1
|
Yuan D, Qi Y, Ma C, Fu P, Volmer DA. Selective molecular characterization of organic aerosols using in situ laser desorption ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9847. [PMID: 38890224 DOI: 10.1002/rcm.9847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
RATIONALE The sources and chemical compositions of organic aerosol (OA) exert a significant influence on both regional and global atmospheric conditions, thereby having far-reaching implications on environmental chemistry. However, existing mass spectrometry (MS) methods have limitations in characterizing the detailed composition of OA due to selective ionization as well as fractionation during cold-water extraction and solid-phase extraction (SPE). METHODS A comprehensive MS study was conducted using aerosol samples collected on dusty, clean, and polluted days. To supplement the data obtained from electrospray ionization (ESI), a strategy for analyzing OAs collected using the quartz fiber filter directly utilizing laser desorption ionization (LDI) was employed. Additionally, the ESI method was conducted to explore suitable approaches for determining various OA compositions from samples collected on dusty, clean, and polluted days. RESULTS In situ LDI has the advantages of significantly reducing the sample volume, simplifying sample preparation, and overcoming the problem of overestimating sulfur-containing compounds usually encountered in ESI. It is suitable for the characterization of highly unsaturated and hydrophobic aerosols, such as brown carbon-type compounds with low volatility and high stability, which is supplementary to ESI. CONCLUSIONS Compared with other ionization methods, in situ LDI helps provide a complementary description of the molecular compositions of OAs, especially for analyzing OAs in polluted day samples. This method may contribute to a more comprehensive MS analysis of the elusive compositions and sources of OA in the atmosphere.
Collapse
Affiliation(s)
- Daohe Yuan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Chao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Dietrich A Volmer
- Bioanalytical Chemistry, Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
2
|
Lin Y, Min K, Ma W, Yang X, Lu D, Lin Z, Liu Q, Jiang G. Probing the stability of metal-organic frameworks by structure-responsive mass spectrometry imaging. Chem Sci 2024; 15:3698-3706. [PMID: 38455012 PMCID: PMC10915809 DOI: 10.1039/d4sc00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
The widespread application of metal-organic frameworks (MOFs) is seriously hindered by their structural instability and it is still very challenging to probe the stability of MOFs during application by current techniques. Here, we report a novel structure-responsive mass spectrometry (SRMS) imaging technique to probe the stability of MOFs. We discovered that intact CuBTC (as a model of MOFs) could generate the characteristic peaks of organic ligands and carbon cluster anions in laser desorption/ionization mass spectrometry, but these peaks were significantly changed when the structure of CuBTC was dissociated, thus enabling a label-free probing of the stability. Furthermore, SRMS can be performed in imaging mode to visualize the degradation kinetics and reveal the spatial heterogeneity of the stability of CuBTC. This technique was successfully applied in different application scenarios (in water, moist air, and CO2) and also validated with different MOFs. It thus provides a versatile new tool for better design and application of environment-sensitive materials.
Collapse
Affiliation(s)
- Yue Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS Hangzhou 310024 China
| | - Ke Min
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
| | - Wende Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
| | - Xuezhi Yang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS Hangzhou 310024 China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350116 China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
- Institute of Environment and Health, Jianghan University Wuhan 430056 China
- University of Chinese Academy of Sciences Beijing 100190 China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
- University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
3
|
Shen J, Sun N, Wang J, Zens P, Kunzke T, Buck A, Prade VM, Wang Q, Feuchtinger A, Hu R, Berezowska S, Walch A. Patterns of Carbon-Bound Exogenous Compounds Impact Disease Pathophysiology in Lung Cancer Subtypes in Different Ways. ACS NANO 2023; 17:16396-16411. [PMID: 37639684 PMCID: PMC10510585 DOI: 10.1021/acsnano.2c11161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Carbon-bound exogenous compounds, such as polycyclic aromatic hydrocarbons (PAHs), tobacco-specific nitrosamines, aromatic amines, and organohalogens, are known to affect both tumor characteristics and patient outcomes in lung squamous cell carcinoma (LUSC); however, the roles of these compounds in lung adenocarcinoma (LUAD) remain unclear. We analyzed 11 carbon-bound exogenous compounds in LUAD and LUSC samples using in situ high mass-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging and performed a cluster analysis to compare the patterns of carbon-bound exogenous compounds between these two lung cancer subtypes. Correlation analyses were conducted to investigate associations among exogenous compounds, endogenous metabolites, and clinical data, including patient survival outcomes and smoking behaviors. Additionally, we examined differences in exogenous compound patterns between normal and tumor tissues. Our analyses revealed that PAHs, aromatic amines, and organohalogens were more abundant in LUAD than in LUSC, whereas the tobacco-specific nitrosamine nicotine-derived nitrosamine ketone was more abundant in LUSC. Patients with LUAD and LUSC could be separated according to carbon-bound exogenous compound patterns detected in the tumor compartment. The same compounds had differential impacts on patient outcomes, depending on the cancer subtype. Correlation and network analyses indicated substantial differences between LUAD and LUSC metabolomes, associated with substantial differences in the patterns of the carbon-bound exogenous compounds. These data suggest that the contributions of these carcinogenic compounds to cancer biology may differ according to the cancer subtypes.
