1
|
Jiang L, Zuo F, Pan Y, Li R, Shi Y, Huang X, Zhang D, Zhuang Y, Zhao Y, Lin Q, Yang Y, Zhu L, Chen X. Bright and Stable Cyan Fluorescent RNA Enables Multicolor RNA Imaging in Live Escherichia coli. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405165. [PMID: 39466940 DOI: 10.1002/smll.202405165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/22/2024] [Indexed: 10/30/2024]
Abstract
Fluorescent RNAs (FRs), which are RNA aptamers that bind and activate their cognate small fluorogenic dyes, have provided a particularly useful approach for imaging RNAs in live cells. Although the color palette of FRs is greatly expanded, a bright and stable cyan FR with good biocompatibility and biorthogonality with currently available FRs remains desirable but is not yet developed. Herein, the development of Myosotis is described, an RNA aptamer that emits bright cyan fluorescence upon binding a novel GFP chromophore-like fluorophore called DBT. Myosotis has a nanomolar affinity for DBT and shows a weak dependence on magnesium for folding. Further studies reveal that the Myosotis-DBT complex has a long fluorescence lifetime, good photostability, and enhance cellular brightness. It is further shown that Myosotis-DBT is biorthogonal to Pepper and Clivia FRs, allowing multiplex fluorescence imaging of RNA in live bacteria. Myosotis can also use to image mRNA in live bacteria, revealing potential coupling between mRNA translation and stability. It is believed that this cyan FR will be a useful tool for studying the functionality and mechanism of RNA underlying diverse biological processes.
Collapse
Affiliation(s)
- Li Jiang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Fangting Zuo
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanyuan Pan
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Ruilong Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yajie Shi
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xinyi Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Dasheng Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yingping Zhuang
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
2
|
Zuo F, Jiang L, Su N, Zhang Y, Bao B, Wang L, Shi Y, Yang H, Huang X, Li R, Zeng Q, Chen Z, Lin Q, Zhuang Y, Zhao Y, Chen X, Zhu L, Yang Y. Imaging the dynamics of messenger RNA with a bright and stable green fluorescent RNA. Nat Chem Biol 2024; 20:1272-1281. [PMID: 38783134 DOI: 10.1038/s41589-024-01629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Fluorescent RNAs (FRs) provide an attractive approach to visualizing RNAs in live cells. Although the color palette of FRs has been greatly expanded recently, a green FR with high cellular brightness and photostability is still highly desired. Here we develop a fluorogenic RNA aptamer, termed Okra, that can bind and activate the fluorophore ligand ACE to emit bright green fluorescence. Okra has an order of magnitude enhanced cellular brightness than currently available green FRs, allowing the robust imaging of messenger RNA in both live bacterial and mammalian cells. We further demonstrate the usefulness of Okra for time-resolved measurements of ACTB mRNA trafficking to stress granules, as well as live-cell dual-color superresolution imaging of RNA in combination with Pepper620, revealing nonuniform and distinct distributions of different RNAs throughout the granules. The favorable properties of Okra make it a versatile tool for the study of RNA dynamics and subcellular localization.
Collapse
Affiliation(s)
- Fangting Zuo
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Li Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ni Su
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yaqiang Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Limei Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yajie Shi
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Huimin Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xinyi Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruilong Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingmei Zeng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengda Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yingping Zhuang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Pham TG, Wu J. Recent advances in methods for live-cell RNA imaging. NANOSCALE 2024; 16:5537-5545. [PMID: 38414383 DOI: 10.1039/d4nr00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
As one of the most fundamental building blocks of life, RNA plays critical roles in diverse biological processes, from X chromosome inactivation, genome stability maintenance, to embryo development. Being able to visualize the localization and dynamics of RNA can provide critical insights into these fundamental processes. In this review, we provide an overview of current methods for live-cell RNA imaging with a focus on methods for visualizing RNA in living mammalian cells with single-molecule resolution.
Collapse
Affiliation(s)
- Tien G Pham
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Jiahui Wu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
4
|
Zhang Z, Rong X, Xie T, Li Z, Song H, Zhen S, Wang H, Wu J, Jaffrey SR, Li X. Fluorogenic CRISPR for genomic DNA imaging. Nat Commun 2024; 15:934. [PMID: 38296979 PMCID: PMC10831063 DOI: 10.1038/s41467-024-45163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Genomic DNA exhibits high heterogeneity in terms of its dynamic within the nucleus, its structure and functional roles. CRISPR-based imaging approaches can image genomic loci in living cells. However, conventional CRISPR-based tools involve expressing constitutively fluorescent proteins, resulting in high background and nonspecific nucleolar signal. Here, we construct fluorogenic CRISPR (fCRISPR) to overcome these issues. fCRISPR is designed with dCas9, an engineered sgRNA, and a fluorogenic protein. Fluorogenic proteins are degraded unless they are bound to specific RNA hairpins. These hairpins are inserted into sgRNA, resulting in dCas9: sgRNA: fluorogenic protein ternary complexes that enable fluorogenic DNA imaging. With fCRISPR, we image various genomic DNA in different human cells with high signal-to-noise ratio and sensitivity. Furthermore, fCRISPR tracks chromosomes dynamics and length. fCRISPR also allows DNA double-strand breaks (DSBs) and repair to be tracked in real time. Taken together, fCRISPR offers a high-contrast and sensitive platform for imaging genomic loci.
