. Here, we construct bifunctional catalysts Rh-COF-316 and -318 to combine photosensitive covalent organic frameworks (COFs) and transition-metal catalytic moiety using a post-synthetic approach. The Rh-COF enable the heterogeneous C-H activation reaction by photothermal conversion for the first time, and exhibit excellent yields (up to 98 %) and broad scope of substrates in [4+2] annulation at room temperature, while maintaining the high stability and recyclability. Significantly, this work is the highest yield reported so far in porous materials catalyzing C(sp2)-C(sp2) formation at room temperature. The excellent performances can be attributed to the COF-316, which enhances the photothermal effect (ΔT=50.9 °C), thus accelerating C-H bond activation and the exchange of catalyst with substrates.
Collapse
Affiliation(s)
- Teng Li
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Pei-Lin Zhang
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| |
Collapse
|
11
|
Chen P, Li Y, Dai Y, Wang Z, Zhou Y, Wang Y, Li G. Porphyrin-based covalent organic frameworks as doxorubicin delivery system for chemo-photodynamic synergistic therapy of tumors. Photodiagnosis Photodyn Ther 2024; 46:104063. [PMID: 38527660 DOI: 10.1016/j.pdpdt.2024.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Photodynamic therapy (PDT) is a non-invasive treatment method that has garnered significant attention in recent years. Nanoparticle-based drug delivery systems can achieve targeted drug release, thereby significantly reducing side effects and enhancing therapeutic efficacy. In this study, a covalent organic framework (COF) with an approximately spherical structure connected by azo bonds was synthesized. The synthesized COF was utilized as a hypoxia-responsive carrier for doxorubicin (DOX) drug delivery and was modified with hyaluronic acid (HA). DOX@COF@HA exhibited a reactive release under hypoxic conditions. Under normal oxygen conditions, the release of DOX was 16.9 %, increasing to 60.2 % with the addition of sodium hydrosulfite. In vitro experiments revealed that the group combining photodynamic therapy with chemotherapy exhibited the lowest survival rates for 4T1 and MHCC97-L cells. In vivo experiments further validated the effectiveness of combination therapy, resulting in a tumor volume of only 33 mm3 after treatment, with no significant change in mouse weight during the treatment period. DOX@COF@HA nanoplatforms exhibit substantial potential in tumor treatment.
Collapse
Affiliation(s)
- Pinggui Chen
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China
| | - Yaoxuan Li
- Department of School of Public Health, Shanxi Medical University, Taiyuan 030012, PR China
| | - Yunyan Dai
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China
| | - Zhiming Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China
| | - Yunpeng Zhou
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China
| | - Yi Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China
| | - Gaopeng Li
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China; Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China.
| |
Collapse
|
12
|
Hu HC, Wang ZP, Liang L, Du XY, Li T, Feng J, Xiao TT, Jin ZM, Ding SY, Liu Q, Lu LQ, Xiao WJ, Wang W. Bottom-Up Construction of Ni(II)-Incorporated Covalent Organic Framework for Metallaphotoredox Catalysis. Chemistry 2024; 30:e202303476. [PMID: 38065837 DOI: 10.1002/chem.202303476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 12/30/2023]
Abstract
The construction of an all-in-one catalyst, in which the photosensitizer and the transition metal site are close to each other, is important for improving the efficiency of metallaphotoredox catalysis. However, the development of convenient synthetic strategies for the precise construction of an all-in-one catalyst remains a challenging task due to the requirement of precise installation of the catalytic sites. Herein, we have successfully established a facile bottom-up strategy for the direct synthesis of Ni(II)-incorporated covalent organic framework (COF), named LZU-713@Ni, as a versatile all-in-one metallaphotoredox catalyst. LZU-713@Ni showed excellent activity and recyclability in the photoredox/nickel-catalyzed C-O, C-S, and C-P cross-coupling reactions. Notably, this catalyst displayed a better catalytic activity than its homogeneous analogues, physically mixed dual catalyst system, and, especially, LZU-713/Ni which was prepared through post-synthetic modification. The improved catalytic efficiency of LZU-713@Ni should be attributed to the implementation of bottom-up strategy, which incorporated the fixed, ordered, and abundant catalytic sites into its framework. This work sheds new light on the exploration of concise and effective strategies for the construction of multifunctional COF-based photocatalysts.
Collapse
Affiliation(s)
- Hai-Chao Hu
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Zhi-Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Lin Liang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Xin-Yu Du
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Ting Li
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Jie Feng
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Tian-Tian Xiao
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Ze-Ming Jin
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
13
|
Fang L, Gou G, Wang M, Fan T, Yin Y, Li L. Regulating the Flexibility to Assemble Porous Single-Atom Fe-Coordinated Metallopolymers for Efficient Heterogeneous Catalytic Oxidations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5823-5833. [PMID: 38285621 DOI: 10.1021/acsami.3c15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Metallopolymers as organic-inorganic hybrid materials formulated by metal embedding organic polymers show great potential for novel heterogeneous catalysis, in terms of the facile structural design and tunability. Herein, the disadvantage of nonporous stacking of one-dimensional (1D) structures has been suppressed by chain modulation of the 1D metallopolymers, allowing for the convenient construction of porous assemblies with single-atom dispersion and accessible active sites. By postmodification, the Fe/CM-1 catalyst readily synthesized by coordinating the Fe(II) to the twisted chain of 1D Schiff-base polymer possesses expedient flexibility, showing the highest porosity, remarkable heterogeneous recyclability, and thus prominent catalytic activity for the selective oxidation of benzylamine and alcohols. Moreover, control experiments supported by computational studies demonstrated that the unique pincer structure of Fe/CM-1 effectively maintains the valence state of the anchored single-atom iron, facilitating single-electron transfer and promoting efficient iron redox cycling during the catalytic process. Notably, these 1D metallopolymers have the advantage of cost-effectiveness, easy preparation in gram-scale, and utilization in continuous reaction, providing inspirations for facile synthesis of efficient heterogeneous catalysts from the well-developed 1D metallopolymers.
