1
|
Bennett TD, Horike S, Mauro JC, Smedskjaer MM, Wondraczek L. Looking into the future of hybrid glasses. Nat Chem 2024; 16:1755-1766. [PMID: 39394264 DOI: 10.1038/s41557-024-01616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/15/2024] [Indexed: 10/13/2024]
Abstract
Glasses are typically formed by melt-quenching, that is, cooling of a liquid on a timescale fast enough to avoid ordering to a crystalline state, and formerly thought to comprise three categories: inorganic (non-metallic), organic and metallic. Their impact is huge, providing safe containers, allowing comfortable and bright living spaces and even underlying the foundations of modern telecommunication. This impact is tempered by the inability to chemically design glasses with precise, well-defined and tunable structures: the literal quest for order in disorder. However, metal-organic or hybrid glasses are now considered to belong to a fourth category of glass chemistry. They have recently been demonstrated upon melt-quenching of coordination polymer, metal-organic framework and hybrid perovskite framework solids. In this Review, we discuss hybrid glasses through the lens of both crystalline metal-organic framework and glass chemistry, physics and engineering, to provide a vision for the future of this class of materials.
Collapse
Affiliation(s)
- Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Morten M Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Lothar Wondraczek
- Otto Schott Institute of Materials Research, University of Jena, Jena, Germany
| |
Collapse
|
2
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Ma N, Kosasang S, Theissen J, Gys N, Hauffman T, Otake KI, Horike S, Ameloot R. Systematic design and functionalisation of amorphous zirconium metal-organic frameworks. Chem Sci 2024; 15:d4sc05053c. [PMID: 39386911 PMCID: PMC11457265 DOI: 10.1039/d4sc05053c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Controlling the structure and functionality of crystalline metal-organic frameworks (MOFs) using molecular building units and post-synthetic functionalisation presents challenges when extending this approach to their amorphous counterparts (aMOFs). Here, we present a new bottom-up approach for synthesising a series of Zr-based aMOFs, which involves linking metal-organic clusters with specific ligands to regulate local connectivity. In addition, we overcome the limitations of post-synthetic modifications in amorphous systems, demonstrating that homogeneous functionalisation is achievable even without regular internal voids. By altering the acidity of the side group, length, and degree of connectivity of the linker, we could control the porosity, proton conductivity, and mechanical properties of the resulting aMOFs.
Collapse
Affiliation(s)
- Nattapol Ma
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- International Center for Young Scientists (ICYS), National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Soracha Kosasang
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Jennifer Theissen
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Nick Gys
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Sustainable Materials Engineering (SUME) Research Group of Electrochemical and Surface Engineering (SURF), Depart-ment of Materials and Chemistry, Vrije Universiteit Brussel Pleinlaan 2 Brussels 1050 Belgium
| | - Tom Hauffman
- Sustainable Materials Engineering (SUME) Research Group of Electrochemical and Surface Engineering (SURF), Depart-ment of Materials and Chemistry, Vrije Universiteit Brussel Pleinlaan 2 Brussels 1050 Belgium
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
4
|
Luo X, Zhang M, Hu Y, Xu Y, Zhou H, Xu Z, Hao Y, Chen S, Chen S, Luo Y, Lin Y, Zhao J. Wrinkled metal-organic framework thin films with tunable Turing patterns for pliable integration. Science 2024; 385:647-651. [PMID: 39116246 DOI: 10.1126/science.adn8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Flexible integration spurs diverse applications in metal-organic frameworks (MOFs). However, current configurations suffer from the trade-off between MOF loadings and mechanical compliance. We report a wrinkled configuration of MOF thin films. We established an interfacial synthesis confined and controlled by a polymer topcoat and achieved multiple Turing motifs in the wrinkled thin films. These films have complete MOF surface coverage and exhibit strain tolerance up to 53.2%. The enhanced mechanical properties allow film transfer onto various substrates. We obtained membranes with large H2/CO2 selectivity (41.2) and high H2 permeance (8.46 × 103 gas permeation units), showcasing negligible defects after transfer. We also achieved soft humidity sensors on delicate electrodes by avoiding exposure to harsh MOF synthesis conditions. These results highlight the potential of wrinkled MOF thin films for plug-and-play integration.
