1
|
Maimaiti M, Yan Y, Wu J, Han T, Xie J, Zhang M. 3Pb 8O 7I 2·2CsI: the salt-inclusion strategy enriches the structural chemistry in lead oxyhalides. Dalton Trans 2025; 54:1370-1376. [PMID: 39803861 DOI: 10.1039/d4dt03212h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The design and synthesis of new mid-infrared functional crystals with novel structures and excellent properties is a hot topic in the materials science research field. Different from the traditional mid-far infrared crystal systems, such as chalcogenides and phosphides, a recently developed heavy metal oxyhalide, with a wide bandgap and transmittance range, is a very promising mid-infrared crystal material research system. Herein, the first case of a salt-inclusion compound in lead oxyhalides, Cs2Pb24O21I8 (3Pb8O7I2·2CsI), has been synthesized by a high-temperature solution method. Cs2Pb24O21I8 features a "rod-like chain" structure constructed from [Pb8O7]2+composed of [OPb4] tetrahedra, [OPb3] pyramids, and 1∞[CsI4] chains inserted in the tunnel. The results show that the salt-inclusion strategy significantly enriches the structural diversity of lead oxyhalides and provides a new research idea for exploring new infrared functional materials.
Collapse
Affiliation(s)
- Mayinuer Maimaiti
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Yuchen Yan
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Jinche Wu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Tingwen Han
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Min Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| |
Collapse
|
2
|
Li K, Zhang X, Chai B, Yu H, Hu Z, Wang J, Wu Y, Wu H. ACuGa 6S 10 (A = Rb, Cs): Design and Synthesis of Two New Cavity-Chalcopyrite Chalcogenides Based on "Iterative Substitution" Strategy. Chemistry 2025; 31:e202403515. [PMID: 39420133 DOI: 10.1002/chem.202403515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Two new non-centrosymmetric chalcogenides, ACuGa6S10 (A=Rb, Cs) have been successfully synthesized by an "iterative substitution" strategy based on chalcopyrite CuFeS2 structural template. Benefiting from the substitution of Fe3+ cations by Ga3+ cations, ACuGa6S10 (A = Rb, Cs) exhibit wide suitable band gap of 2.48 and 2.40 eV, respectively, which is about five times higher than their structure template CuFeS2, and a large second harmonic generation response (1.5 and 1.8×AgGaS2). Combining theoretical calculation and structural analysis confirms that the [GaS4] tetrahedra make the main contribution on their good liner and nonlinear optical (NLO) performances. The "iterative substitution" strategy expands the design idea of materials and can lead to the discovery of a large number of IR NLO compounds.
Collapse
Affiliation(s)
- Kaixuan Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xingyu Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Binqiang Chai
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
3
|
Huang J, Abudurusuli A, Yang Z, Pan S. Emergent Mid-Infrared Nonlinear Optical Candidates With Targeted Balance Performances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409997. [PMID: 39711290 DOI: 10.1002/smll.202409997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Indexed: 12/24/2024]
Abstract
Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long-distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond-like structural crystals AgGaQ2 (Q = S, Se) and ZnGeP2. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances (Eg ≥ 3.0 eV, dij ≥ 0.5 × AgGaS2) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure-property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties.
Collapse
Affiliation(s)
- Junben Huang
- School of Materials Science and Engineering, Xinjiang Environmental and Functional Materials Engineering Research Center, Xinjiang University, 777 Huarui Road, Urumqi, 830017, China
| | - Ailijiang Abudurusuli
- School of Materials Science and Engineering, Xinjiang Environmental and Functional Materials Engineering Research Center, Xinjiang University, 777 Huarui Road, Urumqi, 830017, China
| | - Zhihua Yang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Shilie Pan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
| |
Collapse
|
4
|
Yang W, Huang J, Zheng Q, Chen L, Orita A, Saito N, Zhang Z, Zhang Y, Yang L. A Bandgap-Tuned Tetragonal Perovskite as Zero-Strain Anode for Potassium-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202412706. [PMID: 39207271 DOI: 10.1002/anie.202412706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
PIBs are emerging as a promising energy storage system due to high abundance of potassium resources and theoretical energy density, however, progress of PIBs is severely hindered by structural instability and poor cycling of anode material during continual insertion and extraction of larger-sized K+. Hence, developing anode material with structural stability and stable cycling remains a great challenge. Herein, band gap-tuned Mo-doped and carbon-coated lead titanate (CMPTO) with zero-strain K+ storage is presented as ultra-stable PIBs anode. Mo doping introduces narrowed band gap and optimized crystal lattice for enhanced intrinsic electron and ion transfer. Demonstrated by in situ XRD characterizations, the crystal structure stays stable with unchanged peak positions, fully revealing zero-strain characteristic of CMPTO anode during potassium storage for stable cyclic capability. Ultimately, CMPTO anode achieved ultra-stable cycling performance of 7000 cycles at 500 mA g-1 with high capacity retention of 90 % and considerable specific capacity of 130.9 mAh g-1 after 600 cycles at 100 mA g-1; with relatively large density, CMPTO realized eminent volumetric capacity of 1111.09 mAh cm-3 and ultra-long cycling life of 10000 cycles at 7041 mA cm-3. This work introduces a promisingly new route into developing anode materials with ultra-stable performance for PIBs.
Collapse
Affiliation(s)
- Weijia Yang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Huang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qinfeng Zheng
- School of Chemistry and Chemical Engineering, In situ Center for Physical Sciences Frontiers Science Center for Transformative Molecules, and Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, In situ Center for Physical Sciences Frontiers Science Center for Transformative Molecules, and Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Akihiro Orita
- Showa Denko Materials Co., Ltd., Tokyo, 100-6606, Japan
| | - Nagahiro Saito
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Zhengxi Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yixiao Zhang
- School of Chemistry and Chemical Engineering, In situ Center for Physical Sciences Frontiers Science Center for Transformative Molecules, and Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Li Yang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Wang H, Mutailipu M, Yang Z, Pan S, Li J. Computer-Aided Development of New Nonlinear Optical Materials. Angew Chem Int Ed Engl 2024:e202420526. [PMID: 39636719 DOI: 10.1002/anie.202420526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Exploring new nonlinear optical (NLO) materials is an urgent need for advanced photoelectric technologies. However, the discovery of new materials with targeted properties is time-consuming, and involves various challenges by the traditional trial-and-error experiments. Recently, the theoretical prediction-guided structural design has been demonstrated as a feasible way for efficiently developing new NLO materials, and a large number of NLO candidates with excellent optical properties have been explored. To promote the development of high-performance NLO materials, this review provides a summary on the exploration of new NLO materials aided by computer, with a particular emphasis on the state-of-the-art research advances that including crystal structure predictions, optical & thermal property calculations, high-throughput screening of NLO materials with or without machine learning; and the progress achieved in the computer-assisted design and development of new deep ultraviolet (DUV), ultraviolet (UV), infrared (IR) NLO materials in various material systems: oxide, chalcogenide, nitride, and halide. Finally, the opportunities and forthcoming challenges in the fascinating field are discussed.
Collapse
Affiliation(s)
- Hongshan Wang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China E-mails
| | - Miriding Mutailipu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China E-mails
| | - Zhihua Yang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China E-mails
| | - Shilie Pan
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China E-mails
| | - Junjie Li
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China E-mails
| |
Collapse
|
6
|
Kong Y, Wang H, Zhao W, Sun Q, Li J, Pan S. β-CsHg 2I 5, a compound with rare [Hg 2I 5] dimers and large optical anisotropy. Dalton Trans 2024; 53:12090-12097. [PMID: 38967448 DOI: 10.1039/d4dt01536c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Hg-based compounds show abundant structural diversity and distinguished properties. Herein, a new phase transition compound CsHg2I5 was reported. The high-temperature phase β-CsHg2I5 with rare [Hg2I5] dimers was synthesized by the flux method at 573 K, and it shows a reversible phase transition at a low temperature of ∼100 K to form the low-temperature phase α-CsHg2I5. The two phases crystallize in the same P21/c space group, with different crystal structures. β-CsHg2I5 is composed of rare [Hg2I5] dimers and [CsI11] polyhedral units, while α-CsHg2I5 is composed of [Hg4I11] and [CsI10] units. The experimental band gap of β-CsHg2I5 was found to be 2.58 eV. Owing to the presence of [Hg2I5]∞ pseudo-layers, β-CsHg2I5 exhibits large optical anisotropy with a calculated birefringence of 0.132@1064 nm. Meanwhile, β-CsHg2I5 is a congruent compound and the congruent point is ∼481 K. Theoretical calculations indicate that the rare [Hg2I5] dimer is a nonlinear active unit, which can be used as a new fundamental building block for the design of advanced nonlinear optical materials. Moreover, a CsI-HgI2 pseudo-binary diagram was drawn. The results enrich the structural diversity of Hg-based halides and give some insights into the development of new functional materials based on rare [Hg2I5] dimers.
