1
|
Chatterjee A, Sarkar S, Bhattacharjee S, Bhattacharyya A, Barman S, Pal U, Pandey R, Ethirajan A, Jana B, Das BB, Das A. Microtubule-Targeting NAP Peptide-Ru(II)-polypyridyl Conjugate As a Bimodal Therapeutic Agent for Triple Negative Breast Carcinoma. J Am Chem Soc 2024. [PMID: 39725612 DOI: 10.1021/jacs.4c11820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Triple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ (NAP) was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy)32+ (Rubpy) to synthesize an N-stapled short peptide-Rubpy conjugate (Ru-NAP). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT). Ru-NAP formed more elaborate molecular aggregates with fibrillar morphology as compared to NAP. A much higher binding affinity of Ru-NAP over NAP toward β-tubulin (KRu-NAP: (6.8 ± 0.55) × 106 M-1; KNAP: (8.2 ± 1.1) × 104 M-1) was observed due to stronger electrostatic interactions between the MT with an average linear charge density of ∼85 e/nm and the cationic Rubpy part of Ru-NAP. This was also supported by docking, simulation, and appropriate imaging studies. Ru-NAP promoted serum stability, specific binding of NAP to the E-site of the βIII-tubulin followed by the disruption of the MT network, and effective singlet oxygen generation in TNBC cells (MDA-MB-231), causing cell cycle arrest in the G2/M phase and triggering apoptosis. Remarkably, MDA-MB-231 cells were more sensitive to Ru-NAP compared to noncancerous human embryonic kidney (HEK293 cells) when exposed to light (LightIC50Ru-NAP[HEK293]: 17.2 ± 2.5 μM, compared to LightIC50Ru-NAP[MDA-MB-231]: 32.5 ± 7.8 nM, DarkIC50Ru-NAP[HEK293]: > 80 μM, compared to DarkIC50Ru-NAP[MDA-MB-231]: 2.9 ± 0.5 μM). Ru-NAP also effectively inhibited tumor growth in MDA-MB-231 xenograft models in nude mice. Our findings provide strong evidence that Ru-NAP has a potential therapeutic role in TNBC treatment.
Collapse
Affiliation(s)
- Atin Chatterjee
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
- Institute for Materials Research (Imo-imomec), Nanobiophysics and Soft Matter Interfaces (NSI) Group, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Sandip Sarkar
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Sangheeta Bhattacharjee
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Arpan Bhattacharyya
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Barman
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - Raviranjan Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Anitha Ethirajan
- Institute for Materials Research (Imo-imomec), Nanobiophysics and Soft Matter Interfaces (NSI) Group, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
- Imec, Imo-imomec, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Batakrishna Jana
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Amitava Das
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
2
|
Han Z, He M, Wang G, Lehn JM, Li Q. Visible-Light-Driven Solid-State Fluorescent Photoswitches for High-Level Information Encryption. Angew Chem Int Ed Engl 2024; 63:e202416363. [PMID: 39318067 DOI: 10.1002/anie.202416363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Developing visible-light-driven fluorescent photoswitches in the solid state remains an enormous challenge in smart materials. Such photoswitches are obtained from salicylaldimines through excited-state intramolecular proton transfer (ESIPT) and subsequent cis-trans isomerization strategies. By incorporating a bulky naphthalimide fluorophore into a Schiff base, three photoswitches achieve dual-mode changes (both in color and fluorescence) in the solid state. In particular, the optimal one generates triple fluorescence changing from green, to yellow and finally to orange upon visible-light irradiation. This switching process is fully reversible and can be repeated at least 10 times without obvious attenuation, suggesting its good photo-fatigue resistance. Mechanism studies reveal that the naphthalimide group not only enables the tuning of multicolor with an additional emission, but also induces a folded structure, reducing molecular stacking and facilitating ESIPT and cis-trans isomerization. As such, photopatterning, ternary encoding and transient information recording and erasing are successfully developed. The present study provides a reliable strategy for visible-light-driven fluorescent photoswitches, showing implications for advanced information encryption materials.
Collapse
Affiliation(s)
- Zhiyuan Han
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Meixia He
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Gang Wang
- School of Chemical Engineering, Xi'an University, Xi'an, 710065, China
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (lSlS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
3
|
Josa-Culleré L, Aira Rodríguez C, Llebaria A. Hemithioindigo-based histone deacetylase inhibitors induce a light-dependent anticancer effect. Eur J Med Chem 2024; 279:116846. [PMID: 39270453 DOI: 10.1016/j.ejmech.2024.116846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Photoswitchable molecules exhibit light-dependent biological activity which allow us to control the therapeutic effect of drugs with high precision. Such molecules could solve some of the limitations of anticancer drugs by providing a localised effect in the tumour. Histone deacetylase inhibitors (HDACis) constitute a promising drug class for oncology whose application is often limited by a lack of selectivity. Herein, we developed photoswitchable HDACis based on a hemithioindigo scaffold. We established synthetic routes to access them and determined the optimal conditions for isomerisation and their thermal stability. We then optimised their enzyme activity through three rounds of re-design to identify examples that are up to 6-fold more active under illumination than in the dark. We also confirmed that our best derivative reduces the viability of HeLa cells only under illumination. All in all, we disclose a series of derivatives containing a hemithioindigo moiety, which display a light-dependent effect on both HDAC inhibition and cancer cell viability.