Collapse
Affiliation(s)
- Xinyu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Ming Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Yubin Hu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Yan Xu
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haofei Zhou
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zijian Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinxuan Hao
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Sheng Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengfu Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Junjie Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| |
Collapse
|
5
|
Stone DM, Morgan SE, Abdelmigeed MO, Nguyen J, Bennett TD, Parsons GN, Cowan MG. Control of ZIF-62 and a gZIF-62 Film Thickness within Asymmetric Tubular Supports through Pressure and Dose Time Variation of Atomic Layer Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307202. [PMID: 38308381 DOI: 10.1002/smll.202307202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/10/2023] [Indexed: 02/04/2024]
Abstract
Thin-films of metal-organic frameworks (MOFs) have widespread potential applications, especially with the emergence of glass-forming MOFs, which remove the inherent issue of grain boundaries and allow coherent amorphous films to be produced. Herein, it is established that atomic layer deposition (ALD) of zinc oxide lends excellent control over the thickness and localization of resultant polycrystalline and glass zeolitic imidazole framework-62 (ZIF-62) thin-films within tubular α-alumina supports. Through the reduction of the chamber pressure and dose times during zinc oxide deposition, the resultant ZIF-62 films are reduced from 38 µm to 16 µm, while the presence of sporadic ZIF-62 (previously forming as far as 280 µm into the support) is prevented. Furthermore, the glass transformation shows a secondary reduction in film thickness from 16 to 2 µm.
Collapse
Affiliation(s)
- Dana M Stone
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, 8140, New Zealand
| | - Sarah E Morgan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Mai O Abdelmigeed
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Jimmy Nguyen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CBS 0FS, UK
| | - Gregory N Parsons
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Matthew G Cowan
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
6
|
Ma N, Kosasang S, Berdichevsky EK, Nishiguchi T, Horike S. Functional metal-organic liquids. Chem Sci 2024; 15:7474-7501. [PMID: 38784744 PMCID: PMC11110139 DOI: 10.1039/d4sc01793e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
For decades, the study of coordination polymers (CPs) and metal-organic frameworks (MOFs) has been limited primarily to their behavior as crystalline solids. In recent years, there has been increasing evidence that they can undergo reversible crystal-to-liquid transitions. However, their "liquid" states have primarily been considered intermediate states, and their diverse properties and applications of the liquid itself have been overlooked. As we learn from organic polymers, ceramics, and metals, understanding the structures and properties of liquid states is essential for exploring new properties and functions that are not achievable in their crystalline state. This review presents state-of-the-art research on the liquid states of CPs and MOFs while discussing the fundamental concepts involved in controlling them. We consider the different types of crystal-to-liquid transitions found in CPs and MOFs while extending the interpretation toward other functional metal-organic liquids, such as metal-containing ionic liquids and porous liquids, and try to suggest the unique features of CP/MOF liquids. We highlight their potential applications and present an outlook for future opportunities.
Collapse
Affiliation(s)
- Nattapol Ma
- International Center for Young Scientists (ICYS), National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Soracha Kosasang
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Ellan K Berdichevsky
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Taichi Nishiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| |
Collapse
|
7
|
Yu S, Li C, Zhao S, Chai M, Hou J, Lin R. Recent advances in the interfacial engineering of MOF-based mixed matrix membranes for gas separation. NANOSCALE 2024; 16:7716-7733. [PMID: 38536054 DOI: 10.1039/d4nr00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The membrane process stands as a promising and transformative technology for efficient gas separation due to its high energy efficiency, operational simplicity, low environmental impact, and easy up-and-down scaling. Metal-organic framework (MOF)-polymer mixed matrix membranes (MMMs) combine MOFs' superior gas-separation performance with polymers' processing versatility, offering the opportunity to address the limitations of pure polymer or inorganic membranes for large-scale integration. However, the incompatibility between the rigid MOFs and flexible polymer chains poses a challenge in MOF MMM fabrication, which can cause issues such as MOF agglomeration, sedimentation, and interfacial defects, substantially weakening membrane separation efficiency and mechanical properties, particularly gas separation. This review focuses on engineering MMMs' interfaces, detailing recent strategies for reducing interfacial defects, improving MOF dispersion, and enhancing MOF loading. Advanced characterisation techniques for understanding membrane properties, specifically the MOF-polymer interface, are outlined. Lastly, it explores the remaining challenges in MMM research and outlines potential future research directions.