Collapse
Affiliation(s)
- Yingying Kong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Hongshan Wang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Wang Zhao
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Qi Sun
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Junjie Li
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Shilie Pan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
| |
Collapse
|
7
|
Long X, An R, Lv Y, Wu X, Mutailipu M. Tunable Optical Anisotropy in Rare-Earth Borates with Flexible [BO 3] Clusters. Chemistry 2024; 30:e202401488. [PMID: 38695300 DOI: 10.1002/chem.202401488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Indexed: 06/15/2024]
Abstract
Borates have garnered a lot of attention in the realm of solid-state chemistry due to their remarkable characteristics, in which the synthesis of borates with isolated [BO3] by adding rare-earth elements is one of the main areas of structural design study. Five new mixed-metal Y-based rare-earth borates, Ba2ZnY2(BO3)4, KNa2Y(BO3)2, Li2CsY4(BO3)5, LiRb2Y(BO3)2, and RbCaY(BO3)2, have been discovered using the high-temperature solution approach. Isolated [BO3] clusters arranged in various configurations comprise their entire anionic framework, allowing for optical anisotropy tuning between 0.024 and 0.081 under 1064 nm. In this study, we characterize the relative placements of their [BO3] groups and examine how their structure affects their characteristics. The origin of their considerable optical anisotropy has been proven theoretically. This study unequivocally demonstrates that even a slight alteration to borates' anionic structure can result in a significant improvement in performance.
Collapse
Affiliation(s)
- Xiangyu Long
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Ran An
- Research Center for Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
8
|
Cheng S, Zhang X, Kong X, Liu T, Yan J, Prikhna T, Shang Y, Lei Z, Yang C. Enhanced near-infrared optical transmission in zinc germanium phosphide crystals via precise magnesium doping. Phys Chem Chem Phys 2024; 26:17282-17291. [PMID: 38860344 DOI: 10.1039/d4cp01302f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
A zinc germanium phosphorus (ZnGeP2) crystal with a chalcopyrite structure is an efficient frequency converter in the mid-infrared region. However, point defect-induced optical absorption at the pumping wavelength (near infrared region) blocked the further application of ZnGeP2. To alleviate the absorption losses caused by point defects, in situ magnesium doping compensation was presented during the ZnGeP2 bulk crystal growth process via the vertical Bridgman method. Combined with theoretical calculations, the structural distortion of the magnesium-doped ZnGeP2 crystals in different orientations was illustrated. The thermodynamic and kinetic stability of the magnesium-doped ZnGeP2 structure were demonstrated. The transmission results indicated the improvement of transmittance within a wavelength range of 1.8-2.4 μm when doped with magnesium, which revealed the powerful ability of the appropriate dopant in optimizing near-infrared optical properties. Thus, the introduction of magnesium is a practical approach to improve the transmittance performance and extend the pumping source wavelengths of ZnGeP2 crystals.
Collapse
Affiliation(s)
- Shichao Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Xueyan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Xiangran Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Tao Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Jingdong Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Tetiana Prikhna
- V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine, Avtozavodska Str., 2, Kyiv, 04074, Ukraine
| | - Yunfei Shang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Zuotao Lei
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Chunhui Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
9
|
Liu Y, Li X, Wu S, Ma M, Jiang X, Wu Y, Mei D. A Rare Earth Chalcogenide Nonlinear Optical Crystal KLaGeS 4: Achieving Good Balance among Band Gap, Second Harmonic Generation Effect, and Birefringence. Inorg Chem 2024; 63:10938-10942. [PMID: 38829776 DOI: 10.1021/acs.inorgchem.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Midinfrared nonlinear optical (NLO) rare earth chalcogenides have attracted extensive research interest in recent several decades. Employing charge-transfer engineering strategy in the early stage, rigid tetrahedral [GeS4] was introduced into rare-earth sulfides to synthesize KYGeS4, which had an enlarged band gap while maintaining a strong second harmonic generation (SHG) effect. Based on KYGeS4, La was equivalently substituted to successfully synthesize KLaGeS4 with a stronger SHG effect (dij = 1.2 × AgGaS2) and lower cost. Meanwhile, a larger band gap (Eg = 3.34 eV) was retained and realized phase matching (Δn = 0.098 @ 1064 nm). KLaGeS4 enabled an effective balance among band gap, SHG effect, and birefringence, making it a promising candidate for infrared NLO optical materials among various rare-earth sulfides.
Collapse
Affiliation(s)
- Yang Liu
- National-Local Joint Engineering Laboratory for Technology of Advanced Metallic Solidification Forming and Equipment, Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiangming Li
- National-Local Joint Engineering Laboratory for Technology of Advanced Metallic Solidification Forming and Equipment, Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shuchang Wu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Mengjie Ma
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiaoming Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yuandong Wu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Dajiang Mei
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
10
|
Song M, Xiao Y, Yang D, Wang Y, Zhang B. Polysulfide Anions [S x] 2- (x = 2, 3, 4, 5): Promising Functional Building Units for Infrared Nonlinear Optical Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310423. [PMID: 38263809 DOI: 10.1002/smll.202310423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Indexed: 01/25/2024]
Abstract
Infrared nonlinear optical (IR NLO) materials play significant roles in laser technology. The novel functional building units (FBUs) are of great importance in constructing NLO materials with strong second harmonic generation (SHG). Herein, polysulfide anion [Sx]2- (x = 2, 3, 4, 5) units are investigated on NLO-related properties and structure-performance relationships. Theoretical calculations uncover that the [Sx]2- (x = 2, 3, 4, 5) units are potential IR NLO FBUs with large polarizability anisotropy (δ), hyperpolarizability (β) and wide HOMO-LUMO gap. Fourteen crystals including [Sx]2- (x = 2, 3, 4, 5) units are calculated and analyzed. The results show that these units can result in a wide IR transmittance range, significant SHG effects, wide band gap Eg (Na2S4: Eg = 3.09 eV), and large birefringence Δn [BaS3 (P21212): Δn = 0.70]. More importantly, it is highlighted that the crystal materials including with [Sx]2- (x = 2, 3, 4, 5) groups are good candidates for the exploration of the outstanding IR NLO materials.
Collapse
Affiliation(s)
- Miao Song
- College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, China
| | - Yan Xiao
- College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, China
| | - Daqing Yang
- College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, China
| | - Ying Wang
- College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, China
| | - Bingbing Zhang
- College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, China
| |
Collapse
|
11
|
Chen M, Wei W, Zhao J, An D, Chen Y. Discovery of a new bimetallic borate with strong optical anisotropy activated by π-conjugated [B 2O 5] units. Dalton Trans 2024; 53:8898-8904. [PMID: 38747712 DOI: 10.1039/d4dt01130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Birefringent materials with high optical anisotropy have been identified as a research hotspot owing to their significant scientific and technological significance in modern optoelectronics for manipulating light polarization. Researchers studying borate systems have discovered that adding π-conjugated units placed in parallel can significantly increase the birefringence of crystalline solids; some examples include [BO3] units, [B2O5] units, and [B3O6] units. However, there are not many borates with strictly parallel configurations of π-conjugated [B2O5] units. In this study, a new bimetallic borate Sr2Cd4(B2O5)3 with near-parallel arrangement of π-conjugated [B2O5] units was discovered. Sr2Cd4(B2O5)3 possesses the maximum number density of [B2O5] units, shortest dihedral angle of [B2O5] units (between the two [BO3]), and largest degree of [CdO6] octahedral distortion among all the currently known Sr-Cd-B-O tetragonal system borates, making it demonstrate a large birefringence of 0.102 at 532 nm. Theoretical analysis proves that π-conjugated [B2O5] anions are the primary source of the large birefringence of Sr2Cd4(B2O5)3.
Collapse
Affiliation(s)
| | - Wei Wei
- Changji University, Changji 831100, China.
| | | | - Donghai An
- Changji University, Changji 831100, China.
| | - Yanna Chen
- Changji University, Changji 831100, China.
| |
Collapse
|
12
|
Wang L, Chu D, Yang Z, Li J, Pan S. Wide band gap selenide infrared nonlinear optical materials A IIMg 6Ga 6Se 16 with strong SHG responses and high laser-induced damage thresholds. Chem Sci 2024; 15:6577-6582. [PMID: 38699258 PMCID: PMC11062089 DOI: 10.1039/d4sc00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Infrared (IR) nonlinear optical (NLO) materials with strong NLO response, wide band gap and high laser-induced damage threshold (LIDT) are highly expected in current laser technologies. Herein, by introducing double alkaline-earth metal (AEM) atoms, three wide band gap selenide IR NLO materials AIIMg6Ga6Se16 (AII = Ca, Sr, Ba) with excellent linear and NLO optical properties have been rationally designed and fabricated. AIIMg6Ga6Se16 (AII = Ca, Sr, Ba) are composed of unique [AIISe6] triangular prisms, [MgSe6] octahedra and [GaSe4] tetrahedra. The introduction of double AEMs effectively broadens the band gaps of selenide-based IR NLO materials. Among them, CaMg6Ga6Se16, achieving the best balance between the second-harmonic generation response (∼1.5 × AgGaS2), wide band gap (2.71 eV), high LIDT (∼9 × AgGaS2), and moderate birefringence of 0.052 @ 1064 nm, is a promising NLO candidate for high power IR laser. Theoretical calculations indicate that the NLO responses and band gaps among the three compounds are mainly determined by the NLO-active [GaSe4] units. The results enrich the chemical diversity of chalcogenides, and give some insight into the design of new functional materials based on the rare [AIISe6] prismatic units.