Collapse
Affiliation(s)
- Lei Fang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Man Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Tao Fan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ying Yin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
14
|
Tian Y, Bu X, Wang L, E J, Shi L, Tian H, Yang X, Fu H, Zhao Z. Visible Light-Driven Flexible Synthesis of α-Alkylated Glycine Derivatives Catalyzed by Reusable Covalent Organic Frameworks. J Org Chem 2024; 89:1657-1668. [PMID: 38241608 DOI: 10.1021/acs.joc.3c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Herein, we report a heterogeneous visible light-driven preparation of α-alkylated glycine derivatives. This approach employed a β-ketoenamine-linked covalent organic framework (2D-COF-4) as the heterogeneous photocatalyst and N-hydroxy phthalimide (NHPI) esters as the alkyl radical sources. Numerous glycine derivatives, including dipeptides, were precisely and efficiently alkylated under visible light-driven reaction conditions. Based on the excellent photoactivity and organic reaction compatibility of 2D-COF-4, this alkylation could proceed flexibly in a green solvent (ethanol) without any other additives. The photocatalyst and phthalimide were fruitfully recycled with a simple workup procedure, revealing a high ecoscale value and low environmental factor (E-factor).
Collapse
Affiliation(s)
- Yao Tian
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Luohe Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Junnan E
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Liangliang Shi
- Tianjin Lisheng Pharmaceutical Co., Ltd., Tianjin 300385, P. R. China
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin300385, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| |
Collapse
|
15
|
Liu J, Zhao J, Li C, Liu Y, Li D, Li H, Valtchev V, Qiu S, Wang Y, Fang Q. Precise Modulation of Carbon Activity Sites in Metal-Free Covalent Organic Frameworks for Enhanced Oxygen Reduction Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305759. [PMID: 37700638 DOI: 10.1002/smll.202305759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/25/2023] [Indexed: 09/14/2023]
Abstract
Metal-free carbon-based materials have gained recognition as potential electrocatalysts for the oxygen reduction reaction (ORR) in new environmentally-friendly electrochemical energy conversion technologies. The presence of effective active centers is crucial for achieving productive ORR. In this study, we present the synthesis of two metal-free dibenzo[a,c]phenazine-based covalent organic frameworks (DBP-COFs), specifically JUC-650 and JUC-651, which serve as ORR electrocatalysts. Among them, JUC-650 demonstrates exceptional catalytic performance for ORR in alkaline electrolytes, exhibiting an onset potential of 0.90 V versus RHE and a half-wave potential of 0.72 V versus RHE. Consequently, JUC-650 stands out as one of the most outstanding metal-free COF-based ORR electrocatalysts report to date. Experimental investigations and density functional theory calculations confirm that modulation of the frameworks' electronic configuration allows for the reduction of adsorption energy at the Schiff-base carbon active sites, leading to more efficient ORR processes. Moreover, the DBP-COFs can be assembled as excellent air cathode catalysts for zinc-air batteries (ZAB), rivaling the performance of commercial Pt/C. This study provides valuable insights for the development of efficient metal-free organoelectrocatalysts through precise regulation of active site strategies.
Collapse
Affiliation(s)
- Jianchuan Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jie Zhao
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, P. R. China
| | - Cuiyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, Shandong, 266101, P. R. China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, Caen, 14050, France
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
16
|
Yang M, Li H, Borse RA, Lin SX, Yuan D. A Nickel Anchored Covalent Organic Framework as Unimolecular Metallaphotocatalyst for Visible Light Driver C-P Bond Coupling Reaction. Chemistry 2023:e202303556. [PMID: 38092708 DOI: 10.1002/chem.202303556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 12/22/2023]
Abstract
The urgent need to develop a sustainable and environmentally friendly method for synthesizing organophosphine compounds is underscored by their extensive applications in organic synthesis, coordination chemistry, medicinal chemistry, and photoelectric materials. Metalated covalent organic frameworks (MCOFs), which seamlessly integrate the inherent photo properties of COF with the catalytic capabilities of metal ions, offer an optimal material for efficient transformation of organics sustainably. In this study, we introduce a simple COF with nickel anchorages (Bpy-COF-NiCl2 ) as a unimolecular metallaphotocatalytic system for effective C-P bond formation. This heterogeneous photocatalyst exhibits superior catalytic performance, achieving yields of up to 95 %, and demonstrates broad substrate tolerance and functional group reactivity. Notably, the metallaphotocatalytic system has demonstrated the capability to process aryl bromides to produce the desired product, a feat not previously reported. Finally, the production and reusability test at the gram scale attests to its superior practicality for designing future organic cross-coupling reactions.
Collapse
Affiliation(s)
- Manqiang Yang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Huijie Li
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Rahul Anil Borse
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shao-Xia Lin
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daqiang Yuan
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Hao F, Yang C, Lv X, Chen F, Wang S, Zheng G, Han Q. Photo-Driven Quasi-Topological Transformation Exposing Highly Active Nitrogen Cation Sites for Enhanced Photocatalytic H 2 O 2 Production. Angew Chem Int Ed Engl 2023; 62:e202315456. [PMID: 37933417 DOI: 10.1002/anie.202315456] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Herein, the exposure of highly-active nitrogen cation sites has been accomplished by photo-driven quasi-topological transformation of a 1,10-phenanthroline-5,6-dione-based covalent organic framework (COF), which contributes to hydrogen peroxide (H2 O2 ) synthesis during the 2-electron O2 photoreduction. The exposed nitrogen cation sites with photo-enhanced Lewis acidity not only act as the electron-transfer motor to adjust the inherent charge distribution, powering continuous and stable charge separation, and broadening visible-light adsorption, but also providing a large number of active sites for O2 adsorption. The optimal catalyst shows a high H2 O2 production rate of 11965 μmol g-1 h-1 under visible light irradiation and a remarkable apparent quantum yield of 12.9 % at 400 nm, better than most of the previously reported COF photocatalysts. This work provides new insights for designing photo-switchable nitrogen cation sites as catalytic centers toward efficient solar to chemical energy conversion.