Collapse
Affiliation(s)
- Laia Josa-Culleré
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Carla Aira Rodríguez
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
4
|
Lvov AG, Berdnikova DV. Rubizhne Institute - A Birthplace of Photochromic Molecules. CHEM REC 2024; 24:e202400143. [PMID: 39491506 DOI: 10.1002/tcr.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Indexed: 11/05/2024]
Abstract
We introduce the community to the remarkable fact that two significant discoveries in the field of organic photoswitches are associated to the Rubizhne (Rubezhnoe) branch of the Research Institute of Organic Intermediates and Dyes during the last century. The institute in Rubizhne was a place where researchers of various nationalities carried out studies of organic dyes for printing and textiles. These efforts resulted in the discoveries of photoswitchable hemithioindigos by M. A. Mostoslavskii and peri-aryloxyquinones by Yu. E. Gerasimenko. Herein, based on the available literature, we reconstruct the circumstances surrounding these outstanding findings and highlight the unique role of the Rubizhne institute as a research center. Furthermore, we demonstrate the impact of the results of the Rubizhne researchers on the field of photoswitchable molecules.
Collapse
Affiliation(s)
- Andrey G Lvov
- Laboratory of photoactive compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk, 664033, Russia
- Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russia
| | - Daria V Berdnikova
- Organische Chemie II, Universität Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| |
Collapse
|
5
|
Schmitt C, Mauker P, Vepřek NA, Gierse C, Meiring JCM, Kuch J, Akhmanova A, Dehmelt L, Thorn-Seshold O. A Photocaged Microtubule-Stabilising Epothilone Allows Spatiotemporal Control of Cytoskeletal Dynamics. Angew Chem Int Ed Engl 2024; 63:e202410169. [PMID: 38961560 DOI: 10.1002/anie.202410169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The cytoskeleton is essential for spatial and temporal organisation of a wide range of cellular and tissue-level processes, such as proliferation, signalling, cargo transport, migration, morphogenesis, and neuronal development. Cytoskeleton research aims to study these processes by imaging, or by locally manipulating, the dynamics and organisation of cytoskeletal proteins with high spatiotemporal resolution: which matches the capabilities of optical methods. To date, no photoresponsive microtubule-stabilising tool has united all the features needed for a practical high-precision reagent: a low potency and biochemically stable non-illuminated state; then an efficient, rapid, and clean photoresponse that generates a high potency illuminated state; plus good solubility at suitable working concentrations; and efficient synthetic access. We now present CouEpo, a photocaged epothilone microtubule-stabilising reagent that combines these needs. Its potency increases approximately 100-fold upon irradiation by violet/blue light to reach low-nanomolar values, allowing efficient photocontrol of microtubule dynamics in live cells, and even the generation of cellular asymmetries in microtubule architecture and cell dynamics. CouEpo is thus a high-performance tool compound that can support high-precision research into many microtubule-associated processes, from biophysics to transport, cell motility, and neuronal physiology.
Collapse
Affiliation(s)
- Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Philipp Mauker
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Nynke A Vepřek
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Carolin Gierse
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, Dortmund, 44227, Germany
| | - Joyce C M Meiring
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Jürgen Kuch
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Leif Dehmelt
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, Dortmund, 44227, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| |
Collapse
|
6
|
Saroha A, Bosco MS, Menon S, Kumari P, Maity T, Rana S, Kotak S, Mondal J, Agasti SS. Regulation of microtubule dynamics and function in living cells via cucurbit[7]uril host-guest assembly. Chem Sci 2024; 15:11981-11994. [PMID: 39092123 PMCID: PMC11290447 DOI: 10.1039/d4sc00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/07/2024] [Indexed: 08/04/2024] Open
Abstract
Living systems utilize sophisticated biochemical regulators and various signal transduction mechanisms to program bio-molecular assemblies and their associated functions. Creating synthetic assemblies that can replicate the functional and signal-responsive properties of these regulators, while also interfacing with biomolecules, holds significant interest within the realms of supramolecular chemistry and chemical biology. This pursuit not only aids in understanding the fundamental design principles of life but also introduces novel capabilities that contribute to the advancements in medical and therapeutic research. In this study, we present a cucurbit[7]uril (CB[7]) host-guest system designed to regulate the dynamics and functions of microtubules (MTs) in living cells. To establish communication between MTs and CB[7] and to reversibly control MT function through host-guest recognition, we synthesized a two-faced docetaxel-p-xylenediamine (Xyl-DTX) derivative. While Xyl-DTX effectively stabilized polymerized MTs, inducing MT bundling and reducing dynamics in GFP-α-tubulin expressing cells, we observed a significant reduction in its MT-targeted activity upon threading with CB[7]. Leveraging the reversible nature of the host-guest complexation, we strategically reactivated the MT stabilizing effect by programming the guest displacement reaction from the CB[7]·Xyl-DTX complex using a suitable chemical signal, namely a high-affinity guest. This host-guest switch was further integrated into various guest activation networks, enabling 'user-defined' regulatory control over MT function. For instance, we demonstrated programmable control over MT function through an optical signal by interfacing it with a photochemical guest activation network. Finally, we showcased the versatility of this supramolecular system in nanotechnology-based therapeutic approaches, where a self-assembled nanoparticle system was employed to trigger the MT-targeted therapeutic effect from the CB[7]·Xyl-DTX complex.