Collapse
Affiliation(s)
- Shuwen Yu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Conger Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shuke Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
8
|
Ren Z, Zhang N, Wu Y, Ding X, Yang X, Kong Y, Xing H. Facet-controlled assembly for organizing metal-organic framework particles into extended structures. iScience 2023; 26:107867. [PMID: 37766967 PMCID: PMC10520824 DOI: 10.1016/j.isci.2023.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials characterized by their high porosity and chemical tailorability. To realize the full potential of synthesized MOFs, it is important to transform them from crystalline solid powders into materials with integrated morphologies and properties. One promising approach is facet-controlled assembly, which involves arranging individual crystalline MOF particles into ordered macroscale structures by carefully controlling the interactions between particles. The resulting assembled MOF structures maintain the characteristics of individual particles while also exhibiting improved properties overall. In this article, we emphasize the essential concepts of MOF assembly, highlighting the impact of building blocks, surface interactions, and Gibbs free energy on the assembly process. We systematically examine three methods of guiding facet-controlled MOF assembly, including spontaneous assembly, assembly guided by external forces, and assembly through surface modifications. Lastly, we offer outlooks on future advancements in the fabrication of MOF-based material and potential application exploration.
Collapse
Affiliation(s)
- Zhongwu Ren
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Nannan Zhang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuanyuan Wu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xue Ding
- School of Design and Art, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoxin Yang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
9
|
Izu H, Tabe H, Namiki Y, Yamada H, Horike S. Heterogenous CO 2 Reduction Photocatalysis of Transparent Coordination Polymer Glass Membranes Containing Metalloporphyrins. Inorg Chem 2023. [PMID: 37432910 DOI: 10.1021/acs.inorgchem.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Transparent and grain boundary-free substrates are essential to immobilize molecular photocatalysts for efficient photoirradiation reactions without unexpected light scattering and absorption by the substrates. Herein, membranes of coordination polymer glass immobilizing metalloporphyrins were examined as a heterogeneous photocatalyst for carbon dioxide (CO2) reduction under visible-light irradiation. [Zn(HPO4)(H2PO4)2](ImH2)2 (Im = imidazolate) liquid containing iron(III) 5,10,15,20-tetraphenyl-21H,23H-porphine chloride (Fe(TPP)Cl, 0.1-0.5 w/w%) was cast on a borosilicate glass substrate, followed by cooling to room temperature, resulting in transparent and grain boundary-free membranes with the thicknesses of 3, 5, and 9 μm. The photocatalytic activity of the membranes was in proportion to the membrane thickness, indicating that Fe(TPP)Cl in the subsurface of membranes effectively absorbed light and contributed to the reactions. The membrane photocatalysts were intact during the photocatalytic reaction and showed no recrystallization or leaching of Fe(TPP)Cl.
Collapse
Affiliation(s)
- Hitoshi Izu
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyasu Tabe
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuji Namiki
- Frontier Research Center, POLA Chemical Industries, Inc., Kashio-cho, Totsuka-ku, Yokohama, Kanagawa 244-0812, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroki Yamada
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Ma QC, Yue TC, Cao QW, Xie ZB, Dong QW, Wang DZ, Wang LL. Study on magnetic and dye adsorption properties of five coordination polymers based on triazole carboxylic acid ligands. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Abstract
The melting phenomenon in metal-organic frameworks (MOFs) has been recognised as one of the fourth generation MOF paradigm behaviours. Molten MOFs have high processibility for producing mechanically robust glassy MOF macrostructures, and they also offer highly tunable interfacial characteristics when combined with other types of functional materials, such as crystalline MOFs, inorganic glass and metal halide perovskites. As a result, MOF glass composites have emerged as a family of functional materials with dynamic properties and hierarchical structural control. These nanocomposites allow for sophisticated materials science studies as well as the fabrication of next-generation separation, catalysis, optical, and biomedical devices. Here, we review the approaches for designing, fabricating, and characterising MOF glass composites. We determine the key application opportunities enabled by these composites and explore the remaining hurdles, such as improving thermal and chemical compatibility, regulating interfacial properties, and scalability.