Collapse
Affiliation(s)
- Feini Hao
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Fangshuai Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qing Han
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
18
|
Zhang RZ, Liu H, Xin CL, Han N, Ma CQ, Yu S, Wang YB, Xing LB. Construction of aggregation-induced emission photosensitizers through host-guest interactions for photooxidation reaction and light-harvesting. J Colloid Interface Sci 2023; 651:894-901. [PMID: 37573735 DOI: 10.1016/j.jcis.2023.07.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
In the present work, we have designed and synthesized a triphenylamine modified cyanophenylenevinylene derivative (TPCI), which can self-assembly with cucurbit[6]uril (CB[6]) and cucurbit[8]uril (CB[8]) through host-guest interactions to form supramolecular complexes (TPCI-CB[6]) and supramolecular polymers (TPCI-CB[8]) in the aqueous solution. The supramolecular assemblies of TPCI-CB[6] and TPCI-CB[8] not only exhibited high singlet oxygen (1O2) production efficiency as photosensitizers, but also realized the application in the construction of artificial light-harvesting systems due to the excellent fluorescence properties in the aqueous solution. The production efficiency of 1O2 has been effectively improved after the addition of CB[6] and CB[8] for TPCI, which were applied as efficient photosensitizers in the photooxidation reactions of thioanisole and its derivatives with the highest yield of 98% in the aqueous solution. The excellent fluorescence properties of TPCI-CB[6] and TPCI-CB[8] can be used as energy donors in artificial light-harvesting systems with energy acceptors sulforhodamine 101 (SR101) and cyanine dye 5 (Cy5), in which one-step energy transfer processes of TPCI-CB[6]+SR101 and TPCI-CB[8]+Cy5, and a two-step sequential energy transfer process of TPCI-CB[6]+SR101+Cy5 were constructed to simulate the natural photosynthesis system.
Collapse
Affiliation(s)
- Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Cheng-Long Xin
- Shandong Center for Disease Control and Prevention, Jinan 255014, PR China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium.
| | - Chao-Qun Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Yue-Bo Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
19
|
Li M, Mei S, Zheng Y, Wang L, Ye L. High-entropy oxides as photocatalysts for organic conversion. Chem Commun (Camb) 2023; 59:13478-13481. [PMID: 37880980 DOI: 10.1039/d3cc04435a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A strategy involving organic photocatalytic conversion using hydrothermal synthesis of high-entropy oxide (HEO) (CoCuZnMnNa)Ox nanoparticles was developed. Under mild conditions, HEO nanoparticles were driven by visible light to achieve ideal yields and selectivity in sulfide oxidative coupling reactions and benzimidazole cyclization reactions, with a wide substrate range. This study is expected to contribute to the use of high-entropy oxides in organic photocatalysis.
Collapse
Affiliation(s)
- Mingjin Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, China.
- Hubei Three Gorges Laboratory, Yichang 443002, Hubei, China
| | - Shuxing Mei
- State Key Laboratory of Heavy Oil Processing at Karamay, China University of Petroleum-Beijing at Karamay, Karamay 834000, Xinjiang, China
| | - Yong Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, China.
- Hubei Three Gorges Laboratory, Yichang 443002, Hubei, China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, China.
- Hubei Three Gorges Laboratory, Yichang 443002, Hubei, China
| | - Liqun Ye
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, China.
- Hubei Three Gorges Laboratory, Yichang 443002, Hubei, China
| |
Collapse
|
20
|
Pang H, Liu G, Huang D, Zhu Y, Zhao X, Wang W, Xiang Y. Embedding Hydrogen Atom Transfer Moieties in Covalent Organic Frameworks for Efficient Photocatalytic C-H Functionalization. Angew Chem Int Ed Engl 2023:e202313520. [PMID: 37921489 DOI: 10.1002/anie.202313520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as efficient heterogeneous photocatalysts for a wide range of relatively simple organic reactions, whereas their application in complex organic transformations, like site-selective functionalization of unactivated C-H bonds, is underexplored, which can be mainly attributed to the lack of highly active organophotocatalytic cores. Herein through bonding oxygen atoms at the N-terminus of quinolines in nonsubstituted quinoline-linked COFs (NQ-COFs), we successfully realized the embedding of active hydrogen atom transfer (HAT) moieties into the skeleton of COFs. This novel designed COF (NQ-COFE5 -O), serving as both an excellent photosensitizer and HAT catalyst, exhibited much higher efficiency in C-H functionalization than the corresponding NQ-COFE5 . Specially, we evaluated the photocatalytic performance of NQ-COFE5 -O on ten different substrates, including quinolines, benzothiazole, and benzoxazole, all of which were transferred to desired products in moderate to high yields (up to 93 %). Furthermore, the as-synthesized NQ-COFE5 -O displayed excellent photostability and could be reused with negligible loss of activity for five catalytic cycles.