Collapse
Affiliation(s)
- Akshay Saroha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| | - Monica Swetha Bosco
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| | - Sneha Menon
- Tata Institute of Fundamental Research 36/P, Gopanpally Village Hyderabad 500046 India
| | - Pratibha Kumari
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| | - Tanmoy Maity
- Materials Research Centre, Indian Institute of Science C. V. Raman Road Bangalore 560012 India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science C. V. Raman Road Bangalore 560012 India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology, Indian Institute of Science 560012 Bangalore India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research 36/P, Gopanpally Village Hyderabad 500046 India
| | - Sarit S Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| |
Collapse
|
7
|
Lian YL, Lin YC. The emerging tools for precisely manipulating microtubules. Curr Opin Cell Biol 2024; 88:102360. [PMID: 38640790 DOI: 10.1016/j.ceb.2024.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Cells generate a highly diverse microtubule network to carry out different activities. This network is comprised of distinct tubulin isotypes, tubulins with different post-translational modifications, and many microtubule-based structures. Defects in this complex system cause numerous human disorders. However, how different microtubule subtypes in this network regulate cellular architectures and activities remains largely unexplored. Emerging tools such as photosensitive pharmaceuticals, chemogenetics, and optogenetics enable the spatiotemporal manipulation of structures, dynamics, post-translational modifications, and cross-linking with actin filaments in target microtubule subtypes. This review summarizes the design rationale and applications of these new approaches and aims to provide a roadmap for researchers navigating the intricacies of microtubule dynamics and their post-translational modifications in cellular contexts, thereby opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Yen-Ling Lian
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
8
|
Chen H, Tang Z, Yang Y, Hao Y, Chen W. Recent Advances in Photoswitchable Fluorescent and Colorimetric Probes. Molecules 2024; 29:2521. [PMID: 38893396 PMCID: PMC11173890 DOI: 10.3390/molecules29112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, significant advancements have been made in the research of photoswitchable probes. These probes undergo reversible structural and electronic changes upon light exposure, thus exhibiting vast potential in molecular detection, biological imaging, material science, and information storage. Through precisely engineered molecular structures, the photoswitchable probes can toggle between "on" and "off" states at specific wavelengths, enabling highly sensitive and selective detection of targeted analytes. This review systematically presents photoswitchable fluorescent and colorimetric probes built on various molecular photoswitches, primarily focusing on the types involving photoswitching in their detection and/or signal response processes. It begins with an analysis of various molecular photoswitches, including their photophysical properties, photoisomerization and photochromic mechanisms, and fundamental design concepts for constructing photoswitchable probes. The article then elaborates on the applications of these probes in detecting diverse targets, including cations, anions, small molecules, and biomacromolecules. Finally, it offers perspectives on the current state and future development of photoswitchable probes. This review aims to provide a clear introduction for researchers in the field and guidance for the design and application of new, efficient fluorescent and colorimetric probes.
Collapse
Affiliation(s)
- Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Yewen Yang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China
| |
Collapse
|
9
|
Seliwjorstow A, Takamiya M, Rastegar S, Pianowski Z. Reversible Influence of Hemipiperazine Photochromism on the Early Development of Zebrafish Embryo. Chembiochem 2024; 25:e202400143. [PMID: 38442077 DOI: 10.1002/cbic.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
This study explores the potential of controlling organismal development with light by using reversible photomodulation of activity in bioactive compounds. Specifically, our research focuses on plinabulin 1, an inhibitor of tubulin dynamics that contains a photochromic motif called hemipiperazine. The two isomeric forms, Z-1 and E-1, can partially interconvert with light, yet show remarkable thermal stability in darkness. The Z-isomer exhibits higher cytotoxicity due to stronger binding to α-tubulin's colchicine site. The less toxic E-1 form, considered a "pro-drug", can be isolated in vitro and stored. Upon activation by blue or cyan light, it predominantly generates the more toxic Z-1 form. Here we demonstrate that 1 can effectively photomodulate epiboly, a critical microtubule-dependent cell movement during gastrulation in zebrafish embryos. This research highlights the potential of photomodulation for precise and reversible control of cellular activities and organismal development.
Collapse
Affiliation(s)
- Angelika Seliwjorstow
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems - Biological Information Processing IBCS-BIP, Karlsruhe Institute of Technology KIT, Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems - Biological Information Processing IBCS-BIP, Karlsruhe Institute of Technology KIT, Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Zbigniew Pianowski
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, Kaiserstrasse 12, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems IBCS-FMS, Karlsruhe Institute of Technology KIT, Kaiserstrasse 12, 76131, Karlsruhe, Germany
| |
Collapse
|
10
|
Zhang W, Lu Y, Cheng Y, Wang Y, Wu Z, Zhai J, Xie X. Ion-selective response of visible light photoswitchable indole-hemithioindigo: toward chemical sensing of fluoride and hydroxide. Chem Commun (Camb) 2024; 60:4202-4205. [PMID: 38517126 DOI: 10.1039/d4cc00780h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The chemical sensing of hydrophilic anions such as F- and OH- is of significant importance but also presents considerable challenges. Herein, the thermal E to Z isomerization of a visible-light-responsive photoswitch (HTI-In) is utilized to address this challenge for the first time. The isomerization of HTI-In is dependent on the concentration of F- and OH-, and exhibits excellent selectivity toward F- and OH- over other common anions and cations. Unlike irreversible chemodosimeters and other conventional fluorescent probes, the photodynamic sensing of F- and OH- (demonstrated in solvents and polyurethane hydrogels) is based on a non-equilibrium chemical kinetics and can be operated fully reversibly.
Collapse
Affiliation(s)
- Weian Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yi Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yu Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yifu Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zeying Wu
- School of Chemical Engineering and Material Science, Changzhou Institute of Technology, Changzhou 213032, China
| | - Jingying Zhai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Volarić J, van der Heide NJ, Mutter NL, Samplonius DF, Helfrich W, Maglia G, Szymanski W, Feringa BL. Visible Light Control over the Cytolytic Activity of a Toxic Pore-Forming Protein. ACS Chem Biol 2024; 19:451-461. [PMID: 38318850 PMCID: PMC10877574 DOI: 10.1021/acschembio.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Enabling control over the bioactivity of proteins with light, along with the principles of photopharmacology, has the potential to generate safe and targeted medical treatments. Installing light sensitivity in a protein can be achieved through its covalent modification with a molecular photoswitch. The general challenge in this approach is the need for the use of low energy visible light for the regulation of bioactivity. In this study, we report visible light control over the cytolytic activity of a protein. A water-soluble visible-light-operated tetra-ortho-fluoro-azobenzene photoswitch was synthesized by utilizing the nucleophilic aromatic substitution reaction for installing a solubilizing sulfonate group onto the electron-poor photoswitch structure. The azobenzene was attached to two cysteine mutants of the pore-forming protein fragaceatoxin C (FraC), and their respective activities were evaluated on red blood cells. For both mutants, the green-light-irradiated sample, containing predominantly the cis-azobenzene isomer, was more active compared to the blue-light-irradiated sample. Ultimately, the same modulation of the cytolytic activity pattern was observed toward a hypopharyngeal squamous cell carcinoma. These results constitute the first case of using low energy visible light to control the biological activity of a toxic protein.