Collapse
Affiliation(s)
- Jian Shen
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
- Nanxishan
Hospital of Guangxi Zhuang Autonomous Region, Institute of Pathology, Guilin 541002, People’s Republic of China
| | - Na Sun
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Jun Wang
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Philipp Zens
- Institute
of Tissue Medicine and Pathology, University
of Bern, Murtenstrasse 31, Bern 3008, Switzerland
- Graduate
School for Health Sciences, University of
Bern, Mittelstrasse 43, Bern 3012, Switzerland
| | - Thomas Kunzke
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Achim Buck
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Verena M. Prade
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Qian Wang
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Annette Feuchtinger
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Ronggui Hu
- Center
for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200030, People’s
Republic of China
| | - Sabina Berezowska
- Institute
of Tissue Medicine and Pathology, University
of Bern, Murtenstrasse 31, Bern 3008, Switzerland
- Department
of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Axel Walch
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| |
Collapse
|
4
|
Min K, Deng S, Shu Z, Li Y, Chen B, Ma M, Liu Q, Jiang G. Monitoring the adsorption of per- and polyfluoroalkyl substances on carbon black by LDI-MS capable of simultaneous analysis of elemental and organic carbon. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1311-1321. [PMID: 37525938 DOI: 10.1039/d3em00129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Elemental carbon (EC) and organic carbon (OC) exist ubiquitously and interact mutually in the environment. Simultaneous analysis of EC and OC will greatly advance our understanding of the behavior and fate of EC and OC, but is however still a great challenge due to the lack of suitable analytical tools. Here, we report a matrix-free laser desorption/ionization mass spectrometry (LDI-MS) method capable of simultaneous analysis of EC and OC by monitoring two independent groups of specific MS fingerprint peaks. We found that EC itself can generate carbon cluster peaks in the low mass range under laser excitation, and meanwhile it can also serve as a matrix to assist the ionization of OC in LDI-MS. By using per- and polyfluoroalkyl substances (PFASs) as a typical set of OC and carbon black (CB) as a model EC, we successfully monitored the adsorption process of PFASs on CB enabled by LDI-MS. We show that hydrophobic interaction dominates the sorption of PFASs to CB, which was affected by the functional groups and carbon chain length of PFASs. Furthermore, environmental substances in water such as humic acid (HA) and surfactants can significantly affect the adsorption of PFASs on CB probably by changing the adsorption sites of CB. Overall, we demonstrate that LDI-MS offers a versatile and high-throughput tool for simultaneous analysis of EC and OC species in real environmental samples, which makes it promising for investigating the environmental behaviors and ecological risks of pollutants.