Collapse
Affiliation(s)
- Huaji Pang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Gang Liu
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Dekang Huang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Yanqiu Zhu
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Xiaodong Zhao
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Wanqin Wang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Yonggang Xiang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| |
Collapse
|
21
|
Xia Y, Zhang W, Yang S, Wang L, Yu G. Research Progress in Donor-Acceptor Type Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301190. [PMID: 37094607 DOI: 10.1002/adma.202301190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Covalent organic frameworks (COFs) are new organic porous materials constructed by covalent bonds, with the advantages of pre-designable topology, adjustable pore size, and abundant active sites. Many research studies have shown that COFs exhibit great potential in gas adsorption, molecular separation, catalysis, drug delivery, energy storage, etc. However, the electrons and holes of intrinsic COF are prone to compounding in transport, and the carrier lifetime is short. The donor-acceptor (D-A) type COFs, which are synthesized by introducing D and A units into the COFs backbone, combine separated electron and hole migration pathway, tunable band gap and optoelectronic properties of D-A type polymers with the unique advantages of COFs and have made great progress in related research in recent years. Here, the synthetic strategies of D-A type COFs are first outlined, including the rational design of linkages and D-A units as well as functionalization approaches. Then the applications of D-A type COFs in catalytic reactions, photothermal therapy, and electronic materials are systematically summarized. In the final section, the current challenges, and new directions for the development of D-A type COFs are presented.
Collapse
Affiliation(s)
- Yeqing Xia
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Jati A, Dam S, Kumar S, Kumar K, Maji B. A π-conjugated covalent organic framework enables interlocked nickel/photoredox catalysis for light-harvesting cross-coupling reactions. Chem Sci 2023; 14:8624-8634. [PMID: 37592981 PMCID: PMC10430564 DOI: 10.1039/d3sc02440g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Covalent organic frameworks (COFs) are an outstanding platform for heterogeneous photocatalysis. Herein, we synthesized a pyrene-based two-dimensional C[double bond, length as m-dash]C linked π-conjugated COF via Knoevenagel condensation and anchored Ni(ii)-centers through bipyridine moieties. Instead of traditional dual metallaphotoredox catalysis, the mono-metal decorated Ni@Bpy-sp2c-COF interlocked the catalysis mediated by light and the transition metal. Under light irradiation, enhanced energy and electron transfer in the COF backbone, as delineated by the photoluminescence, electrochemical, and control experiments, expedited the excitation of Ni centers to efficiently catalyze diverse photocatalytic C-X (X = B, C, N, O, P, S) cross-coupling reactions with efficiencies orders of magnitude higher than the homogeneous controls. The COF catalyst tolerated a diverse range of coupling partners with various steric and electronic properties, delivering the products with up to 99% yields. Some reactions were performed on a gram scale and were applied to diversify pharmaceuticals and complex molecules to demonstrate the synthetic utility.
Collapse
Affiliation(s)
- Ayan Jati
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| | - Suranjana Dam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| | - Shekhar Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| | - Kundan Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| |
Collapse
|
23
|
Chatterjee A, Wang L, Van Der Voort P. Metal-organic frameworks in photocatalytic Z-scheme heterojunctions: an emerging technology. Chem Commun (Camb) 2023; 59:3627-3654. [PMID: 36861263 DOI: 10.1039/d2cc05819g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
There is an urgent need for cleaner production processes for chemicals. An efficient and promising alternative for such reactions is heterogeneous photocatalysis, which works on the principle of converting (visible) light, including solar energy, into chemical energy. To that end, properly designed semiconductor based photocatalysts are necessary to trigger the photocatalytic reactions. Many commonly used photocatalysts have too large bandgaps (3-3.4 eV) to use visible light and a too low surface area for efficient production. Metal-organic frameworks (MOFs) have emerged as an encouraging class of materials for photocatalytic applications due to their (i) large surface area and porosity that facilitate adsorption towards chemicals, (ii) tunable crystallinity and optical and electronic properties for efficient light absorption in the visible region, (iii) tunable composition and functionality that make them versatile photocatalysts for a wide range of reactions, and (iv) facile development of composites with other semiconductors to produce Z-scheme heterojunctions that can effectively suppress the recombination of photogenerated charges. Ongoing research has started focusing on the judicious construction of Z-scheme heterojunctions in MOFs, to mimic natural photosynthesis, such that the MOF photocatalysts have higher light harvesting capacity, spatially separated reductive and oxidative active sites, and well-preserved redox ability. This review provides a concise compilation of the recent progress in the development and applications of MOF-based Z-scheme photocatalysts, their advanced characterization, and future perspectives for further advancements.
Collapse
Affiliation(s)
- Amrita Chatterjee
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan281-S3, 9000Ghent, Belgium.
| | - Linyang Wang
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan281-S3, 9000Ghent, Belgium.
| | - Pascal Van Der Voort
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan281-S3, 9000Ghent, Belgium.
| |
Collapse
|
24
|
Basak A, Karak S, Banerjee R. Covalent Organic Frameworks as Porous Pigments for Photocatalytic Metal-Free C-H Borylation. J Am Chem Soc 2023; 145:7592-7599. [PMID: 36943195 DOI: 10.1021/jacs.3c00950] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Covalent organic frameworks (COFs) are highly promising as heterogeneous photocatalysts due to their tunable structures and optoelectronic properties. Though COFs have been used as heterogeneous photocatalysts, they have mainly been employed in water splitting, carbon dioxide reduction, and hydrogen evolution reactions. A few examples in organic synthesis using metal-anchored COF photocatalysts were reported. Herein, we report highly stable β-keto-enamine-based COFs as photocatalysts for metal-free C-B bond formation reactions. Three different COFs have been availed for this purpose. Their photocatalysis performances have been monitored for 12 different substrates, like quinolines, pyridines, and pyrimidines. All the COFs showcase moderate-to-high yields (up to 96%) depending upon the substrate's molecular functionality. High crystallinity, a large surface area, a low band gap, and a suitable band position result in the highest catalytic activity of TpAzo COF. The thorough mechanistic investigation further highlights the crucial role of light-harvesting capacity, charge separation efficiency, and current density during catalysis. The light absorbance capacity of the COF plays a critical role during catalysis as yields are maximized near the COF's absorption maxima. The high photostability of the as-synthesized COFs offers their reusability for several (>5) catalytic cycles.