Collapse
Affiliation(s)
- Jana Volarić
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Nieck J. van der Heide
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Natalie L. Mutter
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Douwe F. Samplonius
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wijnand Helfrich
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymanski
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
- Department
of Radiology, Medical Imaging Center, University
of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
12
|
Ding K, Gong Q, Wang G, Cui C, Liu F. What Happens to a Pyrrole Hemithioindigo Photoswitch Trapped in a Fluorescent Protein? J Phys Chem B 2024; 128:1161-1169. [PMID: 38279080 DOI: 10.1021/acs.jpcb.3c05894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Artificial molecular photoswitches that can be reversibly controlled into different configurations by external light stimulation have broad application prospects in various fields, such as materials and chemical biology. Among them, the pyrrole hemithioindigo (PHT) photoswitch has a geometric structure similar to that of the fluorescent protein chromophore. What happens when the chromophore is replaced by PHT, and does it achieve similar functions to the original one? To answer these questions, we carried out ONIOM(QM/MM) and classical molecular dynamics studies on the photoisomerization mechanism and spectroscopic properties of PHT in the fluorescent protein. The results showed that in the protein environment, the fate of excited PHT is governed by the competition between fluorescence emission and hula-twist isomerization. Due to the strong steric hindrance effects caused by the interlacing residues in the protein that restrict the PHT conformation transformation, the cis-to-trans isomerization process of PHT needs to overcome a barrier of at least 4.9 kcal/mol; thus, fluorescence emission is more dominant in competition. It is also found that the intermolecular interaction between LYS67 and the carbonyl oxygen of PHT has a significant effect on the fluorescence emission. These results revealed the photochemical reaction mechanism of a light-driven molecular switch in the fluorescent protein and provided further theoretical support for the field of chemical biology.
Collapse
Affiliation(s)
- Kaiyue Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Qianqian Gong
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Chengxing Cui
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Fengyi Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| |
Collapse
|
13
|
Köttner L, Wolff F, Mayer P, Zanin E, Dube H. Rhodanine-Based Chromophores: Fast Access to Capable Photoswitches and Application in Light-Induced Apoptosis. J Am Chem Soc 2024; 146:1894-1903. [PMID: 38207286 DOI: 10.1021/jacs.3c07710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Molecular photoswitches are highly desirable in all chemistry-related areas of research. They provide effective outside control over geometric and electronic changes at the nanoscale using an easy to apply, waste-free stimulus. However, simple and effective access to such molecular tools is typically not granted, and elaborate syntheses and substitution schemes are needed in order to obtain efficient photoswitching properties. Here we present a series of rhodanine-based photoswitches that can be prepared in one simple synthetic step without requiring elaborate purification. Photoswitching is induced by UV and visible light in both switching directions, and thermal stabilities of the metastable states as well as quantum yields are very high. An additional benefit is the hydrogen-bonding capacity of the rhodanine fragment, which enables applications in supramolecular or medicinal chemistry. We further show that the known rhodanine-based inhibitor SMI-16a is a photoswitchable apoptosis inducer. The biological activity of SMI-16a can effectively be switched ON or OFF by reversible photoisomerization between the inactive E and the active Z isomer. Rhodanine-based photoswitches therefore represent an easy to access and highly valuable molecular toolbox for implementing light responsiveness to the breadth of functional molecular systems.
Collapse
Affiliation(s)
- Laura Köttner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Friederike Wolff
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Peter Mayer
- Department of Chemistry and Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Esther Zanin
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Henry Dube
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
14
|
Matsuura K, Inaba H. Photoresponsive peptide materials: Spatiotemporal control of self-assembly and biological functions. BIOPHYSICS REVIEWS 2023; 4:041303. [PMID: 38505425 PMCID: PMC10903425 DOI: 10.1063/5.0179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Peptides work as both functional molecules to modulate various biological phenomena and self-assembling artificial materials. The introduction of photoresponsive units to peptides allows the spatiotemporal remote control of their structure and function upon light irradiation. This article overviews the photoresponsive peptide design, interaction with biomolecules, and applications in self-assembling materials over the last 30 years. Peptides modified with photochromic (photoisomerizable) molecules, such as azobenzene and spiropyran, reversibly photo-controlled the binding to biomolecules and nanostructure formation through self-assembly. Photocleavable molecular units irreversibly control the functions of peptides through cleavage of the main chain and deprotection by light. Photocrosslinking between peptides or between peptides and other biomolecules enhances the structural stability of peptide assemblies and complexes. These photoresponsive peptides spatiotemporally controlled the formation and dissociation of peptide assemblies, gene expressions, protein-drug interactions, protein-protein interactions, liposome deformation and motility, cytoskeleton structure and stability, and cell functions by appropriate light irradiation. These molecular systems can be applied to photo-control biological functions, molecular robots, artificial cells, and next-generation smart drug delivery materials.