Collapse
Affiliation(s)
- Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
| | - Vicki Chen
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
- University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, Cambridge University, CB3 0FS, Cambridge, UK
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
12
|
Wang C, Ren G, Tan Q, Che G, Luo J, Li M, Zhou Q, Guo DY, Pan Q. Detection of organic arsenic based on acid-base stable coordination polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122812. [PMID: 37167746 DOI: 10.1016/j.saa.2023.122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Organic arsenic, usually found in animal feed and livestock farm wastewater, is a carcinogenic and life-threatening substance. Hence, for the rapid and sensitive detection of organic arsenic, the development of new fluorescent sensors is quite essential. Here, an acid-base stable coordination polymer (HNU-62) was constructed by the introduction of hydrophobic fluorescence ligand, which can be used as a highly selective sensor for the detection of roxarsone (ROX) in water. The limit of detection (LOD) of HNU-62 for ROX was 4.5 × 10-6 M. Furthermore, HNU-62 also exhibits good anti-interference and recyclability, which can be used in detecting ROX in real samples of pig feed. This work provides an alternative approach for the construction of water-stable coordination polymer-based fluorescence sensors.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Guojian Ren
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China.
| | - Qinyue Tan
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China
| | - Guang Che
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Jian Luo
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Meiling Li
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Qi Zhou
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd, Xiamen, China.
| | - Qinhe Pan
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
13
|
Zhang Y, Sheng K, Wang Z, Wu W, Yin BH, Zhu J, Zhang Y. Rational Design of MXene Hollow Fiber Membranes for Gas Separations. NANO LETTERS 2023; 23:2710-2718. [PMID: 36926943 DOI: 10.1021/acs.nanolett.3c00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One scalable and facile dip-coating approach was utilized to construct a thin CO2-selection layer of Pebax/PEGDA-MXene on a hollow fiber PVDF substrate. An interlayer spacing of 3.59 Å was rationally designed and precisely controlled for the MXene stacks in the coated layer, allowing efficient separation of the CO2 (3.3 Å) from N2 (3.6 Å) and CH4 (3.8 Å). In addition, CO2-philic nanodomains in the separation layer were constructed by grafting PEGDA into MXene interlayers, which enhanced the CO2 affinity through the MXene interlayers, while non-CO2-philic nanodomains could promote CO2 transport due to the low resistance. The membrane could exhibit optimal separation performance with a CO2 permeance of 765.5 GPU, a CO2/N2 selectivity of 54.5, and a CO2/CH4 selectivity of 66.2, overcoming the 2008 Robeson upper bounds limitation. Overall, this facile approach endows a precise controlled molecular sieving MXene membrane for superior CO2 separation, which could be applied for interlayer spacing control of other 2D materials during membrane construction.
Collapse
Affiliation(s)
- Yiming Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Natural Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Kai Sheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zheng Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wenjia Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ben Hang Yin
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington 5046, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 5046, New Zealand
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- Engineering Research Centre of Advanced Manufacturing of Ministry of Education, Zhengzhou, 450001, PR China
| |
Collapse
|
14
|
Frentzel-Beyme L, Kolodzeiski P, Weiß JB, Schneemann A, Henke S. Quantification of gas-accessible microporosity in metal-organic framework glasses. Nat Commun 2022; 13:7750. [PMID: 36517486 PMCID: PMC9751146 DOI: 10.1038/s41467-022-35372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Metal-organic framework (MOF) glasses are a new class of glass materials with immense potential for applications ranging from gas separation to optics and solid electrolytes. Due to the inherent difficulty to determine the atomistic structure of amorphous glasses, the intrinsic structural porosity of MOF glasses is only poorly understood. Here, we investigate the porosity features (pore size and pore limiting diameter) of a series of prototypical MOF glass formers from the family of zeolitic imidazolate frameworks (ZIFs) and their corresponding glasses. CO2 sorption at 195 K allows quantifying the microporosity of these materials in their crystalline and glassy states, also providing excess to the micropore volume and the apparent density of the ZIF glasses. Additional hydrocarbon sorption data together with X-ray total scattering experiments prove that the porosity features of the ZIF glasses depend on the types of organic linkers. This allows formulating design principles for a targeted tuning of the intrinsic microporosity of MOF glasses. These principles are counterintuitive and contrary to those established for crystalline MOFs but show similarities to strategies previously developed for porous polymers.