Collapse
Affiliation(s)
- Ke Min
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Shenxi Deng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhao Shu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Taishan Institute for Ecology and Environment (TIEE), Jinan 250100, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
5
|
Mou HZ, Pan J, Zhao CL, Xing L, Mo Y, Kang B, Chen HY, Xu JJ. Nanometer Resolution Mass Spectro-Microtomography for In-Depth Anatomical Profiling of Single Cells. ACS NANO 2023. [PMID: 37184339 DOI: 10.1021/acsnano.3c01449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Visually identifying the molecular changes in single cells is of great importance for unraveling fundamental cellular functions as well as disease mechanisms. Herein, we demonstrated a mass spectro-microtomography with an optimal voxel resolution of ∼300 × 300 × 25 nm3, which enables three-dimensional tomography of chemical substances in single cells. This mass imaging method allows for the distinguishment of abundant endogenous and exogenous molecules in subcellular structures. Combined with statistical analysis, we demonstrated this method for spatial metabolomics analysis of drug distribution and subsequent molecular damages caused by intracellular drug action. More interestingly, thanks to the nanoprecision ablation depth (∼12 nm), we realized metabolomics profiling of cell membrane without the interference of cytoplasm and improved the distinction of cancer cells from normal cells. Our current method holds great potential to be a powerful tool for spatially resolved single-cell metabolomics analysis of chemical components during complex biological processes.
Collapse
Affiliation(s)
- Han-Zhang Mou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cong-Lin Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuxiang Mo
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Chen J, Mao L, Jiang Y, Liu H, Wang X, Meng L, Du Q, Han J, He L, Huang H, Wang Y, Xiong C, Wei Y, Nie Z. Revealing the In Situ Behavior of Aggregation-Induced Emission Nanoparticles and Their Biometabolic Effects via Mass Spectrometry Imaging. ACS NANO 2023; 17:4463-4473. [PMID: 36802559 DOI: 10.1021/acsnano.2c10058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Simultaneous imaging of exogenous nanomaterials and endogenous metabolites in situ remains challenging and is beneficial for a systemic understanding of the biological behavior of nanomaterials at the molecular level. Here, combined with label-free mass spectrometry imaging, visualization and quantification of the aggregation-induced emission nanoparticles (NPs) in tissue were realized as well as related endogenous spatial metabolic changes simultaneously. Our approach enables us to identify the heterogeneous deposition and clearance behavior of nanoparticles in organs. The accumulation of nanoparticles in normal tissues results in distinct endogenous metabolic changes such as oxidative stress as indicated by glutathione depletion. The low passive delivery efficiency of nanoparticles to tumor foci suggested that the enrichment of NPs in tumors did not benefit from the abundant tumor vessels. Moreover, spatial-selective metabolic changes upon NPs mediated photodynamic therapy was identified, which enables understanding of the NPs induced apoptosis in the process of cancer therapy. This strategy allows us to simultaneously detect exogenous nanomaterials and endogenous metabolites in situ, hence to decipher spatial selective metabolic changes in drug delivery and cancer therapy processes.
Collapse
Affiliation(s)
- Junyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Liucheng Mao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuming Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qiuyao Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liuying He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hongye Huang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yawei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical Engineering, Jiujiang University, Jiujiang, Jiangxi 332005, China
| |
Collapse
|
7
|
Zhang X, Leng S, Qiu M, Ding Y, Zhao L, Ma N, Sun Y, Zheng Z, Wang S, Li Y, Guo X. Chemical fingerprints and implicated cancer risks of Polycyclic aromatic hydrocarbons (PAHs) from fine particulate matter deposited in human lungs. ENVIRONMENT INTERNATIONAL 2023; 173:107845. [PMID: 36871324 DOI: 10.1016/j.envint.2023.107845] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Exposure to fine particles (PM2.5) and associated PAHs are frequently linked with lung cancer, which makes the understanding of their occurrence and health risk in human lungs urgently important. Using the ultrasonic treatment and sequencing centrifugation (USC) extraction method coupled with gas chromatography-tandem mass spectrometry (GC - MS/MS) analysis, we revealed the molecular fingerprints of PM-accumulated PAHs in human lungs from a cohort of 68 patients with lung cancer in a typical air-polluted region, China. Sixteen priority PAHs can be grouped by concentrations as ∼ 1 × 104 ng/g (ANT/BkF/ACE/DBA/BgP/PHN/PYR), 2-5 × 103 ng/g (BaP/FLE/NaP/BbF), and ∼ 1 × 103 ng/g (IND/Acy/CHR/FLT/BaA). The sum concentration of 16 PAHs was approximately equaled to 13% of those in atmospheric PM2.5, suggesting significant pulmonary leaching of PAHs deposited in lungs. Low- and high-molecular weight PAHs accounted for ∼ 41.8% and ∼ 45.1% of the total PAHs, respectively, which indicated that atmospheric PM2.5, tobacco and cooking smoke were likely to be important sources of pulmonary PAHs. The evident increasing concentrations of NaP and FLE in pulmonary PM were significantly correlated with smoking history among smokers. The implicated carcinogenic potency of PM-accumulated PAHs among the participants aged 70-80 was 17 times that among participants aged 40-50 on the basis of BaP equivalent concentration (BaPeq) evaluation. The particulate enrichment factor (EFP), the PAH content in pulmonary PM relative to the bulk lung tissue, was equaled to 54 ∼ 835 and averaged at 436. The high value of EFP suggested that PAHs were essentially accumulated in pulmonary PM and exhibited a pattern of "hotspot" distribution in the lungs, which would likely increase the risk of monoclonal tumorigenesis. The chemical characteristics of PM-accumulated PAHs in human lungs together with their implicated lung cancer risks could provide significant information for understanding health effects of particulate pollution in the human body.