Collapse
Affiliation(s)
- Linan Wang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, CAS 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Dongdong Chu
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, CAS 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhihua Yang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, CAS 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Junjie Li
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, CAS 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Shilie Pan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, CAS 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
Qian Z, Wu H, Hu Z, Wang J, Wu Y, Yu H. Cs 3In(In 4Se 7)(P 2Se 6): A Multi-Chromophore Chalcogenide with Excellent Nonlinear Optical Property Designed by Group Grafting. Angew Chem Int Ed Engl 2024; 63:e202400892. [PMID: 38302689 DOI: 10.1002/anie.202400892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Non-centrosymmetric (NCS) and polar materials capable of exhibiting many important functional properties are indispensable for electro-optical technologies, yet their rational structural design remains a significant challenge. Here, we report a "group grafting" strategy for designing the first multi-chromophore selenophosphate, Cs3In(In4Se7)(P2Se6), that crystallizes in a NCS and polar space group of Cm. The structure features a unique basic building unit (BBU) [In(In4Se10)(P2Se6)], formed through "grafting [In4Se10] supertetrahedra on the root of [In(P2Se6)2] groups". Theoretical calculations confirm that this [In(In4Se10)(P2Se6)] BBU can achieve a "1+1>2" combination of properties from two chromophores, [In4Se10] supertetrahedron and ethane-like [P2Se6] dimer. That makes Cs3In(In4Se7)(P2Se6) exhibit excellent linear and nonlinear optical (NLO) properties, including a strong second harmonic generation (SHG) response (~6×AgGaS2), a large band gap (2.45 eV), broad infrared (IR) transmission (up to 19.5 μm), a significant birefringence (0.26 @1064 nm) as well as the congruently-melting property at ~700 °C. Therefore, Cs3In(In4Se7)(P2Se6) will be a promising NLO crystal, especially in the IR region, and this research also demonstrates that "group grafting" will be an effective strategy for constructing novel polar BBUs with multi-chromophore to design NCS structures and high-performance IR NLO materials.
Collapse
Affiliation(s)
- Zhen Qian
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
14
|
Zhou J, Hou K, Chu Y, Yang Z, Li J, Pan S. A IB 3 IIC 2 IIIQ 6 VIX VII: A Thioborate Halide Family for Developing Wide Bandgap Infrared Nonlinear Materials by Coupling Planar [BS 3] and Polycations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308806. [PMID: 38010127 DOI: 10.1002/smll.202308806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/23/2023] [Indexed: 11/29/2023]
Abstract
Developing high-performance infrared (IR) nonlinear optical (NLO) materials is urgent but challenging due to the competition between NLO coefficient and bandgap in one compound. Herein, by coupling NLO-active [BS3] planar units and halide-centered polycations, six new metal thioborate halides ABa3B2S6X (A = Rb, Cs; X = Cl, Br, I) composed of zero-dimensional [XBamRbn/Csn] polycations and [BS3] units, belonging to a newA I B 3 II C 2 III Q 6 VI X VII ${\mathrm{A}}^{\mathrm{I}}{\mathrm{B}}_{3}^{\mathrm{II}}{\mathrm{C}}_{2}^{\mathrm{III}}{\mathrm{Q}}_{6}^{\mathrm{VI}}{\mathrm{X}}^{\mathrm{VII}}$ family, are rationally designed and fabricated. The compounds show an interesting structural transition from Pbcn (ABa3B2S6Cl) to Cmc21 (ABa3B2S6Br and ABa3B2S6I) driven by the clamping effect of polycationic frameworks. ABa3B2S6Br and ABa3B2S6I are the first series metal thioborate halide IR NLO materials, and the introduction of [BS3] unit effectively widens the bandgap of planar unit-constructed chalcogenides. ABa3B2S6Br and ABa3B2S6I, exhibiting wide bandgaps (3.55-3.60 eV), high laser-induced damage thresholds (≈ 6 × AgGaS2), and strong SHG effects (0.5-0.6 × AgGaS2) with phase-matching behaviors, are the promising IR NLO candidates for high-power laser applications. The results enrich the chemical and structural diversity of boron chemistry and give some insights into the design of new IR NLO materials with planar units.
Collapse
Affiliation(s)
- Jiazheng Zhou
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Ketian Hou
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Yu Chu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Junjie Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China
| |
Collapse
|
15
|
Xu J, Xiao Y, Wu K, Zhang B, Lu D, Yu H, Zhang H. Flexible Anionic Groups-Activated Structure Dissymmetry for Strong Nonlinearity in Ln 2 Ae 3 M IV 3 S 12 Family. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306577. [PMID: 37875672 DOI: 10.1002/smll.202306577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Structural dissymmetry and strong second-harmonic generation (SHG) responses are key conditions for nonlinear optical (NLO) crystals, and targeted combinatorial screening of suitable anionic groups has become extremely effective. Herein, optimal combination of flexible SnSn (n = 5, 6) groups and highly electropositive cations (lanthanides (Ln3+ ) and alkaline earth (Ae2+ : Sr, Ca) metals) affords the successful synthesis of 12 NLO thiostannates including Ln2 Sr3 Sn3 S12 (Pmc21 ) and Ln2 Ca3 Sn3 S12 (P-62m); whereas 17 rigid GeS4 or SiS4 tetrahedra-constructed Ln2 Ae3 Ge3 S12 and Ln2 Ae3 Si3 S12 crystallize in the centrosymmetric (CS) Pnma. This unprecedented CS to noncentrosymmetric (NCS) structural transformation (Pnma to P-62m to Pmc21 ) in the Ln2 Ae3 MIV 3 S12 family indicates that chemical substitution of the tetrahedral GeS4 /SiS4 units with SnSn breaks the original symmetry to form the requisite NCS structures. Remarkably, strong polarization anisotropy and hyperpolarizability of the Sn(4+) S5 unit afford huge performance improvement from the nonphase-matching (NPM) SHG response (1.4 × AgGaS2 and Δn = 0.008) of La2 Ca3 Sn3 S12 to the strong phase-matching (PM) SHG effect (3.0 × AgGaS2 and Δn = 0.086) of La2 Sr3 Sn3 S12 . Therefore, Sn(4+) S5 is proven to be a promising "NLO-active unit." This study verifies that the coupling of flexible SnSn building blocks into structures opens a feasible path for designing targeted NCS crystals with strong nonlinearity and optical anisotropy.
Collapse
Affiliation(s)
- Jingjing Xu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yan Xiao
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Kui Wu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Bingbing Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Dazhi Lu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Haohai Yu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Huaijin Zhang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
16
|
Han YX, Hu CL, Mao JG. Ca 2 Ln(BS 3 )(SiS 4 ) (Ln = La, Ce, and Gd): Mixed Metal Thioborate-Thiosilicates as Well-Performed Infrared Nonlinear Optical Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305828. [PMID: 37726242 DOI: 10.1002/smll.202305828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Indexed: 09/21/2023]
Abstract
The first examples of thioborate-thiosilicates, namely Ca2 Ln(BS3 )(SiS4 ) (Ln = La, Ce, and Gd), are synthesized by rationally designed high-temperature solid-state reactions. They crystalize in the polar space group P63 mc and feature a novel three-dimensional crystal structure in which the discrete [BS3 ]3- and [SiS4 ]4- anionic groups are linked by Ca2+ and Ln3+ cations occupying the same atomic site. Remarkably, all three compounds show comprehensive properties required as promising infrared nonlinear optical materials, including phase-matchable strong second harmonic generation (SHG) responses at 2.05 µm (1.1-1.2 times that of AgGaS2 ), high laser-induced damage thresholds (7-10 times that of AgGaS2 ), wide light transmission range (0.45-11 µm), high thermal stabilities (>800 °C), and large calculated birefringence (0.126-0.149 @1064 nm), which justify the material design strategy of combining [BS3 ]3- and [SiS4 ]4- active units. Theoretical calculations suggest that their large SHG effects originate mainly from the synergy effects of the LnS6 , BS3 , and SiS4 groups. This work not only broadens the scope of research on metal chalcogenides but also provides a new synthetic route for mixed anionic thioborates.