Collapse
|
15
|
Gernet A, El Rhaz A, Jean L. Easily Accessible Substituted Heterocyclic Hemithioindigos as Bistable Molecular Photoswitches. Chemistry 2023; 29:e202301160. [PMID: 37357141 DOI: 10.1002/chem.202301160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Thioaurone chromophores, part of the indigoid family and commonly named hemithioindigos, have recently gained attention due to their interesting photoswitching properties. The study focuses on heterocyclic hemithioindigos (Het-HTIs) and investigates their synthesis using electron-rich and electron-poor heterocycles and modifications to the thioindigo moiety. Furthermore, it aims to evaluate the photoswitching performances of these synthesised compounds, with a particular emphasis on the influence of the heterocycles on the photoisomerization capabilities, which was found to be more prominent than the modifications made to the thioindigo moiety. Among the 44 Het-HTIs tested, several exhibited highly efficient photoswitchable properties, demonstrating Z-to-E photoisomerization in the blue region, and E-to-Z photoisomerization in the green or the red regions. Additionally, the metastable E-isomer displayed an impressive half-life of up to 54 days in a polar solvent (DMSO). These results suggest that heterocyclic hemithioindigos hold great promise as photoswitches for researchers interested in light-controlled molecular mechanisms.
Collapse
Affiliation(s)
- Aurélie Gernet
- Université Paris Cité, CNRS, Inserm, CiTCoM, 75006, Paris, France
| | - Ahmed El Rhaz
- Université Paris Cité, CNRS, Inserm, CiTCoM, 75006, Paris, France
| | - Ludovic Jean
- Université Paris Cité, CNRS, Inserm, CiTCoM, 75006, Paris, France
| |
Collapse
|
16
|
Li J, Ma X, Wang Y, Cheng Y, Qin Y, Zhai J, Xie X. Proton-Coupled Photochromic Hemithioindigo: Toward Photoactivated Chemical Sensing and Imaging. Anal Chem 2023; 95:11664-11671. [PMID: 37495553 PMCID: PMC10414032 DOI: 10.1021/acs.analchem.3c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
We report photoswitchable fluorescent hemithioindigos (HTIs) where the metastable E isomers were stabilized by the proton-bridged intramolecular hydrogen bond. Titration experiments and computational analysis indicated that the E isomers were much more basic than the Z isomers, which enabled photoactivated colorimetric and fluorescent pH response in solvents and polypropylene films. The HTIs exhibited reversibly switchable fluorescence with the Z isomers being the most fluorescent. Moreover, the HTIs were lysosomotropic and the kinetic fluorescence evolution during photoswitching was able to differentiate subcellular compartments with different pH. The combination of photoenhanced basicity, switchable fluorescence, and proton-coupled photochromism lay the groundwork for a broad range of chemical and biological applications.
Collapse
Affiliation(s)
- Jing Li
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Xueqing Ma
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Yifu Wang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Yu Cheng
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Yuemin Qin
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Jingying Zhai
- Academy
for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojiang Xie
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Borys F, Tobiasz P, Fabczak H, Joachimiak E, Krawczyk H. First-in-Class Colchicine-Based Visible Light Photoswitchable Microtubule Dynamics Disrupting Agent. Cells 2023; 12:1866. [PMID: 37508530 PMCID: PMC10378023 DOI: 10.3390/cells12141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Compounds that disrupt microtubule dynamics, such as colchicine, paclitaxel, or Vinca alkaloids, have been broadly used in biological studies and have found application in clinical anticancer medications. However, their main disadvantage is the lack of specificity towards cancerous cells, leading to severe side effects. In this paper, we report the first synthesis of 12 new visible light photoswitchable colchicine-based microtubule inhibitors AzoCols. Among the obtained compounds, two photoswitches showed light-dependent cytotoxicity in cancerous cell lines (HCT116 and MCF-7). The most promising compound displayed a nearly twofold increase in potency. Moreover, dissimilar inhibition of purified tubulin polymerisation in cell-free assay and light-dependent disruption of microtubule organisation visualised by immunofluorescence imaging sheds light on the mechanism of action as microtubule photoswitchable destabilisers. The presented results provide a foundation towards the synthesis and development of a novel class of photoswitchable colchicine-based microtubule polymerisation inhibitors.
Collapse
Affiliation(s)
- Filip Borys
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Piotr Tobiasz
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland
| |
Collapse
|
18
|
Zitzmann M, Hampel F, Dube H. A cross-conjugation approach for high-performance diaryl-hemithioindigo photoswitches. Chem Sci 2023; 14:5734-5742. [PMID: 37265733 PMCID: PMC10231315 DOI: 10.1039/d2sc06939c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Diaryl-hemithioindigos (diaryl-HTIs) are derivatives of a novel class of highly functionalized indigoid chromophores. In this work a systematic study of the electronic effects on their photoswitching reveals the design principles for achieving an excellent property profile. Two key elements need to be invoked for perfect diaryl-HTI performance, first introduction of strong electron donors and second establishment of cross-conjugation. The resulting photoswitches combine high thermal stability, large extinction coefficients, red-light responsiveness, pronounced photochromism, and strong isomer accumulation in the photostationary states with precise geometry changes. By using the inherent basicity of their strong electron donor moiety, diaryl-HTIs can be rendered into very potent tools for molecular logic applications. We demonstrate a variety of binary logic setups as well as sophisticated three- and four-input keypad locks for sequential logic operations. Three distinct states and up to four different stimuli are invoked for this multi-level molecular information processing. Diaryl-HTIs have thus entered the stage as very capable and promising photoswitch motives for anyone interested in reversible visible- and red-light as well as multi-stimuli responsive molecular behavior.