Collapse
Affiliation(s)
- Xiangyuan Zhang
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Siwen Leng
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Yifan Ding
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Lin Zhao
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Na Ma
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Yue Sun
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Zijie Zheng
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Shaodong Wang
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China.
| | - Yun Li
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Xuejun Guo
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
8
|
Park JE, Lee JY, Chae J, Min CH, Shin HS, Lee SY, Lee JY, Park JH, Jeon J. In vivo tracking of toxic diesel particulate matter in mice using radiolabeling and nuclear imaging. CHEMOSPHERE 2023; 313:137395. [PMID: 36574577 DOI: 10.1016/j.chemosphere.2022.137395] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Exposure to diesel particulate matter (DPM) is associated with several adverse health effects, including severe respiratory diseases. Quantitative analysis of DPM in vivo can provide important information on the behavior of harmful chemicals, as well as their toxicological impacts in living subjects. This study presents whole-body images and tissue distributions of DPM in animal models, using molecular imaging and radiolabeling techniques. The self-assembly of the 89Zr-labeled pyrene analog with a suspension of DPM efficiently produced 89Zr-incorporated DPM (89Zr-DPM). Positron emission tomography images were obtained for mice exposed to 89Zr-DPM via three administration routes: intratracheal, oral, and intravenous injection. DPM was largely distributed in the lungs and only slowly cleared after 7 days in mice exposed via the intratracheal route. In addition, a portion of 89Zr-DPM was translocated to other organs, such as the heart, spleen, and liver. Uptake values in these organs were also noticeable following exposure via the intravenous route. In contrast, most of the orally administered DPM was excreted quickly within a day. These results suggest that continuous inhalation exposure to DPM causes serious lung damage and may cause toxic effects in the extrapulmonary organs.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jun Young Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea
| | - Jungho Chae
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea
| | - Chang Ho Min
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Hee Soon Shin
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea; Food Biotechnology Program, University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - So-Young Lee
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea; Food Biotechnology Program, University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jae Young Lee
- Department of Environmental and Safety Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Jeong Hoon Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea.
| | - Jongho Jeon
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Du S, Jia H, Xu W, Zhai Y. Field-Gradient-Focusing Ion Guide for Enhanced Transfer Efficiency of Low-Mass Ions. Anal Chem 2023; 95:2079-2086. [PMID: 36632644 DOI: 10.1021/acs.analchem.2c05014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Efficient transmission of low-mass ions in a rough vacuum pressure region has always been a challenging issue in mass spectrometry (MS). In this study, a novel ion guide, namely, field-gradient-focusing ion guide (FGF-IG), was proposed to improve the transfer efficiency of ions, especially low-mass ions in a rough vacuum region. The FGF-IG has 12 electrodes whose surfaces gradually narrowed and tilted inward, and its electric field gradually varies from dodecapole (or multipole) to quadrupole along the ion transfer route. The field radius was gradually decreased from 6 to 2 mm in the multipole region (65 mm in length) and finally remained unchanged as 2 mm in the quadrupole region (20 mm in length). By integrating into a miniature mass spectrometer (mini-MS) with a continuous atmospheric pressure interface, this ion guide was optimized in terms of inlet capillary position, radio frequency amplitude, and direct current voltage applied on it. Results showed that a reduced low-mass discrimination effect and improved efficiency of simultaneously transferring mid and low m/z ions were achieved for FGF-IG compared with a conventional ion funnel. Under optimized conditions, a limit of detection of 1 ng/mL was obtained for both reserpine (m/z 609) and arginine (m/z 175) ions by integrating FGF-IG into the mini-MS. The sensitivity of smaller arginine ions using FGF-IG was enhanced by ∼10 times than that obtained using the conventional ion funnel (10 ng/mL) in comparative experiments. The idea of smooth transfer from dodecapole to quadrupole fields could be extended to other multipole fields, as well as in lab-scale MS instruments.