Collapse
Affiliation(s)
- Ya-Xiang Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
17
|
Jiao Z, Quah J, Syed TH, Wei W, Zhang B, Wang F, Wang J. Synthesis, crystal and electronic structures, linear and nonlinear optical properties, and photocurrent response of oxyhalides CeHaVIO 4 (Ha = Cl, Br; VI = Mo, W). Dalton Trans 2024; 53:2029-2038. [PMID: 38179796 DOI: 10.1039/d3dt03640e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Four heteroanionic oxyhalides, CeClMoO4, CeBrMoO4, CeClWO4, and CeBrWO4, have been studied as multifunctional materials, which show a combination of good second harmonic generation (SHG) response and photocurrent signals. Millimeter-sized CeHaVIO4 (Ha = Cl, Br; VI = Mo, W) crystals were grown by halide salt flux. The crystal structure of CeHaVIO4 crystals was accurately determined by single-crystal X-ray diffraction. CeClMoO4, CeBrMoO4, and CeBrWO4 are isostructural to each other, and crystallize in the acentric LaBrMoO4 structure type. CeClWO4 crystallizes in a new structure type with unit cell parameters of a = 19.6059(2) Å, b = 5.89450(10) Å, c = 7.80090(10) Å, and β = 101.4746(8)°. The bandgaps of CeHaVIO4 fall into the range of 2.8(1)-3.1(1) eV, which are much smaller than those of isotypic LaHaVIO4 (Ha = Cl, Br; VI = Mo, W) in the range of 3.9(1)-4.3(1) eV. The narrowing of bandgaps in CeHaVIO4 originates from the presence of partially filled 4f orbitals of cerium atoms, which was confirmed by density functional theory (DFT) calculations. The moderate bandgaps make CeHaVIO4 suitable for infrared nonlinear optical (IR NLO) applications. CeBrMoO4 and CeBrWO4 exhibit moderate SHG responses of 0.58× AGS and 0.46× AGS, respectively, and are both type-I phase-matching materials. Moderate SHG response, easy growth of crystals, high ambient stability, and type-I phase-matching behavior make CeBrMoO4 and CeBrWO4 great materials for IR NLO applications. CeHaVIO4 films also exhibited good photocurrent response upon light radiation. This work demonstrates the rich structural chemistry of the REHaVIO4 (RE = Y, La-Lu; Ha = Cl, Br; VI = Mo, W) family and the potential presence of more multifunctional materials.
Collapse
Affiliation(s)
- Zixian Jiao
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, USA.
| | - Jasmine Quah
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, USA.
| | - Tajamul Hussain Syed
- Department of Mechanical Engineering, Wichita State University, Wichita, Kansas 67260, USA
| | - Wei Wei
- Department of Mechanical Engineering, Wichita State University, Wichita, Kansas 67260, USA
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Fei Wang
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, 65897, USA.
| | - Jian Wang
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, USA.
| |
Collapse
|
18
|
Huang Y, Chu D, Hou X, Li G, Zhang Y. Na 6Mg 3P 4S 16 and RbMg 2PS 4Cl 2: two Mg-based thiophosphates with ultrawide bandgaps resulting from [MgS 6] and [MgS xCl 6-x] octahedra. Dalton Trans 2024; 53:866-871. [PMID: 38099922 DOI: 10.1039/d3dt03637e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Designing wide-bandgap chalcogenides is one of the most important ways of obtaining high-performance infrared (IR) functional materials. In this work, two Mg-based metal thiophosphates, namely Na6Mg3P4S16 (NMPS) and RbMg2PS4Cl2 (RMPSC), were successfully obtained by introducing [MgS6] and [MgSxCl6-x] octahedra into thiophosphates. In addition, their crystal structures were determined, a first for Mg-containing [PS4]-based thiophosphates to the best of our knowledge. Their bandgaps were investigated in theoretical ways and verified by taking experimental measurements, and determined to be 3.80 eV for NMPS and 3.93 eV for RMPSC, values greater than those of the other investigated thiophosphate halides. The wide bandgaps of NMPS and RMPSC were attributed, based on theoretical calculations, to the [MgSxCl6-x] (x = 0-6) octahedron.
Collapse
Affiliation(s)
- Yi Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Dongdong Chu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueling Hou
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangmao Li
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
19
|
Zhang MS, Liu BW, Jiang XM, Guo GC. Nonlinear Optical Phosphide CuInSi 2P 4: The Inaugural Member of Diamond-Like Family I-III-IV 2-V 4 Inspired by ZnGeP 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1107-1113. [PMID: 38150824 DOI: 10.1021/acsami.3c15529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Noncentrosymmetric phosphides have garnered significant attention as promising systems of infrared (IR) nonlinear optical (NLO) materials. Herein, a new quaternary diamond-like phosphide family I-III-IV2-V4 and its inaugural member, namely, CuInSi2P4 (CISP), were successfully fabricated by isovalent and aliovalent substitution based on ZnGeP2. First-principles calculations revealed that CISP has a large NLO coefficient (d14 = 110.8 pm/V), which can be attributed to the well-aligned tetrahedral [CuP4], [InP4], and [SiP4] units. Remarkably, the extremely small thermal expansion anisotropy (0.09) of CISP enables it to exhibit a considerable laser-induced damage threshold (LIDT, 5.0 × AgGaS2@1.06 μm) despite the relatively narrow band gap (0.81 eV). This work improves the chemical diversity of inorganic phosphide and promotes the development of phosphide systems, which may provide valuable perspectives for future exploration of IR NLO materials.
Collapse
Affiliation(s)
- Ming-Shu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bin-Wen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China
| | - Xiao-Ming Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China
| |
Collapse
|
20
|
Lou XY, Jiang XM, Liu BW, Guo GC. Excellent Nonlinear Optical M[M 4 Cl][Ga 11 S 20 ] (M = A/Ba, A = K, Rb) Achieved by Unusual Cationic Substitution Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305711. [PMID: 37697703 DOI: 10.1002/smll.202305711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Indexed: 09/13/2023]
Abstract
The typical chalcopyrite AgGaQ2 (Q = S, Se) are commercial infrared (IR) second-order nonlinear optical (NLO) materials; however, they suffer from unexpected laser-induced damage thresholds (LIDTs) primairy due to their narrow band gaps. Herein, what sets this apart from previously reported chemical substitutions is the utilization of an unusual cationic substitution strategy, represented by [[SZn4 ]S12 + [S4 Zn13 ]S24 + 11ZnS4 ⇒ MS12 + [M4 Cl]S24 + 11GaS4 ], in which the covalent Sx Zny units in the diamond-like sphalerite ZnS are synergistically replaced by cationic Mx Cly units, resulting in two novel salt-inclusion sulfides, M[M4 Cl][Ga11 S20 ] (M = A/Ba, A = K, 1; Rb, 2). As expected, the introduction of mixed cations in the GaS4 anionic frameworks of 1 and 2 leads to wide band gaps (3.04 and 3.01 eV), which exceeds the value of AgGaS2 , facilitating the improvement of high LIDTs (9.4 and 10.3 × AgGaS2 @1.06 µm, respectively). Furthermore, compounds 1 and 2 exhibit moderate second-harmonic generation intensities (0.84 and 0.78 × AgGaS2 @2.9 µm, respectively), mainly originating from the orderly packing tetrahedral GaS4 units. Importantly, this study demonstrates the successful application of the cationic substitution strategy based on diamond-like structures to provide a feasible chemical design insight for constructing high-performance NLO materials.
Collapse
Affiliation(s)
- Xiao-Yu Lou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiao-Ming Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
| | - Bin-Wen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
21
|
Merchant A, Batzner S, Schoenholz SS, Aykol M, Cheon G, Cubuk ED. Scaling deep learning for materials discovery. Nature 2023; 624:80-85. [PMID: 38030720 PMCID: PMC10700131 DOI: 10.1038/s41586-023-06735-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
Novel functional materials enable fundamental breakthroughs across technological applications from clean energy to information processing1-11. From microchips to batteries and photovoltaics, discovery of inorganic crystals has been bottlenecked by expensive trial-and-error approaches. Concurrently, deep-learning models for language, vision and biology have showcased emergent predictive capabilities with increasing data and computation12-14. Here we show that graph networks trained at scale can reach unprecedented levels of generalization, improving the efficiency of materials discovery by an order of magnitude. Building on 48,000 stable crystals identified in continuing studies15-17, improved efficiency enables the discovery of 2.2 million structures below the current convex hull, many of which escaped previous human chemical intuition. Our work represents an order-of-magnitude expansion in stable materials known to humanity. Stable discoveries that are on the final convex hull will be made available to screen for technological applications, as we demonstrate for layered materials and solid-electrolyte candidates. Of the stable structures, 736 have already been independently experimentally realized. The scale and diversity of hundreds of millions of first-principles calculations also unlock modelling capabilities for downstream applications, leading in particular to highly accurate and robust learned interatomic potentials that can be used in condensed-phase molecular-dynamics simulations and high-fidelity zero-shot prediction of ionic conductivity.
Collapse
|
22
|
Wang L, Bai C, Kong Y, Iqbal M, Chu Y, Li J. Synthesis, structure and characterization of Cd 2TeO 3Cl 2 with unprecedented [Cd 2O 6Cl 4] octahedral dimers. Dalton Trans 2023; 52:16297-16302. [PMID: 37855272 DOI: 10.1039/d3dt02515b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A new mixed anionic compound Cd2TeO3Cl2 with unprecedented [Cd2O6Cl4] octahedral dimers has been synthesized, and millimeter-scale single crystals of Cd2TeO3Cl2 have been grown by the vertical Bridgman method with CdCl2 as the flux. Cd2TeO3Cl2 crystallizes in the centrosymmetric P1̄ (no. 2) space group, and shows a mixed cationic layer structure constituted by distorted [TeO3] motifs, mixed anionic [Cd2O6Cl4] chains, and [Cd2O6Cl4] octahedral dimers. Experimental and theoretical results show that Cd2TeO3Cl2 is a direct band gap compound with an experimental band gap of ∼4.25 eV. Meanwhile, the compound has good optical transmittance in the 3-5 μm atmospheric window. The results indicate that Cd2TeO3Cl2 could be used as a promising mid-IR window material, and could enrich the chemical and structural diversity of oxides.