Collapse
Affiliation(s)
- Max Zitzmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Frank Hampel
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Henry Dube
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| |
Collapse
|
19
|
Nakamura A, Rao F, Ukiya K, Matsunaga R, Ohira SI, Maegawa T. A concise synthesis of thioaurones via NBS-induced cyclization of MOM-protected 2'-mercaptochalcones. Org Biomol Chem 2023; 21:1134-1137. [PMID: 36484376 DOI: 10.1039/d2ob01995g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
A mild and efficient approach for the synthesis of thioaurones via NBS-induced cyclization of methoxymethyl-protected mercapto-chalcones has been developed. This simple method is highly functional group tolerant and provides straightforward access to thioaurones in good to high yields.
Collapse
Affiliation(s)
- Akira Nakamura
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Fei Rao
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Kazuchika Ukiya
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Riko Matsunaga
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Shin-Ichiro Ohira
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Tomohiro Maegawa
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| |
Collapse
|
20
|
Du G, Fu J, Zheng Y, Hu F, Shen X, Li B, Zhao X, Yu Z. A facile and light-controllable drug combination for enhanced photopharmacology. Org Biomol Chem 2023; 21:1021-1026. [PMID: 36607248 DOI: 10.1039/d2ob02190k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigated the feasibility of creating cyclic azobenzene/azobenzene-based photo-switchable drugs that can fine-tune antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with light dependence. Furthermore, a "light-controlled drug combination" of these obtained drugs could be reversibly controlled to efficiently improve the antibiotic effect so as to reduce the minimum inhibitory concentrations (MICs) with different wavelength light illumination. Importantly, their antimicrobial activity could be easily manipulated by using light in bacterial patterning studies with high spatiotemporal precision, which might allow for localized activation of drugs and provide an alternative solution for practical clinical application in photopharmacology.
Collapse
Affiliation(s)
- Guangxi Du
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Jielin Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yuanqin Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Fuqiang Hu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Xin Shen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Baolin Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Xiaohu Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| |
Collapse
|
21
|
Olesińska-Mönch M, Deo C. Small-molecule photoswitches for fluorescence bioimaging: engineering and applications. Chem Commun (Camb) 2023; 59:660-669. [PMID: 36622788 DOI: 10.1039/d2cc05870g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fluorescence microscopy has revolutionised our understanding of biological systems, enabling the visualisation of biomolecular structures and dynamics in complex systems. The possibility to reversibly control the optical or biochemical properties of fluorophores can unlock advanced applications ranging from super-resolution microscopy to the design of multi-stimuli responsive and functional biosensors. In this Highlight, we review recent progress in small-molecule photoswitches applied to biological imaging with an emphasis on molecular engineering strategies and promising applications, while underlining the main challenges in their design and implementation.
Collapse
Affiliation(s)
- Magdalena Olesińska-Mönch
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany.
| | - Claire Deo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany.
| |
Collapse
|
22
|
Müller-Deku A, Thorn-Seshold O. Exhaustive Catalytic ortho-Alkoxylation of Azobenzenes: Flexible Access to Functionally Diverse Yellow-Light-Responsive Photoswitches. J Org Chem 2022; 87:16526-16531. [PMID: 36475716 DOI: 10.1021/acs.joc.2c02214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We develop the first method for catalytic, exhaustive ortho-alkoxylation of azobenzene photoswitches. Alkoxylation is known to improve the photoswitch properties that control azobenzenes' success in chemical biology or materials sciences, e.g., better completeness of both E → Z and Z → E photoisomerizations and >100 nm red shift of photoresponse. Our method enables straightforward late-stage diversification of photoswitches with interesting functional handles. We showcase four applications: using it to rationally tune lipophilicity, prepare isotopic tracers for metabolism studies, install full water solubility without ionic charges, and efficiently access previously difficult mixed-substituent photoswitches. We also identified a previously unexplored mixed-substituent tetra-ortho family, difluoro-dialkoxy-azobenzenes, whose photoresponse can outperform previous 'gold standard' tetrafluoro-, dichloro-difluoro-, and tetrachloro-azobenzenes in significant ways. We thus expect that both the scaffolds we showcase and the method we develop will impact broadly on photochemistry and photopharmacology.
Collapse
Affiliation(s)
- Adrian Müller-Deku
- Department of Pharmacy, Ludwig-Maximilians University, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University, Butenandtstrasse 5-13, Munich 81377, Germany
| |
Collapse
|
23
|
Josef V, Hampel F, Dube H. Heterocyclic Hemithioindigos: Highly Advantageous Properties as Molecular Photoswitches. Angew Chem Int Ed Engl 2022; 61:e202210855. [PMID: 36040861 PMCID: PMC9826360 DOI: 10.1002/anie.202210855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 01/11/2023]
Abstract
A survey of heterocyclic hemithioindigo photoswitches is presented identifying a number of structural motives with outstanding property profiles. The highly sought-after combination of pronounced color change, quantitative switching in both directions, exceptional high quantum yields, and tunable high thermal stability of metastable states can be realized with 4-imidazole, 2-pyrrole, and 3-indole-based derivatives. In the former, an unusual preorganization using isomer selective chalcogen- and hydrogen bonding allows to precisely control geometry changes and tautomerism upon switching. Heterocyclic hemithioindigos thus represent highly promising photoswitches with advanced capabilities that will be of great value to anyone interested in establishing defined and reversible control at the molecular level.