Collapse
Affiliation(s)
- Ananda Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
| | - Suvendu Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
| |
Collapse
|
25
|
Xing L, Yang Q, Zhu C, Bai Y, Tang Y, Rueping M, Cai Y. Poly(heptazine imide) ligand exchange enables remarkable low catalyst loadings in heterogeneous metallaphotocatalysis. Nat Commun 2023; 14:1501. [PMID: 36932064 PMCID: PMC10023668 DOI: 10.1038/s41467-023-37113-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
The development of heterogeneous metallaphotocatalysis is of great interest for sustainable organic synthesis. The rational design and controllable preparation of well-defined (site-isolated) metal/photo bifunctional solid catalysts to meet such goal remains a critical challenge. Herein, we demonstrate the incorporation of privileged homogeneous bipyridyl-based Ni-catalysts into highly ordered and crystalline potassium poly(heptazine imide) (K-PHI). A variety of PHI-supported cationic bipyridyl-based Ni-catalysts (LnNi-PHI) have been prepared and fully characterized by various techniques including NMR, ICP-OES, XPS, HAADF-STEM and XAS. The LnNi-PHI catalysts exhibit exceptional chemical stability and recyclability in diverse C-P, C-S, C-O and C-N cross-coupling reactions. The proximity and cooperativity effects in LnNi-PHI significantly enhances the photo/Ni dual catalytic activity, thus resulting in low catalyst loadings and high turnover numbers.
Collapse
Affiliation(s)
- Liuzhuang Xing
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, P. R. China
| | - Qian Yang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, P. R. China
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yilian Bai
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, P. R. China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, P. R. China.
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, P. R. China.
| |
Collapse
|
26
|
Parvatkar PT, Kandambeth S, Shaikh AC, Nadinov I, Yin J, Kale VS, Healing G, Emwas AH, Shekhah O, Alshareef HN, Mohammed OF, Eddaoudi M. A Tailored COF for Visible-Light Photosynthesis of 2,3-Dihydrobenzofurans. J Am Chem Soc 2023; 145:5074-5082. [PMID: 36827417 PMCID: PMC9999419 DOI: 10.1021/jacs.2c10471] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Heterogeneous photocatalysis is considered as an ecofriendly and sustainable approach for addressing energy and environmental persisting issues. Recently, heterogeneous photocatalysts based on covalent organic frameworks (COFs) have gained considerable attention due to their remarkable performance and recyclability in photocatalytic organic transformations, offering a prospective alternative to homogeneous photocatalysts based on precious metal/organic dyes. Herein, we report Hex-Aza-COF-3 as a metal-free, visible-light-activated, and reusable heterogeneous photocatalyst for the synthesis of 2,3-dihydrobenzofurans, as a pharmaceutically relevant structural motif, via the selective oxidative [3+2] cycloaddition of phenols with olefins. Moreover, we demonstrate the synthesis of natural products (±)-conocarpan and (±)-pterocarpin via the [3+2] cycloaddition reaction as an important step using Hex-Aza-COF-3 as a heterogeneous photocatalyst. Interestingly, the presence of phenazine and hexaazatriphenylene as rigid heterocyclic units in Hex-Aza-COF-3 strengthens the covalent linkages, enhances the absorption in the visible region, and narrows the energy band, leading to excellent activity, charge transport, stability, and recyclability in photocatalytic reactions, as evident from theoretical calculations and real-time information on ultrafast spectroscopic measurements.
Collapse
Affiliation(s)
- Prakash T Parvatkar
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Sharath Kandambeth
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Aslam C Shaikh
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Issatay Nadinov
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong People's Republic of China
| | - Vinayak S Kale
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - George Healing
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Fan Y, Kang DW, Labalme S, Li J, Lin W. Enhanced Energy Transfer in A π-Conjugated Covalent Organic Framework Facilitates Excited-State Nickel Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218908. [PMID: 36652347 DOI: 10.1002/anie.202218908] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Covalent organic frameworks (COFs) have received broad interest owing to their permanent porosity, high stability, and tunable functionalities. COFs with long-range π-conjugation and photosensitizing building blocks have been explored for sustainable photocatalysis. Herein, we report the first example of COF-based energy transfer Ni catalysis. A pyrene-based COF with sp2 carbon-conjugation was synthesized and used to coordinate NiII centers through bipyridine moieties. Under light irradiation, enhanced energy transfer in the COF facilitated the excitation of Ni centers to catalyze borylation and trifluoromethylation reactions of aryl halides. The COF showed two orders of magnitude higher efficiency in these reactions than its homogeneous control and could be recovered and reused without significant loss of catalytic activity.
Collapse
Affiliation(s)
- Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Dong Won Kang
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Steven Labalme
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| |
Collapse
|
28
|
Gutiérrez L, Martin-Diaconescu V, Casadevall C, Oropeza F, de la Peña O’Shea VA, Meng J, Ortuño MA, Lloret-Fillol J. Low Oxidation State Cobalt Center Stabilized by a Covalent Organic Framework to Promote Hydroboration of Olefins. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Luis Gutiérrez
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Organica i Analítica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Vlad Martin-Diaconescu
- ALBA Synchrotron Light Source, Carretera BP 1413, Km. 3.3, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Carla Casadevall
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Freddy Oropeza
- Photoactivated Processes Unit, IMDEA Energy, 28935 Móstoles, Spain
| | | | - JingJing Meng
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Manuel A. Ortuño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
29
|
Liu T, Deng C, Meng D, Zhang Y, Duan R, Ji H, Sheng H, Li J, Chen C, Zhao J, Song W. Aligning Metal Coordination Sites in Metal-Organic Framework-Enabled Metallaphotoredox Catalysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5139-5147. [PMID: 36688925 DOI: 10.1021/acsami.2c18378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Construction of catalytic metal centers, the key modules in artificial photosynthetic systems, lies at the heart to explore unpaved reactivity patterns powered by light. Here, we disclose that the amino (-NH2) and carboxylic (-COO) functionalities, aligned in various visible-light-harvesting metal-organic frameworks (MOFs) (NH2-UiO-66, (NH2)2-UiO-67, and NH2-MIL-125), provide N/O-ligated Ni featuring different configurations and valence states. Of note, these Ni centers, in situ formed or preimplanted, demonstrated coordination units' spatial arrangement-dependent activity in cross-coupling of aryl halides and various nucleophiles. Our work provides a novel approach to construct and to regulate metal center(s) by MOFs' skeleton defined coordination environments, highlighting exclusive potential in exploring the reactivity pattern of the hosted metals.