Collapse
Affiliation(s)
- Linan Wang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Bai
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
| | - Yingying Kong
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
| | - Maqsood Iqbal
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Li
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Chai XD, Li MZ, Lin SJ, Chen WF, Jiang XM, Liu BW, Guo GC. Cs 4 Zn 5 P 6 S 18 I 2 : the Largest Birefringence in Chalcohalide Achieved by Highly Polarizable Nonlinear Optical Functional Motifs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303847. [PMID: 37464565 DOI: 10.1002/smll.202303847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Indexed: 07/20/2023]
Abstract
Chalcohalides not only keep the balance between the nonlinear optical (NLO) coefficient and wide band gap, but also provide a promising solution to achieve sufficient birefringence for phase-matching ability in NLO crystals. In this study, a novel chalcohalide, Cs4 Zn5 P6 S18 I2 (1) is successfully synthesized, by incorporating the highly electropositive Cs and the large electronegative I element into the zinc thiophosphate. Its 3D open framework features an edge-shared by distorted [ZnS4 ], ethanol-like [P2 S6 ], and unusual [ZnS2 I2 ] polyhedrons, which is inconsistent with the soft-hard-acids-bases theory. Remarkably, compound 1 simultaneously exhibits the large second-harmonic generation (SHG, 1.1×AgGaS2 , @1.3 µm) and a wide band gap (3.75 eV) toward a high laser-induced damage threshold (16.7×AgGaS2 , @1.06 µm), satisfying the rigorous requirements for a prominent infrared NLO material with concurrent SHG intensity (≥0.5×AGS) and band gap (≥3.5 eV). Moreover, to the best of the knowledge, the experimental result shows that phase 1 has the largest birefringence (0.108, @546 nm) in chalcohalide and meets phase-matching behavior demand originating from the polarizable anisotropy of NLO-functional motifs. This finding may provide great opportunities for designing birefringent chalcohalides.
Collapse
Affiliation(s)
- Xian-Dan Chai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Ming-Ze Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shu-Juan Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wen-Fa Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiao-Ming Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Bin-Wen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
24
|
Chu Y, Wang H, Abutukadi T, Li Z, Mutailipu M, Su X, Yang Z, Li J, Pan S. Zn 2 HgP 2 S 8 : A Wide Bandgap Hg-Based Infrared Nonlinear Optical Material with Large Second-Harmonic Generation Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305074. [PMID: 37475504 DOI: 10.1002/smll.202305074] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Hg-based chalcogenides, as good candidates for the exploration of high-performance infrared (IR) nonlinear optical (NLO) materials, usually exhibit strong NLO effects, but narrow bandgaps. Herein, an unprecedented wide bandgap Hg-based IR NLO material Zn2 HgP2 S8 (ZHPS) with diamond-like structure is rationally designed and fabricated by a tetrahedron re-organization strategy with the aid of structure and property predictions. ZHPS exhibits a wide bandgap of 3.37 eV, which is the largest one among the reported Hg-based chalcogenide IR NLO materials and first breaks the 3.0 eV bandgap "wall" in this system, resulting in a high laser-induced damage threshold (LIDT) of ≈2.2 × AgGaS2 (AGS). Meanwhile, it shows a large NLO response (1.1 × AGS), achieving a good balance between bandgap (≥3.0 eV) and NLO effect (≥1 × AGS) for an excellent IR NLO material. DFT calculations uncover that, compared to normal [HgS4 ]n , highly distorted [HgS4 ]d tetrahedral units are conducive to generating wide bandgap, and the wide bandgap in ZHPS can be attributed to the strong s-p hybridization between Hg─S bonding in distorted [HgS4 ]d , which gives some insights into the design of Hg-based chalcogenides with excellent properties based on distorted [HgS4 ]d tetrahedra.
Collapse
Affiliation(s)
- Yu Chu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongshan Wang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tudi Abutukadi
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Su
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Chen Z, Li F, Yang Z, Pan S, Mutailipu M. Hydroxyfluorooxoborate (NH 4)[C(NH 2) 3][B 3O 3F 4(OH)] for exploring the effects of cation substitution on structure and optical properties. Chem Commun (Camb) 2023; 59:12435-12438. [PMID: 37772847 DOI: 10.1039/d3cc04346k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Cation substitution is a straightforward but effective technique for improving the structure and properties; however, controlling directed substitution still poses significant difficulties. Herein, a metal-free hydroxyfluorooxoborate (NH4)[C(NH2)3][B3O3F4(OH)] has been synthesized using the strategy of heterologous substitution based on the template of A2[B3O3F4(OH)]. Tunable structure and optical properties have been achieved via varied A-site cation substitution. The intrinsic mechanism for this tunability was established by crystallography and theoretical research.
Collapse
Affiliation(s)
- Ziqi Chen
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fuming Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
26
|
Chen Z, Li F, Liu Y, Cui C, Mutailipu M. Heterologous Isomorphic Substitution Induces Optical Property Enhancement for Deep-UV Crystals: a Case in Rb[B 3O 3F 2(OH) 2]. Inorg Chem 2023; 62:14512-14517. [PMID: 37642658 DOI: 10.1021/acs.inorgchem.3c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Optical anisotropy is pivotal for optical crystals, and it can be characterized by the maximum algebraic difference in refractive indices. Improving the optical anisotropy, especially for deep-ultraviolet (UV) crystals, is still a challenge and of interest. Herein, a new hydroxyfluorooxoborate, Rb[B3O3F2(OH)2], was obtained by the heterologous isomorphic substitution strategy. Dual enhancement for the band gap and birefringence compared with the parent A[B3O3F2(OH)2] (A = [Ph4P]/[Ph3MeP]) compounds was achieved in Rb[B3O3F2(OH)2]. This considerable enhancement originates from the removal of organic components and the retention of a birefringence-active anionic framework. This enhancement pushes the application region from UV to deep-UV. This discovery not only expands the structural chemistry of borates but also demonstrates the viability of heterologous isomorphic substitution to design deep-UV crystals with enhanced optical property.
Collapse
Affiliation(s)
- Ziqi Chen
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuming Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Liu
- College of Materials Science and Engineering, Hunan University, Changsha 410004, China
| | - Chen Cui
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Li J, Li XH, Yao WD, Liu W, Guo SP. Three-in-One Strategy Constructing the First High-Performance Nonlinear Optical Sulfide Crystallizing with the P4 3 Space Group. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303090. [PMID: 37222125 DOI: 10.1002/smll.202303090] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Indexed: 05/25/2023]
Abstract
The balance between large nonlinear optical (NLO) effect and wide bandgap is the key scientific issue for the exploration of infrared NLO materials. Targeting this issue, two new pentanary chalcogenides KGaGe1.37 Sn0.63 S6 (1) and KGaGe1.37 Sn0.63 Se6 (2) are obtained by the three-in-one strategy, viz. three types of fourfold-coordinated metal elements co-occupying the same site. They crystallize in the tetragonal P43 (1) and monoclinic Cc (2) space group. Their structures can be evolved from benchmark AgGaS2 (AGS) by suitable substitution. Remarkably, 1 is the first NLO sulfide crystallizing with the P43 space group, representing a new structure-type NLO material. The structural relationship between 1 and 2 and the evolution from 1, 2 to AGS are also analyzed. Both 1 and 2 show balanced NLO properties. Specifically, 1 exhibits phase-matchable SHG response of 0.6 × AGS, a wide bandgap of 3.50 eV, and a high laser damage threshold of 6.24 × AGS. Theoretical calculation results suggest that the Ga/Ge/Sn element ratios of the co-occupied sites of 1 and 2 are the most appropriate for stabilizing the structures. The strategy adopted here will provide some inspiration for exploring new high-performance NLO materials.
Collapse
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Xiao-Hui Li
- Institute of Experimental Physics, Free University Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| |
Collapse
|
28
|
Zhou J, Su X, Luo L, Li J, Yu F. MB 3P 2S 10 (M = Rb, Cs): two new alkali metal thioboratephosphates with [B 6P 4S 20] T3-supertetrahedra. Dalton Trans 2023; 52:11401-11406. [PMID: 37578303 DOI: 10.1039/d3dt01496g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Two new alkaline metal thioboratephosphates, RbB3P2S10 and CsB3P2S10, have been designed and fabricated by the flux method. The two compounds are composed of alkali metal polyhedral and [B6P4S20] T3-supertetrahedral units, and crystallize in I41/a and R3̄c space groups, respectively. The results enrich the chemical diversity of chalcogenides, and give insights for the exploration of new functional materials in thioboratephosphates.
