1
|
Koppe J, Sanders KJ, Robinson TC, Lejeune AL, Proriol D, Wegner S, Purea A, Engelke F, Clément RJ, Grey CP, Pell AJ, Pintacuda G. Resolving Structures of Paramagnetic Systems in Chemistry and Materials Science by Solid-State NMR: The Revolving Power of Ultra-Fast MAS. Angew Chem Int Ed Engl 2025; 64:e202408704. [PMID: 39388344 DOI: 10.1002/anie.202408704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Ultra-fast magic-angle spinning (100+kHz) has revolutionized solid-state NMR of biomolecular systems but has so far failed to gain ground for the analysis of paramagnetic organic and inorganic powders, despite the potential rewards from substantially improved spectral resolution. The principal blockages are that the smaller fast-spinning rotors present significant barriers for sample preparation, particularly for air/moisture-sensitive systems, and are associated with low sensitivity from the reduced sample volumes. Here, we demonstrate that the sensitivity penalty is less severe than expected for highly paramagnetic solids and is more than offset by the associated improved resolution. While previous approaches employing slower MAS are often unsuccessful in providing sufficient resolution, we show that ultra-fast 100+kHz MAS allows site-specific assignments of all resonances from complex paramagnetic solids. Combined with more reliable rotor materials and handling methods, this opens the way to the routine characterization of geometry and electronic structures of functional paramagnetic systems in chemistry, including catalysts and battery materials. We benchmark this approach on a hygroscopic luminescent Tb3+ complex, an air-sensitive homogeneous high-spin Fe2+ catalyst, and a series of mixed Fe2+/Mn2+/Mg2+ olivine-type cathode materials.
Collapse
Affiliation(s)
- Jonas Koppe
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Kevin J Sanders
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Thomas C Robinson
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Arthur L Lejeune
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
- IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, 69360, Solaize, France
| | - David Proriol
- IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, 69360, Solaize, France
| | | | - Armin Purea
- Bruker Biospin, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Frank Engelke
- Bruker Biospin, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Raphaële J Clément
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Andrew J Pell
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Guido Pintacuda
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| |
Collapse
|
2
|
Uhlig F, Stammler MB, Meurer F, Shenderovich IG, Blahut J, Wisser FM. Monitoring structure and coordination chemistry of Co 4O 4-based oxygen evolution catalysts by nitrogen-14/-15 and cobalt-59 NMR spectroscopy. Dalton Trans 2024; 53:8541-8545. [PMID: 38712528 DOI: 10.1039/d4dt01273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The structural features of cobalt-based oxygen evolution catalysts are elucidated by combining high-field MAS NMR spectroscopy and DFT calculations. The superior photocatalytic activity of the heterogeneous system over its homogeneous counterpart is rationalised by the structural features. The higher activity is caused by a more favourable electron-withdrawing character of the framework.
Collapse
Affiliation(s)
- Felix Uhlig
- University of Regensburg, Institute of Inorganic Chemistry, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Michael B Stammler
- University of Regensburg, Institute of Inorganic Chemistry, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Florian Meurer
- University of Regensburg, Institute of Inorganic Chemistry, Universitätsstraße 31, 93053 Regensburg, Germany.
- Rossendorf Beamline, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Ilya G Shenderovich
- University of Regensburg, Institute of Organic Chemistry, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Jan Blahut
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic.
| | - Florian M Wisser
- University of Regensburg, Institute of Inorganic Chemistry, Universitätsstraße 31, 93053 Regensburg, Germany.
- Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Chin SY, Lu Y, Di W, Ye K, Li Z, He C, Cao Y, Tang C, Xue K. Regulating polystyrene glass transition temperature by varying the hydration levels of aromatic ring/Li + interaction. Phys Chem Chem Phys 2023; 25:30223-30227. [PMID: 37817561 DOI: 10.1039/d3cp02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Polymer properties can be altered via lithium ion doping, whereby adsorbed Li+ binds with H2O within the polymer chain. However, direct spectroscopic evidence of the tightness of Li+/H2O binding in the solid state is limited, and the impact of Li+ on polymer sidechain packing is rarely reported. Here, we investigate a polystyrene/H2O/LiCl system using solid-state NMR, from which we determined a dipolar coupling of 11.4 kHz between adsorbed Li+ and H2O protons. This coupling corroborates a model whereby Li+ interacts with the oxygen atom in H2O via charge affinity, which we believe is the main driving force of Li+ binding. We demonstrated the impact of hydrated Li+ on sidechain packing and dynamics in polystyrene using proton-detected solid-state NMR. Experimental data and density functional theory (DFT) simulations revealed that the addition of Li+ and the increase in the hydration levels of Li+, coupled with aromatic ring binding, change the energy barrier of sidechain packing and dynamics and, consequently, changes the glass transition temperature of polystyrene.
Collapse
Affiliation(s)
- Sze Yuet Chin
- NTU Center of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | - Yunpeng Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Weishuai Di
- Collaborative Innovation Center for Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - Kai Ye
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639789, Singapore
| | - Zihan Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chenlu He
- Department of Chemistry, National University of Singapore, Singapore, 117549, Singapore
| | - Yi Cao
- Collaborative Innovation Center for Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Kai Xue
- NTU Center of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
4
|
Li Y, Cai DG, Zhu ZH, Xu H, Zheng TF, Chen JL, Liu SJ, Wen HR. Solvothermal synthesis and device fabrication of a Eu 3+-based metal-organic framework as a turn-on and blue-shift fluorescence sensor toward Cr 3+, Al 3+ and Ga 3. Dalton Trans 2023; 52:4167-4175. [PMID: 36892084 DOI: 10.1039/d2dt03230a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A novel three-dimensional Eu3+-based metal-organic framework with the formula {[(CH3)2NH2][Eu(BTDI)]·H2O·DMF}n (JXUST-25) was prepared by solvothermal method based on Eu3+ and 5,5'-(benzothiadiazole-4,7-diyl)diisophthalic acid (H4BTDI) with benzothiadiazole (BTD) luminescent groups. Due to the presence of Eu3+ and organic fluorescence ligand, JXUST-25 displays turn-on and blue-shift fluorescence toward Cr3+, Al3+ and Ga3+ with limits of detection (LOD) of 0.073, 0.006 and 0.030 ppm, respectively. Interestingly, the alkaline environment can change the fluorescence of JXUST-25 toward Cr3+/Al3+/Ga3+ and the addition of HCl solution realizes the reversible change of the fluorescence of JXUST-25 toward Cr3+/Al3+/Ga3+. It is noteworthy that the fluorescent test paper and light-emitting diode lamp based on JXUST-25 can effectively detect Cr3+, Al3+ and Ga3+ by the visual changes. In addition, the turn-on and blue-shift fluorescence between JXUST-25 and M3+ ions may be caused by the host-guest interaction and the absorbance caused enhancement mechanism.
Collapse
Affiliation(s)
- Yu Li
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Ding-Gui Cai
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| |
Collapse
|
5
|
Nobile AG, Trummer D, Berkson ZJ, Wörle M, Copéret C, Payard PA. Assigning 1H chemical shifts in paramagnetic mono- and bimetallic surface sites using DFT: a case study on the Union Carbide polymerization catalyst. Chem Sci 2023; 14:2361-2368. [PMID: 36873845 PMCID: PMC9977395 DOI: 10.1039/d2sc06827c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
The Union Carbide (UC) ethylene polymerization catalyst, based on silica-supported chromocene, is one of the first industrial catalysts prepared by surface organometallic chemistry, though the structure of the surface sites remains elusive. Recently, our group reported that monomeric and dimeric Cr(ii) sites, as well as Cr(iii) hydride sites, are present and that their proportion varies as a function of the Cr loading. While 1H chemical shifts extracted from solid-state 1H NMR spectra should be diagnostic of the structure of such surface sites, unpaired electrons centered on Cr atoms induce large paramagnetic 1H shifts that complicate their NMR analysis. Here, we implement a cost-efficient DFT methodology to calculate 1H chemical shifts for antiferromagnetically coupled metal dimeric sites using a Boltzmann-averaged Fermi contact term over the population of the different spin states. This method allowed us to assign the 1H chemical shifts observed for the industrial-like UC catalyst. The presence of monomeric and dimeric Cr(ii) sites, as well as a dimeric Cr(iii)-hydride sites, was confirmed and their structure was clarified.