Collapse
Affiliation(s)
- Verena Josef
- Friedrich-Alexander Universität Erlangen-NürnbergDepartment of Chemistry and PharmacyNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Frank Hampel
- Friedrich-Alexander Universität Erlangen-NürnbergDepartment of Chemistry and PharmacyNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-NürnbergDepartment of Chemistry and PharmacyNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
24
|
Gao L, Kraus Y, Stegner A, Wein T, Heise C, von Brunn L, Fajardo-Ruiz E, Thorn-Seshold J, Thorn-Seshold O. Self-reporting styrylthiazolium photopharmaceuticals: mitochondrial localisation as well as SAR drive biological activity. Org Biomol Chem 2022; 20:7787-7794. [PMID: 36172848 DOI: 10.1039/d2ob00347c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel photoswitches offering features complementary to the well-established azobenzenes are increasingly driving high-precision research in cellular photopharmacology. Styrylthiazolium (StyTz) and styrylbenzothiazolium (StyBtz) are cellularly untested E/Z-isomerisation photoswitches which are nearly isosteric to azobenzenes, but have distinct properties: including ca. 60 nm red-shifted π → π* absorption, self-reporting fluorescence, Z → E relaxation on typical biological timescales, and decent solubility (positive charge). We tested StyTz and StyBtz for their potential as photopharmaceutical scaffolds, by applying them to photocontrol microtubule dynamics. They light-specifically disrupt microtubule network architecture and block cell proliferation: yet, testing lead compound StyBtz2 for its molecular mechanism of action showed that it did not inhibit microtubule dynamics. Using its self-reporting fluorescence, we tracked its localisation in live cells and observed accumulation of E-StyBtz2 into mitochondria; during prolonged illumination, it was released into the cytosol, and blebbing and cell death were observed. We interpret this as light-dependent rupturing of mitochondria on acute timescales. We conclude that StyTz/StyBtz can be interesting photopharmaceutical scaffolds for addressing mitochondrial, rather than cytosolic, targets.
Collapse
Affiliation(s)
- Li Gao
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Yvonne Kraus
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Andrea Stegner
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Thomas Wein
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Constanze Heise
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Leonie von Brunn
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Elena Fajardo-Ruiz
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Julia Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| |
Collapse
|
25
|
Lazinski LM, Royal G, Robin M, Maresca M, Haudecoeur R. Bioactive Aurones, Indanones, and Other Hemiindigoid Scaffolds: Medicinal Chemistry and Photopharmacology Perspectives. J Med Chem 2022; 65:12594-12625. [PMID: 36126323 DOI: 10.1021/acs.jmedchem.2c01150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemiindigoids comprise a range of natural and synthetic scaffolds that share the same aromatic hydrocarbon backbone as well as promising biological and optical properties. The encouraging therapeutic potential of these scaffolds has been unraveled by many studies over the past years and uncovered representants with inspiring pharmacophoric features such as the acetylcholinesterase inhibitor donezepil and the tubulin polymerization inhibitor indanocine. In this review, we summarize the last advances in the medicinal potential of hemiindigoids, with a special attention to molecular design, structure-activity relationship, ligand-target interactions, and mechanistic explanations covering their effects. As their strong fluorogenic potential and photoswitch behavior recently started to be highlighted and explored in biology, giving rise to the development of novel fluorescent probes and photopharmacological agents, we also discuss these properties in a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Université Grenoble Alpes, CNRS 5063, DPM, 38000 Grenoble, France.,Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Guy Royal
- Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | | |
Collapse
|
26
|
Josef V, Hampel F, Dube H. Heterocyclic Hemithioindigos: Highly Advantageous Properties as Molecular Photoswitches. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verena Josef
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy GERMANY
| | - Frank Hampel
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy GERMANY
| | - Henry Dube
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy Nikolaus-Fiebiger-Str. 10 91058 Erlangen GERMANY
| |
Collapse
|
27
|
Watari S, Inaba H, Tamura T, Kabir AMR, Kakugo A, Sada K, Hamachi I, Matsuura K. Light-induced stabilization of microtubules by photo-crosslinking of a Tau-derived peptide. Chem Commun (Camb) 2022; 58:9190-9193. [PMID: 35929838 DOI: 10.1039/d2cc01890j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For light-induced stabilization of microtubules (MTs) to manipulate cells, a photo-reactive diazirine group was conjugated to a Tau-derived peptide, a motif binding on the inside of MTs. Ultraviolet (UV) light irradiation induced significant stabilization of MTs via the formation of a covalent bond of the peptide and showed toxicity.
Collapse
Affiliation(s)
- Soei Watari
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan. .,Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | - Akira Kakugo
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan. .,Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| |
Collapse
|
28
|
Watson EE, Russo F, Moreau D, Winssinger N. Optochemical Control of Therapeutic Agents through Photocatalyzed Isomerization. Angew Chem Int Ed Engl 2022; 61:e202203390. [PMID: 35510306 PMCID: PMC9400970 DOI: 10.1002/anie.202203390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 12/04/2022]
Abstract
A Ru(bpy)3Cl2 photocatalyst is applied to the rapid trans to cis isomerization of a range of alkene‐containing pharmacological agents, including combretastatin A‐4 (CA‐4), a clinical candidate in oncology, and resveratrol derivatives, switching their configuration from inactive substances to potent cytotoxic agents. Selective in cellulo activation of the CA‐4 analog Res‐3M is demonstrated, along with its potent cytotoxicity and inhibition of microtubule dynamics.
Collapse
Affiliation(s)
- Emma E. Watson
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Francesco Russo
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Dimitri Moreau
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| |
Collapse
|
29
|
Watson EE, Russo F, Moreau D, Winssinger N. Optochemical Control of Therapeutic Agents through Photocatalyzed Isomerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Emma E. Watson
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Francesco Russo
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Dimitri Moreau
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| |
Collapse
|
30
|
Kirchner S, Pianowski Z. Photopharmacology of Antimitotic Agents. Int J Mol Sci 2022; 23:5657. [PMID: 35628467 PMCID: PMC9145521 DOI: 10.3390/ijms23105657] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/12/2023] Open
Abstract
Antimitotic agents such as the clinically approved vinca alkaloids, taxanes and epothilone can arrest cell growth during interphase and are therefore among the most important drugs available for treating cancer. These agents suppress microtubule dynamics and thus interfere with intracellular transport, inhibit cell proliferation and promote cell death. Because these drugs target biological processes that are essential to all cells, they face an additional challenge when compared to most other drug classes. General toxicity can limit the applicable dose and therefore reduce therapeutic benefits. Photopharmacology aims to avoid these side-effects by introducing compounds that can be applied globally to cells in their inactive form, then be selectively induced to bioactivity in targeted cells or tissue during a defined time window. This review discusses photoswitchable analogues of antimitotic agents that have been developed by combining different photoswitchable motifs with microtubule-stabilizing or microtubule-destabilizing agents.