Collapse
Affiliation(s)
- Louis Frentzel-Beyme
- Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Pascal Kolodzeiski
- Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Jan-Benedikt Weiß
- Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Andreas Schneemann
- Anorganische Chemie I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Sebastian Henke
- Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany.
| |
Collapse
|
15
|
Das C, Nishiguchi T, Fan Z, Horike S. Crystallization Kinetics of a Liquid-Forming 2D Coordination Polymer. NANO LETTERS 2022; 22:9372-9379. [PMID: 36441580 DOI: 10.1021/acs.nanolett.2c03207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We investigated a mechanism of crystal melting and crystallization behavior of a two-dimensional coordination polymer [Ag2(L1)(CF3SO3)2] (1, L1 = 4,4'-biphenyldicarbonitrile) upon heating-cooling processes. The crystal showed melting at 282 °C, and the following gentle cooling induced the abrupt crystallization at 242 °C confirmed by DSC. A temperature-dependent structural change has been discussed through calorimetric, spectroscopic, and mechanical measurements. They indicated that the coordination-bond networks are partially retained in the melt state, but the melt showed a significantly low viscosity of 9.8 × 10-2 Pa·s at Tm which is six orders lower than that of ZIF-62 at Tm (435 °C). Rheological studies provided an understanding of the fast relaxation dynamics for the recrystallization process, along with that the high Tm provides enough thermal energy to crossover the activation energy barrier for the nucleation. The isothermal crystallization kinetics through calorimetric measurements with applying the Avrami equation identified the nature of the nuclei and its crystal growth mechanism.
Collapse
Affiliation(s)
- Chinmoy Das
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto606-8501, Japan
| | - Taichi Nishiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Zeyu Fan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong21210, Thailand
| |
Collapse
|
16
|
Yu Z, Tang L, Ma N, Horike S, Chen W. Recent progress of amorphous and glassy coordination polymers. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Kurihara T, Ohara K, Kadota K, Izu H, Nishiyama Y, Mizuno M, Horike S. Three-Dimensional Metal-Organic Network Glasses from Bridging MF 62- Anions and Their Dynamic Insights by Solid-State NMR. Inorg Chem 2022; 61:16103-16109. [PMID: 36154003 DOI: 10.1021/acs.inorgchem.2c02580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glassy-state coordination polymers (CPs) are a new class of network-forming glasses. In this work, we constructed glass-forming CPs composed of both anionic and neutral ligands as network formers. With the use of hexafluoro anions (MF62-) and 1,3-bis(4-pyridyl)propane (bpp), two isostructural CP crystals, [Zn(SiF6)(bpp)2] (ZnSi) and [Zn(TiF6)(bpp)2] (ZnTi), were synthesized. Solid-state 19F NMR revealed rotational motion of MF62- with dissociation and re-formation of the Zn-F coordination bonds in both CP crystals, which reflects the thermodynamic parameters related to the glass formability. The mobility of SiF62- is larger than that of TiF62-, suggesting a higher glass formability of ZnSi. When mechanical ball milling was conducted, ZnSi completely changed into a glassy state, whereas ZnTi showed incomplete glass formation. Examination of the amorphous structures elucidated retention and partial destruction of the Zn-F coordination bonds in ball-milled ZnSi and ZnTi, respectively. These results provide the relationship between the ligand dynamics and glass formability of CPs.