Collapse
Affiliation(s)
- Anna Giorgia Nobile
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 2 CH-8093 Zürich Switzerland
| | - David Trummer
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 2 CH-8093 Zürich Switzerland
| | - Zachariah J Berkson
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 2 CH-8093 Zürich Switzerland
| | - Michael Wörle
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 2 CH-8093 Zürich Switzerland
| | - Christophe Copéret
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 2 CH-8093 Zürich Switzerland
| | - Pierre-Adrien Payard
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 2 CH-8093 Zürich Switzerland .,Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS Rue Victor Grignard F-69622 Villeurbanne Cedex France
| |
Collapse
|
6
|
Xu J, Liu X, Liu X, Yan T, Wan H, Cao Z, Reimer JA. Deconvolution of metal apportionment in bulk metal-organic frameworks. SCIENCE ADVANCES 2022; 8:eadd5503. [PMID: 36332019 PMCID: PMC9635837 DOI: 10.1126/sciadv.add5503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
We report a general route to decipher the apportionment of metal ions in bulk metal-organic frameworks (MOFs) by solid-state nuclear magnetic resonance spectroscopy. We demonstrate this route in Mg1-xNix-MOF-74, where we uncover all eight possible atomic-scale Mg/Ni arrangements through identification and quantification of the distinct chemical environments of 13C-labeled carboxylates as a function of the Ni content. Here, we use magnetic susceptibility, bond pathway, and density functional theory calculations to identify local metal bonding configurations. The results refute the notion of random apportionment from solution synthesis; rather, we reveal that only two of eight Mg/Ni arrangements are preferred in the Ni-incorporated MOFs. These preferred structural arrangements manifest themselves in macroscopic adsorption phenomena as illustrated by CO/CO2 breakthrough curves. We envision that this nondestructive methodology can be further applied to analyze bulk assembly of other mixed-metal MOFs, greatly extending the knowledge on structure-property relationships of MOFs and their derived materials.
Collapse
Affiliation(s)
- Jun Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin 300350, P.R. China
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xingwu Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P.R. China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co. Ltd., Huairou District, Beijing 101400, P.R. China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tao Yan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P.R. China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co. Ltd., Huairou District, Beijing 101400, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hongliu Wan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P.R. China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co. Ltd., Huairou District, Beijing 101400, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi Cao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P.R. China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co. Ltd., Huairou District, Beijing 101400, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jeffrey A. Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Rauche M, Ehrling S, Abylgazina L, Bachetzky C, Senkovska I, Kaskel S, Brunner E. Solid-state NMR studies of metal ion and solvent influences upon the flexible metal-organic framework DUT-8. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101809. [PMID: 35753266 DOI: 10.1016/j.ssnmr.2022.101809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Within the present contribution, we describe solid-state NMR spectroscopic studies of the paddle wheel unit in the prototypic flexible MOF compound DUT-8(M) (M = Ni, Co, Zn). The 13C NMR chemical shift of these carboxylates shows a remarkable behavior. The pure 2,6-H2ndc linker carboxylates as well as DUT-8(Zn) exhibit a13C chemical shift of only about 170 ppm. In contrast, much higher values are observed for DUT-8(Ni) and especially DUT-8(Co). In the open pore state, the shift strongly depends on the solvent polarity in these two latter cases. The present contribution elucidates the reason for this solvent influence. It is concluded that the solvent mainly modifies the isotropic Fermi contact coupling constant for the excited high-spin states in DUT-8(Ni) and DUT-8(Co).