Collapse
Affiliation(s)
- Susanne Kirchner
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
| | - Zbigniew Pianowski
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
- Institute of Biological and Chemical Systems–FMS, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
31
|
Eli S, Castagna R, Mapelli M, Parisini E. Recent Approaches to the Identification of Novel Microtubule-Targeting Agents. Front Mol Biosci 2022; 9:841777. [PMID: 35425809 PMCID: PMC9002125 DOI: 10.3389/fmolb.2022.841777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
Microtubules are key components of the eukaryotic cytoskeleton with essential roles in cell division, intercellular transport, cell morphology, motility, and signal transduction. They are composed of protofilaments of heterodimers of α-tubulin and β-tubulin organized as rigid hollow cylinders that can assemble into large and dynamic intracellular structures. Consistent with their involvement in core cellular processes, affecting microtubule assembly results in cytotoxicity and cell death. For these reasons, microtubules are among the most important targets for the therapeutic treatment of several diseases, including cancer. The vast literature related to microtubule stabilizers and destabilizers has been reviewed extensively in recent years. Here we summarize recent experimental and computational approaches for the identification of novel tubulin modulators and delivery strategies. These include orphan small molecules, PROTACs as well as light-sensitive compounds that can be activated with high spatio-temporal accuracy and that represent promising tools for precision-targeted chemotherapy.
Collapse
Affiliation(s)
- Susanna Eli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Rossella Castagna
- Latvian Institute of Organic Synthesis, Aizkraukles Iela 21, Riga, Latvia
| | - Marina Mapelli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- *Correspondence: Marina Mapelli, ; Emilio Parisini,
| | - Emilio Parisini
- Latvian Institute of Organic Synthesis, Aizkraukles Iela 21, Riga, Latvia
- *Correspondence: Marina Mapelli, ; Emilio Parisini,
| |
Collapse
|
32
|
Gao L, Meiring JCM, Varady A, Ruider IE, Heise C, Wranik M, Velasco CD, Taylor JA, Terni B, Weinert T, Standfuss J, Cabernard CC, Llobet A, Steinmetz MO, Bausch AR, Distel M, Thorn-Seshold J, Akhmanova A, Thorn-Seshold O. In Vivo Photocontrol of Microtubule Dynamics and Integrity, Migration and Mitosis, by the Potent GFP-Imaging-Compatible Photoswitchable Reagents SBTubA4P and SBTub2M. J Am Chem Soc 2022; 144:5614-5628. [PMID: 35290733 PMCID: PMC8972266 DOI: 10.1021/jacs.2c01020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photoswitchable reagents are powerful tools for high-precision studies in cell biology. When these reagents are globally administered yet locally photoactivated in two-dimensional (2D) cell cultures, they can exert micron- and millisecond-scale biological control. This gives them great potential for use in biologically more relevant three-dimensional (3D) models and in vivo, particularly for studying systems with inherent spatiotemporal complexity, such as the cytoskeleton. However, due to a combination of photoswitch isomerization under typical imaging conditions, metabolic liabilities, and insufficient water solubility at effective concentrations, the in vivo potential of photoswitchable reagents addressing cytosolic protein targets remains largely unrealized. Here, we optimized the potency and solubility of metabolically stable, druglike colchicinoid microtubule inhibitors based on the styrylbenzothiazole (SBT) scaffold that are nonresponsive to typical fluorescent protein imaging wavelengths and so enable multichannel imaging studies. We applied these reagents both to 3D organoids and tissue explants and to classic model organisms (zebrafish, clawed frog) in one- and two-protein imaging experiments, in which spatiotemporally localized illuminations allowed them to photocontrol microtubule dynamics, network architecture, and microtubule-dependent processes in vivo with cellular precision and second-level resolution. These nanomolar, in vivo capable photoswitchable reagents should open up new dimensions for high-precision cytoskeleton research in cargo transport, cell motility, cell division, and development. More broadly, their design can also inspire similarly capable optical reagents for a range of cytosolic protein targets, thus bringing in vivo photopharmacology one step closer to general realization.
Collapse
Affiliation(s)
- Li Gao
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Joyce C M Meiring
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht CH 3584, Netherlands
| | - Adam Varady
- St. Anna Children's Cancer Research Institute (CCRI), Vienna 1090, Austria
| | - Iris E Ruider
- Physics Department and Center for Protein Assemblies CPA, Technical University of Munich, Garching 85747, Germany
| | - Constanze Heise
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Maximilian Wranik
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Cecilia D Velasco
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Jennifer A Taylor
- Department of Biology, University of Washington, Seattle, Washington 98195, United States
| | - Beatrice Terni
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Clemens C Cabernard
- Department of Biology, University of Washington, Seattle, Washington 98195, United States
| | - Artur Llobet
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
- Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Andreas R Bausch
- Physics Department and Center for Protein Assemblies CPA, Technical University of Munich, Garching 85747, Germany
| | - Martin Distel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna 1090, Austria
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna 1090, Austria
| | - Julia Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht CH 3584, Netherlands
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| |
Collapse
|
33
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|