Collapse
Affiliation(s)
- Shiyu Du
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Heyuan Jia
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Yanbing Zhai
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
Li K, Zhang Q, Wang T, Rong R, Hu X, Zhang Y. Laboratory investigation of pollutant emissions and PM 2.5 toxicity of underground coal fires. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155537. [PMID: 35489495 DOI: 10.1016/j.scitotenv.2022.155537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Widespread underground coal fires (UCFs) release large amounts of pollutants, thus leading to air pollution and health impacts. However, this topic has not been widely investigated, especially regarding the potential health hazards. We quantified the pollutant emissions and analyzed the physicochemical properties of UCF PM2.5 in a laboratory study of coal smoldering under a simulated UCF background. The emission factors of CO2, CO, and PM2.5 were 2489 ± 35, 122 ± 9, 12.90 ± 1.79 g/kg, respectively. UCF PM2.5 are carbonaceous particles with varied morphology and complex composition, including heavy metals, silica and polycyclic aromatic hydrocarbons (PAHs). The main PAHs components were those with 2-4 rings. Benzoapyrene (BaP) and indeno[1,2, 3-cd]pyrene (IcdP) were important contributors to the carcinogenesis of these PAHs. We quantitatively evaluate the toxicity of inhaled UCF PM2.5 using a nasal inhalation exposure system. The target organs of UCF PM2.5 are lungs, liver, and kidneys. UCF PM2.5 presented an enriched chemical composition and induced inflammation and oxidative stress, which together mediated multiple organ injury. Long-term PM2.5 metabolism is the main cause of persistent toxicity, which might lead to long-term chronic diseases. Therefore, local authorities should recognize the importance and effects of UCF emissions, especially PM2.5, to establish control and mitigation measures.
Collapse
Affiliation(s)
- Kaili Li
- State Key Laboratory of Fire Science (SKLFS), University of Science and Technology of China, Hefei 230026, China
| | - Qixing Zhang
- State Key Laboratory of Fire Science (SKLFS), University of Science and Technology of China, Hefei 230026, China.
| | - Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory (HFIPS), Chinese Academy of Science, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Rui Rong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaowen Hu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yongming Zhang
- State Key Laboratory of Fire Science (SKLFS), University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Jin Z, Liu M, Huang X, Zhang X, Qu Z, Zhu JJ, Min Q. Top-Down Rational Engineering of Heteroatom-Doped Graphene Quantum Dots for Laser Desorption/Ionization Mass Spectrometry Detection and Imaging of Small Biomolecules. Anal Chem 2022; 94:7609-7618. [PMID: 35575691 DOI: 10.1021/acs.analchem.2c00802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is widely applied in mapping macrobiomolecules in tissues, but it is still limited in profiling low-molecular-weight (MW) compounds (typically metabolites) due to ion interference and suppression by organic matrices. Here, we present a versatile "top-down" strategy for rational engineering of carbon material-based matrices, by which heteroatom-doped graphene quantum dots (HGQDs) were manufactured for LDI MS detection and imaging of small biomolecules. The HGQDs derived from parent materials inherited the π-conjugated networks and doping sites for promoting energy transfer and negative ion generation, while their extremely small size guaranteed the matrix uniformity and signal reproducibility in LDI MSI. Compared to other HGQDs, nitrogen-doped graphene quantum dots (NGQDs) exhibited superior capability of assisting LDI of various small molecules, including amino acids, fatty acids, saccharides, small peptides, nucleobases, anticancer drugs, and bisphenol pollutants. Density functional theory simulations also corroborated that the LDI efficiency was markedly raised by the proton-capturing pyridinic nitrogen species and compromised by the electron-deficient boron dopants. NGQDs-assisted LDI MS further enabled label-free investigation on enzyme kinetics using an ordinary short peptide as the substrate. Moreover, due to the high salt tolerance and signal reproducibility, the proposed negative-ion NGQDs-assisted LDI MSI was able to reveal the abundance and distribution of low-MW species in rat brain tissue and achieved the imaging of low-MW lipids in coronally sectioned rat brains subjected to traumatic brain injury. Our work offers a new route for customizing nanomaterial matrices toward LDI MSI of small biomolecules in biomedical and pathological research.