Collapse
Affiliation(s)
- Jiazheng Zhou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Xin Su
- School of Physical Science and Technology, Yili Normal University, Yining, 835000, China
- Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yili Normal University, Yining, 835000, China
| | - Ling Luo
- Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, Department of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Junjie Li
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
29
|
Xie W, Li F, Chen J, Yang Z, Li G, Pan S. Improved Birefringence Activated by Tetrahedra Decorated with a Single Linear Unit. Angew Chem Int Ed Engl 2023; 62:e202307895. [PMID: 37382564 DOI: 10.1002/anie.202307895] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Performance enhancement induced by structural modification has long been the target in materials science fields. Direct evidence to witness the effectivity of one strategy is challenging and necessary. In this work, a tetrahedra-decoration strategy was proposed to improve the birefringent performance sharply, namely decorating the tetrahedra with a single linear [S2 ] unit. The strategy was verified by comprehensive characterization of two thiogermanates K2 BaGeS4 and K2 BaGeS5 , which crystallize in the same space group, have similar unit cells and the same units arrangements. Theoretical characterization verified that the [GeS5 ] group has much larger polarization anisotropy than [GeS4 ], further demonstrated that the linear [S2 ] led to the sharp birefringence enlargement of K2 BaGeS5 (0.19 vs 0.03 of K2 BaGeS4 ). This work provides a new guiding thought to improve the birefringence performance.
Collapse
Affiliation(s)
- Wenlong Xie
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Fuming Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianbang Chen
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Zhihuang Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangmao Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Chen J, Lin C, Jiang X, Yang G, Luo M, Zhao X, Li B, Peng G, Ye N, Hu Z, Wang J, Wu Y. Honeycomb layered topology construction for exceptional long-wave infrared nonlinear optical crystals. MATERIALS HORIZONS 2023; 10:2876-2882. [PMID: 37161622 DOI: 10.1039/d3mh00257h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nonlinear optical (NLO) crystals capable of efficient long-wave infrared (8-14 μm) laser output remain scarce, and the exploration of long-wave IR NLO materials with superior comprehensive optical performances is a momentous challenge. Herein, we develop two selenide-halide NLO crystals, Hg3AsSe4Br and Hg3AsSe4I, which are derived from the honeycomb layered topology of prototype GaSe. Remarkably, they exhibit not only strong SHG effects, suitable band gap, large birefringence, broad IR transparency range and low two-photon absorption coefficients but reinforced interlayer interaction and more benign crystal growth habit, compared to those of GaSe, indicating that they are promising long-wave IR NLO materials. Moreover, Hg3AsSe4I achieved better comprehensive optical properties than conventional IR crystals, GaSe, ZnGeP2, CdSe and AgGaSe2. The idea of honeycomb layered topology construction provides a material design heuristic to explore cutting-edge IR NLO materials.
Collapse
Affiliation(s)
- Jindong Chen
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Chensheng Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, China
| | - Xiaotian Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guangsai Yang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Min Luo
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, China
| | - Xin Zhao
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, China
| | - Bingxuan Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, China
| | - Guang Peng
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
31
|
Long X, An R, Lv Y, Wu X, Mutailipu M. BaMo 3O 10 Polymorphs with Tunable Symmetries and Properties. Inorg Chem 2023. [PMID: 37339069 DOI: 10.1021/acs.inorgchem.3c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Polymorphism is a well-known but important phenomenon in the field of solid-state chemistry. Crystalline materials can form various polymorphs and present drastically varied physical and chemical properties. Herein, systematic exploration of the BaO-MoO3 binary system leads to the discovery of a new barium molybdate, α-BaMo3O10. The temperature-dependent phase transition from α-BaMo3O10 to β-BaMo3O10 is confirmed. The tunable linear and nonlinear optical properties induced by the phase transition are confirmed by both experimental and theoretical approaches. Also, β-BaMo3O10 is identified as a nonlinear-optical crystal for the first time. The origin of linear- and nonlinear-optical properties of BaMo3O10 polymorphs is confirmed by the additional theoretical means. This work indicates that a small change in the structure can induce tunable symmetries and thereby widely divergent optical properties.
Collapse
Affiliation(s)
- Xiangyu Long
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Ran An
- Research Center for Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
32
|
Ran MY, Zhou SH, Wei WB, Li BX, Wu XT, Lin H, Zhu QL. Rational Design of a Rare-Earth Oxychalcogenide Nd 3 [Ga 3 O 3 S 3 ][Ge 2 O 7 ] with Superior Infrared Nonlinear Optical Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300248. [PMID: 36775973 DOI: 10.1002/smll.202300248] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Indexed: 05/11/2023]
Abstract
Inorganic chalcogenides have been studied as the most promising infrared (IR) nonlinear optical (NLO) candidates for the past decades. However, it is proven difficult to discover high-performance materials that combine the often-incompatible properties of large energy gap (Eg ) and strong second harmonic generation (SHG) response (deff ), especially for rare-earth chalcogenides. Herein, centrosymmetric Cs3 [Sb3 O6 ][Ge2 O7 ] is selected as a maternal structure and a new noncentrosymmetric rare-earth oxychalcogenide, namely, Nd3 [Ga3 O3 S3 ][Ge2 O7 ], is successfully designed and obtained by the module substitution strategy for the first time. Especially, Nd3 [Ga3 O3 S3 ][Ge2 O7 ] is the first case of breaking the trade-off relationship between wide Eg (>3.5 eV) and large deff (>0.5 × AgGaS2 ) in rare-earth chalcogenide system, and thus displays an outstanding IR-NLO comprehensive performance. Detailed structure analyses and theoretical studies reveal that the NLO effect originates mainly from the cooperation of heteroanionic [GaO2 S2 ] and [NdO2 S6 ] asymmetric building blocks. This work not only presents an excellent rare-earth IR-NLO candidate, but also plays a crucial role in the rational structure design of other NLO materials in which both large Eg and strong deff are pursued.
Collapse
Affiliation(s)
- Mao-Yin Ran
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sheng-Hua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wen-Bo Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bing-Xuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, P. R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, P. R. China
| | - Hua Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, P. R. China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, P. R. China
| |
Collapse
|
33
|
Huang X, Chen YX, Xue Y, Wang YC, Ren QH, Liu W, Wu J, Guo SP. {[In 2S 7] 8-} ∞ Chain and Isolated HgS 4 Planar Unit Constructed One-Dimensional Pentanary Sulfide K 2Ba 7HgIn 4S 16 Exhibiting Nonlinear-Optical Activity. Inorg Chem 2023; 62:7160-7164. [PMID: 37125783 DOI: 10.1021/acs.inorgchem.3c01048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Hg-based chalcogenides possess diverse structures, large nonlinear-optical (NLO) responses, and suitable birefringences, making them potentially suitable for numerous crucial criteria of practical application as infrared (IR) NLO crystals. Here, a new pentanary Hg-based sulfide K2Ba7HgIn4S16 has been discovered by a high-temperature solid-state method. It crystallizes in the orthorhombic P21212 space group, and its one-dimensional structure is constructed by {[In2S7]8-}∞ chains and isolated [HgS4]6- planar quadrilateral units located bewteeen the chains, representing a novel type of chalcogenide. K2Ba7HgIn4S16 exhibits a moderate NLO effect of 0.5 × AGS at 2.1 μm and a high laser-induced damage threshold of ∼5.8 × AGS, as well as a band gap of 2.98 eV, demonstrating that K2Ba7HgIn4S16 is a potential IR NLO material. This work enriches the structural chemistry of chalcogenides and the family of Hg-based IR NLO chalcogenides.
Collapse
Affiliation(s)
- Xiao Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Ye-Xin Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yuan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Ying-Chi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qing-Hua Ren
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jiajing Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
34
|
Chen W, Liu B, Pei S, Jiang X, Guo G. [K 2 PbX][Ga 7 S 12 ] (X = Cl, Br, I): The First Lead-Containing Cationic Moieties with Ultrahigh Second-Harmonic Generation and Band Gaps Exceeding the Criterion of 2.33 eV. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207630. [PMID: 36847074 PMCID: PMC10161116 DOI: 10.1002/advs.202207630] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/06/2023] [Indexed: 05/06/2023]
Abstract
In contrast to anionic group theory of nonlinear optical (NLO) materials that second-harmonic generation (SHG) responses mainly originate from anionic groups, structural regulation on the cationic groups of salt-inclusion chalcogenides (SICs) is performed to make them also contribute to the NLO effects. Herein, the stereochemically active lone-electron-pair Pb2+ cation is first introduced to the cationic groups of NLO SICs, and the resultant [K2 PbX][Ga7 S12 ] (X = Cl, Br, I) are isolated via solid-state method. The features of their three-dimensional structures comprise highly oriented [Ga7 S12 ]3- and [K2 PbX]3+ frameworks derived from AgGaS2 , which display the largest phase-matching SHG intensities (2.5-2.7 × AgGaS2 @1800 nm) among all SICs. Concurrently, three compounds manifest band gap values of 2.54, 2.49, and 2.41 eV (exceeding the criterion of 2.33 eV), which can avoid two-photon absorption under the fundamental laser of 1064 nm, along with the relatively low anisotropy of thermal expansion coefficients, leading to improved laser-induced damage thresholds (LIDTs) values of 2.3, 3.8, and 4.0 times that of AgGaS2 . In addition, the density of states and SHG coefficient calculations demonstrate that the Pb2+ cations narrow the band gaps and benefit SHG responses.