Collapse
Affiliation(s)
- Tianjiao Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyuan Deng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Meng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Duan
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Sheng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jikun Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Meng D, Xue J, Zhang Y, Liu T, Chen C, Song W, Zhao J. Covalent organic frameworks editing for efficient metallaphotoredox catalytic carbon–oxygen cross coupling of aryl halides with alcohols. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01535h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cross-coupling by dual metal/photoredox catalysis is attractive for producing valuable chemical building blocks, where the photoredox catalysts lay the foundations for an efficient and sustainable operation.
Collapse
Affiliation(s)
- Di Meng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Xue
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yufan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianjiao Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
31
|
Wang GB, Xie KH, Xu HP, Wang YJ, Zhao F, Geng Y, Dong YB. Covalent organic frameworks and their composites as multifunctional photocatalysts for efficient visible-light induced organic transformations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat Rev Chem 2022; 6:881-898. [PMID: 37117702 DOI: 10.1038/s41570-022-00437-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/13/2022]
Abstract
Covalent organic frameworks (COFs) are porous crystalline polymers that result from the formation of covalent bonds between precisely assembled organic units. Linkage chemistry is a crucial factor in the controllable synthesis and resulting physicochemical properties of COFs. Imine linkages are popular in the formation of polyfunctional two-dimensional (2D) COFs because they are formed easily with structural and functional diversity. There has been much recent interest in expanding beyond this to COFs with imine-derived linkages. This review highlights the development of chemistry to modify and prepare derivatives of imines within 2D COFs. We discuss the derivation of imine bonds via covalent and noncovalent bonding and the properties and potential applications of the resulting materials in order to provide a better understanding of the relationship between covalent linkages and overall performance for 2D COF materials.
Collapse
|
33
|
Abstract
Sulfur-containing compounds have attracted considerable interest due to their wide-ranging applications in pharmaceuticals, agriculture, natural products, and organic materials. The development of efficient and rapid methods for the construction and transformation of sulfur-containing compounds is of great importance. Since nickel is inexpensive and has a variety of valence states, strong nucleophilicity and low energy barriers for oxidative addition, the construction and transformation of sulfur-containing compounds by nickel-catalyzed cross-coupling have become important strategies. In addition, sulfur-containing compounds have also been playing increasingly important roles in the field of cross-coupling due to their thermodynamically stable but dynamic activity. This review will focus on nickel-catalyzed construction and transformation of various sulfide-containing compounds, such as sulfides, disulfides, and hypervalent sulfur-containing compounds.
Collapse
Affiliation(s)
- Su Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
34
|
Li Z, Qiu S, Song Y, Huang S, Gao J, Sun L, Hou J. Engineering single–atom active sites anchored covalent organic frameworks for efficient metallaphotoredox C N cross–coupling reactions. Sci Bull (Beijing) 2022; 67:1971-1981. [DOI: 10.1016/j.scib.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
|
35
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
36
|
|
37
|
Qiao H, Yang L, Yang X, Wang J, Chen Y, Zhang L, Sun W, Zhai L, Mi L. Design of Photoactive Covalent Organic Frameworks as Heterogeneous Catalyst for Preparation of Thiophosphinates from Phosphine Oxides and Thiols. Chemistry 2022; 28:e202200600. [DOI: 10.1002/chem.202200600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Huijie Qiao
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liting Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Xiubei Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Jialin Wang
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Ya Chen
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lin Zhang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Wuxuan Sun
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| |
Collapse
|
38
|
Zou Y, Abednatanzi S, Gohari Derakhshandeh P, Mazzanti S, Schüßlbauer CM, Cruz D, Van Der Voort P, Shi JW, Antonietti M, Guldi DM, Savateev A. Red edge effect and chromoselective photocatalysis with amorphous covalent triazine-based frameworks. Nat Commun 2022; 13:2171. [PMID: 35449208 PMCID: PMC9023581 DOI: 10.1038/s41467-022-29781-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Chromoselective photocatalysis offers an intriguing opportunity to enable a specific reaction pathway out of a potentially possible multiplicity for a given substrate by using a sensitizer that converts the energy of incident photon into the redox potential of the corresponding magnitude. Several sensitizers possessing different discrete redox potentials (high/low) upon excitation with photons of specific wavelength (short/long) have been reported. Herein, we report design of molecular structures of two-dimensional amorphous covalent triazine-based frameworks (CTFs) possessing intraband states close to the valence band with strong red edge effect (REE). REE enables generation of a continuum of excited sites characterized by their own redox potentials, with the magnitude proportional to the wavelength of incident photons. Separation of charge carriers in such materials depends strongly on the wavelength of incident light and is the primary parameter that defines efficacy of the materials in photocatalytic bromination of electron rich aromatic compounds. In dual Ni-photocatalysis, excitation of electrons from the intraband states to the conduction band of the CTF with 625 nm photons enables selective formation of C‒N cross-coupling products from arylhalides and pyrrolidine, while an undesirable dehalogenation process is completely suppressed.