Collapse
Affiliation(s)
- Marcus Rauche
- Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany
| | - Sebastian Ehrling
- Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany
| | - Leila Abylgazina
- Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany
| | - Christopher Bachetzky
- Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany
| | - Irena Senkovska
- Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany
| | - Stefan Kaskel
- Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany
| | - Eike Brunner
- Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany.
| |
Collapse
|
8
|
He C, Li S, Xiao Y, Xu J, Deng F. Application of solid-state NMR techniques for structural characterization of metal-organic frameworks. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 117:101772. [PMID: 35016011 DOI: 10.1016/j.ssnmr.2022.101772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Solid-state NMR can afford the structural information about the chemical composition, local environment, and spatial coordination at the atomic level, which has been extensively applied to characterize the detailed structure and host-guest interactions in metal-organic frameworks (MOFs). In this review, recent advances for the structural characterizations of MOFs using versatile solid-state NMR techniques were briefly introduced. High-field sensitivity-enhanced solid-state NMR method enabled the direct observation of metal centers in MOFs containing low-γ nuclei. Two-dimensional (2D) homo- and hetero-nuclear correlation MAS NMR experiments provided the spatial proximity among linkers, metal clusters and the introduced guest molecules. Moreover, quantitative measurement of inter-nuclear distances using solid-state NMR provided valuable structural information about the connectivity geometry as well as the host-guest interactions within MOFs. Furthermore, solid-state NMR has exhibited great potential for unraveling the structure property of MOFs containing paramagnetic metal centers.
Collapse
Affiliation(s)
- Caiyan He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yuqing Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
9
|
Blahut J, Lejeune AL, Ehrling S, Senkovska I, Kaskel S, Wisser FM, Pintacuda G. Monitoring Dynamics, Structure, and Magnetism of Switchable Metal-Organic Frameworks via 1 H-Detected MAS NMR. Angew Chem Int Ed Engl 2021; 60:21778-21783. [PMID: 34273230 PMCID: PMC8519119 DOI: 10.1002/anie.202107032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Indexed: 01/03/2023]
Abstract
We present a toolbox for the rapid characterisation of powdered samples of paramagnetic metal-organic frameworks at natural abundance by 1 H-detected solid-state NMR. Very fast MAS rates at room and cryogenic temperatures and a set of tailored radiofrequency irradiation schemes help overcome the sensitivity and resolution limits often associated with the characterisation of MOF materials. We demonstrate the approach on DUT-8(Ni), a framework containing Ni2+ paddle-wheel units which can exist in two markedly different architectures. Resolved 1 H and 13 C resonances of organic linkers are detected and assigned in few hours with only 1-2 mg of sample at natural isotopic abundance, and used to rapidly extract information on structure and local internal dynamics of the assemblies, as well as to elucidate the metal electronic properties over an extended temperature range. The experiments disclose new possibilities for describing local and global structural changes and correlating them to electronic and magnetic properties of the assemblies.
Collapse
Affiliation(s)
- Jan Blahut
- Centre de Résonance Magnétique Nucléaire à Très Hauts ChampsUMR 5082 CNRSENS LyonUCBL)Université de Lyon69100VilleurbanneFrance
- NMR LaboratoryFaculty of ScienceCharles UniversityHlavova 812842PragueCzech Republic
| | - Arthur L. Lejeune
- Centre de Résonance Magnétique Nucléaire à Très Hauts ChampsUMR 5082 CNRSENS LyonUCBL)Université de Lyon69100VilleurbanneFrance
- IFP Energies Nouvelles69360SolaizeFrance
| | - Sebastian Ehrling
- Chair of Inorganic Chemistry ITechnische Universität Dresden01069DresdenGermany
- Present address: 3P Instruments GmbH & Co. KGRudolf-Diesel-Strasse 1285235OdelzhausenGermany
| | - Irena Senkovska
- Chair of Inorganic Chemistry ITechnische Universität Dresden01069DresdenGermany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry ITechnische Universität Dresden01069DresdenGermany
| | - Florian M. Wisser
- IRCELYON (UMR 5256 CNRS, UCBL)Université de Lyon69100VilleurbanneFrance
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire à Très Hauts ChampsUMR 5082 CNRSENS LyonUCBL)Université de Lyon69100VilleurbanneFrance
| |
Collapse
|