Collapse
Affiliation(s)
- Wen‐Fa Chen
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Bin‐Wen Liu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350002P. R. China
| | - Shao‐Min Pei
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiao‐Ming Jiang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350002P. R. China
| | - Guo‐Cong Guo
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350002P. R. China
| |
Collapse
|
35
|
Wang L, Tu C, Gao H, Zhou J, Wang H, Yang Z, Pan S, Li J. Clamping effect driven design and fabrication of new infrared birefringent materials with large optical anisotropy. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1452-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
36
|
Sun Q, Boddapati L, Wang L, Li J, Deepak FL. In Situ Observations Reveal the Five-fold Twin-Involved Growth of Gold Nanorods by Particle Attachment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:796. [PMID: 36903675 PMCID: PMC10005194 DOI: 10.3390/nano13050796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Crystallization plays a critical role in determining crystal size, purity and morphology. Therefore, uncovering the growth dynamics of nanoparticles (NPs) atomically is important for the controllable fabrication of nanocrystals with desired geometry and properties. Herein, we conducted in situ atomic-scale observations on the growth of Au nanorods (NRs) by particle attachment within an aberration-corrected transmission electron microscope (AC-TEM). The results show that the attachment of spherical colloidal Au NPs with a size of about 10 nm involves the formation and growth of neck-like (NL) structures, followed by five-fold twin intermediate states and total atomic rearrangement. The statistical analyses show that the length and diameter of Au NRs can be well regulated by the number of tip-to-tip Au NPs and the size of colloidal Au NPs, respectively. The results highlight five-fold twin-involved particle attachment in spherical Au NPs with a size of 3-14 nm, and provide insights into the fabrication of Au NRs using irradiation chemistry.
Collapse
Affiliation(s)
- Qi Sun
- School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China
| | - Loukya Boddapati
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Linan Wang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China
| | - Junjie Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
37
|
Chen K, Lin C, Chen J, Yang G, Tian H, Luo M, Yan T, Hu Z, Wang J, Wu Y, Ye N, Peng G. Intense d-p Hybridization in Nb 3 O 15 Tripolymer Induced the Largest Second Harmonic Generation Response and Birefringence in Germanates. Angew Chem Int Ed Engl 2023; 62:e202217039. [PMID: 36601969 DOI: 10.1002/anie.202217039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
We herein report two asymmetric germanate crystals, KNbGe3 O9 and K3 Nb3 Ge2 O13 , with different structures and optical properties derived from divergent polymerized forms of GeO4 and NbO6 groups. Remarkably, K3 Nb3 Ge2 O13 achieved a rare combination of the strongest second harmonic generation (SHG) response of 17.5×KDP @ 1064 nm and the largest birefringence of 0.196 @ 546 nm in germanates. It features unique [Nb3 O12 ]∞ tubular chains constructed by circular Nb3 O15 tripolymers. Theoretical calculations reveal that the d-p interactions in the Nb3 O15 group are responsible for outstanding optical properties. This work emphasizes the significance of the polymerizable functional units in obtaining high-performance nonlinear optical (NLO) crystals.
Collapse
Affiliation(s)
- Kaichuang Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chensheng Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Jindong Chen
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| | - Guangsai Yang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| | - Haotian Tian
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Min Luo
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Tao Yan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| | - Guang Peng
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| |
Collapse
|
38
|
Chen Z, Li F, Han J, Yang Z, Pan S, Mutailipu M. Cs[B 3O 3F 2(OH) 2]: discovery of a hydroxyfluorooxoborate guided by selective organic-inorganic transformation. Chem Commun (Camb) 2023; 59:2114-2117. [PMID: 36723363 DOI: 10.1039/d2cc06924e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Selective transformation between organic and inorganic systems is crucial but still remains a challenge. Herein, we demonstrated that selective organic-inorganic transformation is a simple but effective strategy to find new hydroxyfluorooxoborates. By replacing the [Ph4P]/[Ph3MeP] organic cations with Cs atoms, a new hydroxyfluorooxoborate Cs[B3O3F2(OH)2] with three-membered [B3O3F2(OH)2] clusters was synthesized. Theoretical analysis confirmed the effects of different components in the lattice of reported structure on the optical properties.
Collapse
Affiliation(s)
- Ziqi Chen
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fuming Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Han
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
39
|
Li RA, Liu QQ, Liu X, Liu Y, Jiang X, Lin Z, Jia F, Xiong L, Chen L, Wu LM. Na 2 Ba[Na 2 Sn 2 S 7 ]: Structural Tolerance Factor-Guided NLO Performance Improvement. Angew Chem Int Ed Engl 2023; 62:e202218048. [PMID: 36541587 DOI: 10.1002/anie.202218048] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The strong mutual coupling of and even the opposite change in the key parameters, such as the band gap (Eg ) and second-order harmonic generation (SHG), leads to the extreme scarcity in high-performance IR nonlinear optical (NLO) chalcogenides. Herein, we report 8 new sulfides, Na2 Ba[(Agx Na1-x )2 Sn2 S7 ] (1, x=0; 1 series, x=0.1-0.6; Na2 Ba[(Li0.58 Na0.42 )2 Sn2 S7 ], 1-0.6Li); Na2 Sr[Cu2 Sn2 S7 ] (2); and Na2 Ba[Cu2 Sn2 S7 ] (3). We use the structural tolerance factor ( t I e x p ${{t}_{I}^{exp}}$ ) to connect the chemical composition, crystal structure, and NLO properties. Guided by these correlations, a better balance between Eg and SHG is realized in 1, which exhibits a large Eg of 3.42 eV and excellent NLO properties (SHG: 1.5×AGS; laser-induced damage threshold: 12×AGS), representing the best performance among the known Hg- or As-free sulfides to date.
Collapse
Affiliation(s)
- Rui-An Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China
| | - Qian-Qian Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China
| | - Xin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China
| | - Youquan Liu
- Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Xingxing Jiang
- Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Zheshuai Lin
- Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Fei Jia
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China
| | - Lin Xiong
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China
| | - Ling Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China.,Center for Advanced Materials Research, Beijing Normal University, 519087, Zhuhai, P. R. China
| | - Li-Ming Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China.,Center for Advanced Materials Research, Beijing Normal University, 519087, Zhuhai, P. R. China
| |
Collapse
|
40
|
Zhou J, Fan Z, Zhang K, Yang Z, Pan S, Li J. Rb 2CdSi 4S 10: novel [Si 4S 10] T2-supertetrahedra-contained infrared nonlinear optical material with large band gap. MATERIALS HORIZONS 2023; 10:619-624. [PMID: 36514894 DOI: 10.1039/d2mh01200f] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Infrared nonlinear optical (IR-NLO) materials with wide band gaps are important for generating high-power laser light for modern laser technologies. Herein, a wide band gap IR-NLO material, Rb2CdSi4S10, was rationally designed and fabricated by introducing a NLO-active [Si4S10] T2-supertetrahedron (ST) into the quaternary sulfide system. The Rb2CdSi4S10 shows the largest band gap (4.23 eV) among the quaternary chalcogenide IR-NLO materials reported, which results in a high laser-induced damage threshold (LIDT) of ∼5 × AgGaS2 (AGS) at 1064 nm. At the same time, it has a moderate second-harmonic generation (SHG) response (0.6 × AGS). Based on statistical analyses, the Rb2CdSi4S10 is the first compound to be discovered in the AI2BIICIV4QVI10 family, and also the first Si-rich sulfide IR-NLO material with a [Si4S10] T2-supertetrahedra. The results indicate that Rb2CdSi4S10 is a promising new IR-NLO material, and the NLO-active [Si4S10] T2-ST unit could be used for the exploration of IR-NLO material with excellent performances.