Collapse
Affiliation(s)
- Yajun Zou
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Sara Abednatanzi
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, 9000, Gent, Belgium
| | | | - Stefano Mazzanti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Christoph M Schüßlbauer
- Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Daniel Cruz
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 14195, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Mülheiman der Ruhr, 45470, Germany
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, 9000, Gent, Belgium
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Aleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
| |
Collapse
|
39
|
Romashev NF, Mirzaeva IV, Bakaev IV, Komlyagina VI, Komarov VY, Fomenko IS, Gushchin AL. STRUCTURE OF A BINUCLEAR RHODIUM(I) COMPLEX WITH THE ACENAPHTHENE- 1,2-DIIMINE LIGAND. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622020056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
|
41
|
Zhang Z, Jia J, Zhi Y, Ma S, Liu X. Porous organic polymers for light-driven organic transformations. Chem Soc Rev 2022; 51:2444-2490. [PMID: 35133352 DOI: 10.1039/d1cs00808k] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a new generation of porous materials, porous organic polymers (POPs), have recently emerged as a powerful platform of heterogeneous photocatalysis. POPs are constructed using extensive organic synthesis methodologies, with various functional organic units being connected via high-energy covalent bonds. This review systematically presents the recent advances in POPs for visible-light driven organic transformations. Herein, we firstly summarize the common construction strategies for POP-based photocatalysts based on two major approaches: pre-design and post-modification; secondly, we categorize and summarize the synthesis methods and organic reaction types for constructing various types of POPs. We then classify and introduce the specific reactions of current light-driven POP-mediated organic transformations. Finally, we outline the current state of development and the problems faced in light-driven organic transformations by POPs, and we present some perspectives to motivate the reader to explore solutions to these problems and confront the present challenges in the development process.
Collapse
Affiliation(s)
- Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ji Jia
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Yongfeng Zhi
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China. .,Department of Materials Science & Engineering, National University of Singapore, Engineering Drive 1, Singapore 117575, Singapore
| | - Si Ma
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
42
|
Cai JY, Liu S, Yu YL, Wang JH. MoS 2-Covalent Organic Framework Composite as a Bifunctional Supporter for the Determination of Trace Nickel by Photochemical Vapor Generation-Microplasma Optical Emission Spectrometry. Anal Chem 2022; 94:2288-2297. [PMID: 35043637 DOI: 10.1021/acs.analchem.1c05002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A microplasma-based optical emission spectrometry (OES) system has emerged as a potential tool for field analysis of heavy metal pollution due to its features of portability and low energy consumption, while the development of an efficient sample introduction approach against matrix interference is crucial to meet the requirements of complex sample analysis. Herein, a MoS2-covalent organic framework (COF) composite serves as a bifunctional supporter for efficient sample separation/enrichment and photochemical vapor generation (PVG) enhancement, thereby achieving highly selective and sensitive detection of heavy metals in environmental water by dielectric barrier discharge (DBD) microplasma-OES. With trace nickel analysis as a model, the MoS2-COF composite with a large specific surface area and a porous structure can not only efficiently separate and enrich nickel ions from a sample matrix through electrostatic interaction and coordination to reduce the interference of coexisting ions but also significantly improve the subsequent PVG efficiency due to the formed heterojunction and more negative reduction potential. Under optimized conditions, a linear range of 0.1-10 μg L-1 along with a detection limit of 0.03 μg L-1 is obtained for nickel. Compared with direct PVG, the tolerance to coexisting ions is greatly enhanced, and the detection limit is also improved by 43-fold. The accuracy and practicability of the present PVG-DBD-OES system are verified by measuring several certified reference materials and real water samples. MoS2-COF as a bifunctional supporter promotes the performance of the PVG-DBD-OES system in terms of anti-interference ability and detection sensitivity, especially for robust and efficient on-site analysis of complex samples.
Collapse
Affiliation(s)
- Ji-Ying Cai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuang Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
43
|
Wang H, Li S, Cui Y, Liu M, Bu X, Tian H, Yang X. A covalent organic framework-catalyzed visible-light-induced three-component cascade synthesis of trifluoroalkyl and trifluoroalkenyl quinoxalin-2(1 H)-one derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj04430g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A COF-catalyzed visible-light-induced three-component synthesis of trifluoroalkyl and trifluoroalkenyl quinoxalin-2(1H)-one derivatives features robust substrate adaptability, good sustainability, and Z-selectivity.
Collapse
Affiliation(s)
- Hesheng Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Siyu Li
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Yue Cui
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Minqiang Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
44
|
shao X, Liu Y, Xing S, Zhang J, Liu W, Xu Y, Zhang Y, Yang KF, Yang L, Jiang K. Construction of Diverse C–S/C-Se Bonds via Nickel Catalyzed Reductive Coupling Employing Thiosulfonates and A Selennofonate Under Mild Conditions. Org Chem Front 2022. [DOI: 10.1039/d1qo01873f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed reductive cross coupling between organic iodides and thiosulfonates and a selennofonate under mild conditions is disclosed. This pracitical method provides facile access to a series of unsymmetrical thioethers...
Collapse
|
45
|
Zhu Y, Zu W, Tian Q, Cao Z, Wei Y, Xu L. A nickel/organoboron catalyzed metallaphotoredox platform for C(sp 2)–P and C(sp 2)–S bond construction. Org Chem Front 2022. [DOI: 10.1039/d1qo01778k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A boron-based organic photocatalyst has been applied in metallaphotoredox catalyzed C–P and C–S bond construction reactions.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Weisai Zu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Qing Tian
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Zifeng Cao
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
46
|
He M, Liang Q, Tang L, Liu Z, Shao B, He Q, Wu T, Luo S, Pan Y, Zhao C, Niu C, Hu Y. Advances of covalent organic frameworks based on magnetism: Classification, synthesis, properties, applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214219] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Wu M, Shan Z, Wang J, Gu Z, Wu X, Xu B, Zhang G. Three-dimensional covalent organic frameworks based on a π-conjugated tetrahedral node. Chem Commun (Camb) 2021; 57:10379-10382. [PMID: 34542113 DOI: 10.1039/d1cc03219d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The construction of three-dimensional (3D) covalent organic frameworks (COFs), especially fully conjugated 3D COFs, is a long-standing challenge. Herein, we report a saddle-like, π-conjugated cyclooctatetrathiophene (COTh) as a tetrahedral node to construct fully conjugated 3D COFs. The present work enriches the structural diversities and potential applications of 3D COFs.