Collapse
Affiliation(s)
- Takuya Kurihara
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.,Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kotaro Ohara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kentaro Kadota
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitoshi Izu
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan.,JEOL RESONANCE Inc., Akishima, Tokyo 196-8558, Japan
| | - Motohiro Mizuno
- Nanomaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
18
|
Xia H, Jin H, Zhang Y, Song H, Hu J, Huang Y, Li Y. A long-lasting TIF-4 MOF glass membrane for selective CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Metal–Organic Frameworks-Mediated Assembly of Gold Nanoclusters for Sensing Applications. JOURNAL OF ANALYSIS AND TESTING 2022; 6:163-177. [PMID: 35572781 PMCID: PMC9076503 DOI: 10.1007/s41664-022-00224-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
|
20
|
Novel infinite coordination polymer (ICP) modified thin-film polyamide nanocomposite membranes for simultaneous enhancement of antifouling and chlorine-resistance performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Affiliation(s)
- Nattapol Ma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Satoshi Horike
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
22
|
Watcharatpong T, Pila T, Maihom T, Ogawa T, Kurihara T, Ohara K, Inoue T, Tabe H, Wei YS, Kongpatpanich K, Horike S. Coordination polymer-forming liquid Cu(2-isopropylimidazolate). Chem Sci 2022; 13:11422-11426. [PMID: 36320588 PMCID: PMC9533396 DOI: 10.1039/d2sc03223f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
The structure of the melt state of one-dimensional (1D) coordination polymer crystal Cu(isopropylimidazolate) (melting temperature Tm = 143 °C) was characterized by DSC, variable temperature PXRD, solid-state NMR (SSNMR), viscoelastic measurements, XAS, and DFT-AIMD calculations. These analyses suggested “coordination polymer-forming liquid” formation with preserved coordination bonds above Tm. Variable chain configurations and moderate cohesive interaction in adjacent chains are the keys to the rarely observed polymer-forming liquid. The melt structure is reminiscent of the common 1D organic polymer melts such as entanglement or random coil structures. The melt state of coordination polymer crystals is composed of macromolecular-chain assemblies without coordination bond breaking. The coordination-polymer-forming liquid provides various morphologies, including spun fibers.![]()
Collapse
Affiliation(s)
- Teerat Watcharatpong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Taweesak Pila
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Thana Maihom
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73410, Thailand
| | - Tomohiro Ogawa
- Institute for Integrated Cell-Material Sciences-VISTEC Research Center, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Kurihara
- Institute for Integrated Cell-Material Sciences-VISTEC Research Center, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koji Ohara
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo 679-5198, Hyogo, Japan
| | - Tadashi Inoue
- Department of Macromolecular Science, Graduate School of Science, Osaka University Toyonaka, Osaka 657-0043, Japan
| | - Hiroyasu Tabe
- Institute for Integrated Cell-Material Sciences-VISTEC Research Center, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yong-Sheng Wei
- Institute for Integrated Cell-Material Sciences-VISTEC Research Center, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kanokwan Kongpatpanich
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Satoshi Horike
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
- Institute for Integrated Cell-Material Sciences-VISTEC Research Center, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
23
|
Fan Z, Das C, Demessence A, Zheng R, Tanabe S, Wei YS, Horike S. Photoluminescent coordination polymer bulk glasses and laser-induced crystallization. Chem Sci 2022; 13:3281-3287. [PMID: 35414885 PMCID: PMC8926292 DOI: 10.1039/d1sc06751f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Over centimeter-sized luminescent coordination polymer glasses were fabricated. They showed high transparency (over 80%) and strong green emission at room temperature. The glass-to-crystal transformation by laser irradiation was demonstrated.
Collapse
Affiliation(s)
- Zeyu Fan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Chinmoy Das
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Aude Demessence
- Univ Lyon, Claude Bernard Lyon 1 University, UMR CNRS 5256, Institute of Researches on Catalysis and Environment of Lyon (IRCELYON), Villeurbanne, France
| | - Ruilin Zheng
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Setsuhisa Tanabe
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Horike
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|