Collapse
Affiliation(s)
- Jiazheng Zhou
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Zhongxu Fan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Kewang Zhang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Junjie Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
| |
Collapse
|
41
|
Zhang B, Chen Z. Recent Advances of Inorganic Phosphates with UV/DUV Cutoff Edge and Large Second Harmonic Response. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
42
|
Wang L, Sun Q, Li J. Recent Progress on Sulfide Infrared Nonlinear Optical Materials with Large SHG Response and Wide Band Gap. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Abstract
Nucleation and growth are critical steps in crystallization, which plays an important role in determining crystal structure, size, morphology, and purity. Therefore, understanding the mechanisms of nucleation and growth is crucial to realize the controllable fabrication of crystalline products with desired and reproducible properties. Based on classical models, the initial crystal nucleus is formed by the spontaneous aggregation of ions, atoms, or molecules, and crystal growth is dependent on the monomer's diffusion and the surface reaction. Recently, numerous in situ investigations on crystallization dynamics have uncovered the existence of nonclassical mechanisms. This review provides a summary and highlights the in situ studies of crystal nucleation and growth, with a particular emphasis on the state-of-the-art research progress since the year 2016, and includes technological advances, atomic-scale observations, substrate- and temperature-dependent nucleation and growth, and the progress achieved in the various materials: metals, alloys, metallic compounds, colloids, and proteins. Finally, the forthcoming opportunities and challenges in this fascinating field are discussed.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330Braga, Portugal
| |
Collapse
|
44
|
Li T, Lu Y, Chen Z. Heteroepitaxy Growth and Characterization of High-Quality AlN Films for Far-Ultraviolet Photodetection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4169. [PMID: 36500790 PMCID: PMC9737869 DOI: 10.3390/nano12234169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The ultra-wide bandgap (~6.2 eV), thermal stability and radiation tolerance of AlN make it an ideal choice for preparation of high-performance far-ultraviolet photodetectors (FUV PDs). However, the challenge of epitaxial crack-free AlN single-crystalline films (SCFs) on GaN templates with low defect density has limited its practical applications in vertical devices. Here, a novel preparation strategy of high-quality AlN films was proposed via the metal organic chemical vapor deposition (MOCVD) technique. Cross-sectional transmission electron microscopy (TEM) studies clearly indicate that sharp, crack-free AlN films in single-crystal configurations were achieved. We also constructed a p-graphene/i-AlN/n-GaN photovoltaic FUV PD with excellent spectral selectivity for the FUV/UV-C rejection ratio of >103, a sharp cutoff edge at 206 nm and a high responsivity of 25 mA/W. This work provides an important reference for device design of AlN materials for high-performance FUV PDs.
Collapse
Affiliation(s)
- Titao Li
- Jinjiang Joint Institute of Microelectronics, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yaoping Lu
- Jinjiang Joint Institute of Microelectronics, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zuxin Chen
- School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| |
Collapse
|
45
|
Luo L, Wang L, Chen J, Zhou J, Yang Z, Pan S, Li J. A IB 3IIC 3IIIQ 8VI: A New Family for the Design of Infrared Nonlinear Optical Materials by Coupling Octahedra and Tetrahedra Units. J Am Chem Soc 2022; 144:21916-21925. [DOI: 10.1021/jacs.2c08318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ling Luo
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Ürümqi830011, China
| | - Linan Wang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Ürümqi830011, China
| | - Jianbang Chen
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Ürümqi830011, China
| | - Jiazheng Zhou
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Ürümqi830011, China
| | - Zhihua Yang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Ürümqi830011, China
| | - Shilie Pan
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Ürümqi830011, China
| | - Junjie Li
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Ürümqi830011, China
| |
Collapse
|
46
|
Huang Y, Huang J, Zhang Y. Wide band gap thiophosphates ASrPS 4 (A = Li, Na, K, Rb, Cs): cation size effect induced successive structural transformation. Dalton Trans 2022; 51:15067-15073. [PMID: 36112090 DOI: 10.1039/d2dt02321k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal thiophosphates have aroused much research interest due to their structural chemistry and possible applications as infrared functional materials. In this study, five quaternary Sr-based alkali metal thiophosphates ASrPS4 (A = Li, Na, K, Rb, Cs) were obtained. Their structural comparison shows that their symmetry undergoes transformation from tetragonal (I41/acd) to monoclinic (P21/c) to orthorhombic (Pnma) system, which is induced by the cation size effects and coordination features of different alkali metal cations. The experimental and theoretical results demonstrate that the band gaps of all title compounds are large, namely 3.6-3.9 eV (experimental results) and 3.78-4.12 eV (HSE06). Theoretical analyses indicate that the [PS4] group could be regarded as a good unit for designing wide band gap compounds, and the birefringence of NaSrPS4 is 0.08 at the fundemental 1064 nm wavelength, which shows that it may be a potential infrared birefringent material.
Collapse
Affiliation(s)
- Yi Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Junben Huang
- School of Materials Science and Engineering, Education Ministry Key Laboratory of Nonferrous Materials Science and Engineering, Central South University, Changsha 410083 Hunan, China
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China. .,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
47
|
Wang P, Abudoureheman M, Zhang K, Zheng J, Chen Z, Wu Q. Ag 4SnGe 2S 7: A Noncentrosymmetric Chalcogenide in I 4-II-IV 2-VI 7 System with Non-Diamond-Like Structure Featuring 1D ∞[SnGe 2S 8] 6- Infinite Chain. Inorg Chem 2022; 61:15303-15309. [PMID: 36126330 DOI: 10.1021/acs.inorgchem.2c01828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The I4-II-IV2-VI7 metal chalcogenide system has become an attractive research system because of its excellent physical and chemical properties. Here, we report the discovery of a new SnII-based quaternary chalcogenide in the I4-II-IV2-VI7 system, Ag4SnGe2S7, with a non-diamond-like structure and crystallizing in the Cc space group. The compound is characterized by isolated pyramid-like [SnS3] units and one-dimensional ∞[SnGe2S8]6- infinite chains with two orientations formed by the corner-sharing connected [SnGe2S8]6- units. It has a band gap of 2.40 eV and is insensitive to air and moisture.
Collapse
Affiliation(s)
- Peng Wang
- School of Chemical Engineering and Technology, Key Laboratory of Coal Clean Conversion, and Chemical Engineering Process of Xinjiang Uyghur Autonomous Region, Xinjiang University, 666 Shengli Road, Urumqi 830046, China
| | - Maierhaba Abudoureheman
- School of Chemical Engineering and Technology, Key Laboratory of Coal Clean Conversion, and Chemical Engineering Process of Xinjiang Uyghur Autonomous Region, Xinjiang University, 666 Shengli Road, Urumqi 830046, China
| | - Kewang Zhang
- College of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Juanjuan Zheng
- School of Chemical Engineering and Technology, Key Laboratory of Coal Clean Conversion, and Chemical Engineering Process of Xinjiang Uyghur Autonomous Region, Xinjiang University, 666 Shengli Road, Urumqi 830046, China
| | - Zhaohui Chen
- School of Chemical Engineering and Technology, Key Laboratory of Coal Clean Conversion, and Chemical Engineering Process of Xinjiang Uyghur Autonomous Region, Xinjiang University, 666 Shengli Road, Urumqi 830046, China
| | - Qi Wu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| |
Collapse
|
48
|
Chen H, Ran M, Zhou S, Wu X, Lin H, Zhu Q. Simple yet extraordinary: super-polyhedra-built 3D chalcogenide framework of Cs5Ga9S16 with excellent infrared nonlinear optical performance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Craig AJ, Shin SH, Cho JB, Balijapelly S, Kelly JC, Stoyko SS, Choudhury A, Jang JI, Aitken JA. Crystal structure, electronic structure, and optical properties of the novel Li 4CdGe 2S 7, a wide-bandgap quaternary sulfide with a polar structure derived from lonsdaleite. ACTA CRYSTALLOGRAPHICA SECTION C STRUCTURAL CHEMISTRY 2022; 78:470-480. [DOI: 10.1107/s2053229622008014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022]
Abstract
The novel quaternary thiogermanate Li4CdGe2S7 (tetralithium cadmium digermanium heptasulfide) was discovered from a solid-state reaction at 750 °C. Single-crystal X-ray diffraction data were collected and used to solve and refine the structure. Li4CdGe2S7 is a member of the small, but growing, class of I4–II–IV2–VI7 diamond-like materials. The compound adopts the Cu5Si2S7 structure type, which is a derivative of lonsdaleite. Crystallizing in the polar space group Cc, Li4CdGe2S7 contains 14 crystallographically unique ions, all residing on general positions. Like all diamond-like structures, the compound is built of corner-sharing tetrahedral units that create a relatively dense three-dimensional assembly. The title compound is the major phase of the reaction product, as evidenced by powder X-ray diffraction and optical diffuse reflectance spectroscopy. While the compound exhibits a second-harmonic generation (SHG) response comparable to that of the AgGaS2 (AGS) reference material in the IR region, its laser-induced damage threshold (LIDT) is over an order of magnitude greater than AGS for λ = 1.064 µm and τ = 30 ps. Bond valence sums, global instability index, minimum bounding ellipsoid (MBE) analysis, and electronic structure calculations using density functional theory (DFT) were used to further evaluate the crystal structure and electronic structure of the compound and provide a comparison with the analogous I2–II–IV–VI4 diamond-like compound Li2CdGeS4. Li4CdGe2S7 appears to be a better IR nonlinear optical (NLO) candidate than Li2CdGeS4 and one of the most promising contenders to date. The exceptional LIDT is likely due, at least in part, to the wider optical bandgap of ∼3.6 eV.
Collapse
|
50
|
Zhou W, Liu W, Guo S. (Na
0.74
Ag
1.26
)BaSnS
4
: A New AgGaS
2
‐Type Nonlinear Optical Sulfide with a Wide Band Gap and High Laser Induced Damage Threshold. Chemistry 2022; 28:e202202063. [DOI: 10.1002/chem.202202063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Wenfeng Zhou
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu 225002 P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu 225002 P. R. China
| | - Sheng‐Ping Guo
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu 225002 P. R. China
| |
Collapse
|