Collapse
Affiliation(s)
- Zehui Jin
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Meng Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaodan Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuemeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zexing Qu
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Zhou X, Zhang W, Ouyang Z. Recent advances in on-site mass spectrometry analysis for clinical applications. Trends Analyt Chem 2022; 149:116548. [PMID: 35125564 PMCID: PMC8802081 DOI: 10.1016/j.trac.2022.116548] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, mass spectrometry (MS) is increasingly attracting interests for clinical applications, which also calls for technical innovations to make a transfer of MS from conventional analytical laboratories to clinics. The system design and analysis procedure should be friendly for novice users and appliable for on-site clinical diagnosis. In addition, the analysis result should be auto-interpreted and reported in formats much simpler than mass spectra. This motivates new ideas for developments in all the aspects of MS. In this review, we report recent advances of direct sampling ionization and miniature MS system, which have been developed targeting clinical and even point-of-care analysis. We also discuss the trend of the development and provide perspective on the technical challenges raised by diseases such as coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Jiang Y, Sun J, Cao X, Liu H, Xiong C, Nie Z. Laser desorption/ionization mass spectrometry imaging-A new tool to see through nanoscale particles in biological systems. Chemistry 2021; 28:e202103710. [PMID: 34897857 DOI: 10.1002/chem.202103710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Yuming Jiang
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Jie Sun
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Xiaohua Cao
- Jiujiang University, College of Chemical Engineering, CHINA
| | - Huihui Liu
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Caiqiao Xiong
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, CHINA
| | - Zongxiu Nie
- Institute of Chemistry Chinese Academy of Sciences, Chinese Academy of Sciences, Zhongguancun St., 100190, Beijing, CHINA
| |
Collapse
|
14
|
Kunzke T, Prade VM, Buck A, Sun N, Feuchtinger A, Matzka M, Fernandez IE, Wuyts W, Ackermann M, Jonigk D, Aichler M, Schmid RA, Eickelberg O, Berezowska S, Walch A. Patterns of carbon-bound exogenous compounds in lung cancer patients and association with disease pathophysiology. Cancer Res 2021; 81:5862-5875. [PMID: 34666994 DOI: 10.1158/0008-5472.can-21-1175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/30/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Asymptomatic anthracosis is the accumulation of black carbon particles in adult human lungs. It is a common occurrence, but the pathophysiological significance of anthracosis is debatable. Using in situ high mass resolution matrix-assisted laser desorption/ionization (MALDI) fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging analysis, we discovered noxious carbon-bound exogenous compounds, such as polycyclic aromatic hydrocarbons (PAHs), tobacco-specific nitrosamines, or aromatic amines, in a series of 330 lung cancer patients in highly variable and unique patterns. The characteristic nature of carbon-bound exogenous compound had a strong association with patient outcome, tumor progression, the tumor immune microenvironment, PD-L1 expression, and DNA damage. Spatial correlation network analyses revealed substantial differences in the metabolome of tumor cells compared to tumor stroma depending on carbon-bound exogenous compounds. Overall, the bioactive pool of exogenous compounds is associated with several changes in lung cancer pathophysiology and correlates with patient outcome. Given the high prevalence of anthracosis in the lungs of adult humans, future work should investigate the role of carbon-bound exogenous compounds in lung carcinogenesis and lung cancer therapy.
Collapse
Affiliation(s)
- Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| | - Verena M Prade
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| | - Marco Matzka
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| | | | | | | | | | | | | | | | - Sabina Berezowska
- Deparment of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| |
Collapse
|