Collapse
Affiliation(s)
- Miaomiao Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Jinjian Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Zhangjie Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Xiaowei Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Bingqing Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
48
|
López-Magano A, Ortín-Rubio B, Imaz I, Maspoch D, Alemán J, Mas-Ballesté R. Photoredox Heterobimetallic Dual Catalysis Using Engineered Covalent Organic Frameworks. ACS Catal 2021; 11:12344-12354. [PMID: 34900388 PMCID: PMC8650013 DOI: 10.1021/acscatal.1c03634] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Indexed: 12/13/2022]
Abstract
The functionalization of an imine-based layered covalent organic framework (COF), containing phenanthroline units as ligands, has allowed the obtention of a heterobimetallated material. Photoactive Ir and Ni fragments were immobilized within the porous structure of the COF, enabling heterogeneous light-mediated Csp3-Csp2 cross-couplings. As radical precursors, potassium benzyl- and alkoxy-trifluoroborates, organic silicates, and proline derivatives were employed, which brings out the good versatility of Ir,Ni@Phen-COF. Moreover, in all the studied cases, an enhanced activity and stability have been observed in comparison with analogous homogenous systems.
Collapse
Affiliation(s)
- Alberto López-Magano
- Inorganic
Chemistry Department, Módulo 7, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Borja Ortín-Rubio
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, 08193 Barcelona, Spain
| | - Inhar Imaz
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, 08193 Barcelona, Spain
| | - Daniel Maspoch
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, 08193 Barcelona, Spain
- Institució
Catalana de Recerca y Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - José Alemán
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Organic
Chemistry Department, Módulo 1, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Rubén Mas-Ballesté
- Inorganic
Chemistry Department, Módulo 7, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Organic
Chemistry Department, Módulo 1, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
49
|
Liu C, Luo T, Sheveleva AM, Han X, Kang X, Sapchenko S, Tuna F, McInnes EJL, Han B, Yang S, Schröder M. Ultra-thin g-C 3N 4/MFM-300(Fe) heterojunctions for photocatalytic aerobic oxidation of benzylic carbon centers. MATERIALS ADVANCES 2021; 2:5144-5149. [PMID: 34382002 PMCID: PMC8328079 DOI: 10.1039/d1ma00266j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
In situ growth of the metal-organic framework material MFM-300(Fe) on an ultra-thin sheet of graphitic carbon nitride (g-C3N4) has been achieved via exfoliation of bulk carbon nitride using supercritical CO2. The resultant hybrid structure, CNNS/MFM-300(Fe), comprising carbon nitride nanosheets (CNNS) and MFM-300(Fe), shows excellent performance towards photocatalytic aerobic oxidation of benzylic C-H groups at room temperature under visible light. The catalytic activity is significantly improved compared to the parent g-C3N4, MFM-300(Fe) or physical mixtures of both. This facile strategy for preparing heterojunction photocatalysts demonstrates a green pathway for the efficient and economic oxidation of benzylic carbons to produce fine chemicals.
Collapse
Affiliation(s)
- Chengcheng Liu
- Department of Chemistry, University of Manchester, Oxford Road Manchester M13 9PL UK
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 China
| | - Tian Luo
- Department of Chemistry, University of Manchester, Oxford Road Manchester M13 9PL UK
| | - Alena M Sheveleva
- Department of Chemistry, University of Manchester, Oxford Road Manchester M13 9PL UK
- Photon Science Institute, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Xue Han
- Department of Chemistry, University of Manchester, Oxford Road Manchester M13 9PL UK
| | - Xinchen Kang
- Department of Chemistry, University of Manchester, Oxford Road Manchester M13 9PL UK
| | - Sergei Sapchenko
- Department of Chemistry, University of Manchester, Oxford Road Manchester M13 9PL UK
| | - Floriana Tuna
- Department of Chemistry, University of Manchester, Oxford Road Manchester M13 9PL UK
- Photon Science Institute, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Eric J L McInnes
- Department of Chemistry, University of Manchester, Oxford Road Manchester M13 9PL UK
- Photon Science Institute, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science Beijing 100190 China
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Oxford Road Manchester M13 9PL UK
| | - Martin Schröder
- Department of Chemistry, University of Manchester, Oxford Road Manchester M13 9PL UK
| |
Collapse
|
50
|
Li WJ, Wang XQ, Zhang DY, Hu YX, Xu WT, Xu L, Wang W, Yang HB. Artificial Light-Harvesting Systems Based on AIEgen-branched Rotaxane Dendrimers for Efficient Photocatalysis. Angew Chem Int Ed Engl 2021; 60:18761-18768. [PMID: 34125487 DOI: 10.1002/anie.202106035] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 12/20/2022]
Abstract
Aiming at the construction of novel platform for efficient light harvesting, the precise synthesis of a new family of AIEgen-branched rotaxane dendrimers was successful realized from an AIEgen-functionalized [2]rotaxane through a controllable divergent approach. In the resultant AIE macromolecules, up to twenty-one AIEgens located at the tails of each branches, thus making them the first successful example of AIEgen-branched dendrimers. Attributed to the solvent-induced switching feature of the rotaxane branches, the integrated rotaxane dendrimers displayed interesting dynamic feature upon the aggregation-induced emission (AIE) process. Moreover, novel artificial light-harvesting systems were further constructed based on these AIEgen-branched rotaxane dendrimers, which revealed impressive generation-dependent photocatalytic performances for both photooxidation reaction and aerobic cross-dehydrogenative coupling (CDC) reaction.
Collapse
Affiliation(s)
- Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Dan-Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|