Collapse
Affiliation(s)
- Zhongxuan Zhang
- Beijing Institute of Life Sciences, Chinese Academy of Science, 100101, Beijing, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaoxiao Rong
- Beijing Institute of Life Sciences, Chinese Academy of Science, 100101, Beijing, China
- College of Life Science, Hebei University, Baoding, 071002, Hebei, China
| | - Tianjin Xie
- Beijing Institute of Life Sciences, Chinese Academy of Science, 100101, Beijing, China
- School of Chemistry and Chemical Engineering, Southwest University, Beibei District, 400715, Chongqing, China
| | - Zehao Li
- Beijing Institute of Life Sciences, Chinese Academy of Science, 100101, Beijing, China
- College of Life Science, Hebei University, Baoding, 071002, Hebei, China
| | - Haozhi Song
- Beijing Institute of Life Sciences, Chinese Academy of Science, 100101, Beijing, China
| | - Shujun Zhen
- School of Chemistry and Chemical Engineering, Southwest University, Beibei District, 400715, Chongqing, China
| | - Haifeng Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Jiahui Wu
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Xing Li
- Beijing Institute of Life Sciences, Chinese Academy of Science, 100101, Beijing, China.
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
5
|
Jiang L, Xie X, Su N, Zhang D, Chen X, Xu X, Zhang B, Huang K, Yu J, Fang M, Bao B, Zuo F, Yang L, Zhang R, Li H, Huang X, Chen Z, Zeng Q, Liu R, Lin Q, Zhao Y, Ren A, Zhu L, Yang Y. Large Stokes shift fluorescent RNAs for dual-emission fluorescence and bioluminescence imaging in live cells. Nat Methods 2023; 20:1563-1572. [PMID: 37723244 DOI: 10.1038/s41592-023-01997-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/08/2023] [Indexed: 09/20/2023]
Abstract
Fluorescent RNAs, aptamers that bind and activate small fluorogenic dyes, have provided a particularly attractive approach to visualizing RNAs in live cells. However, the simultaneous imaging of multiple RNAs remains challenging due to a lack of bright and stable fluorescent RNAs with bio-orthogonality and suitable spectral properties. Here, we develop the Clivias, a series of small, monomeric and stable orange-to-red fluorescent RNAs with large Stokes shifts of up to 108 nm, enabling the simple and robust imaging of RNA with minimal perturbation of the target RNA's localization and functionality. In combination with Pepper fluorescent RNAs, the Clivias enable the single-excitation two-emission dual-color imaging of cellular RNAs and genomic loci. Clivias can also be used to detect RNA-protein interactions by bioluminescent imaging both in live cells and in vivo. We believe that these large Stokes shift fluorescent RNAs will be useful tools for the tracking and quantification of multiple RNAs in diverse biological processes.
Collapse
Affiliation(s)
- Li Jiang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Xie
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ni Su
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dasheng Zhang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Fluorescence Diagnosis (Shanghai) Biotech Company Ltd, Shanghai, China
| | - Xianjun Chen
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Xiaochen Xu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bibi Zhang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Kaiyi Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Yu
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Mengyue Fang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bingkun Bao
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fangting Zuo
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lipeng Yang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Zhang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Huiwen Li
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xinyi Huang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengda Chen
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qingmei Zeng
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Renmei Liu
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuzheng Zhao
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Linyong Zhu
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi Yang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
6
|
Zhang YP, Wang ZG, Tian YF, Jiang LH, Zhao L, Kong DM, Li X, Pang DW, Liu SL. In Situ Self-Assembly of Fluorogenic RNA Nanozipper Enables Real-Time Imaging of Single Viral mRNA Translation. Angew Chem Int Ed Engl 2023; 62:e202217230. [PMID: 37082873 DOI: 10.1002/anie.202217230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/22/2023]
Abstract
Real-time visualization of individual viral mRNA translation activities in live cells is essential to obtain critical details of viral mRNA dynamics and to detect its transient responses to environmental stress. Fluorogenic RNA aptamers are powerful tools for real-time imaging of mRNA in live cells, but monitoring the translation activity of individual mRNAs remains a challenge due to their intrinsic photophysical properties. Here, we develop a genetically encoded turn-on 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI)-binding RNA nanozipper with superior brightness and high photostability by in situ self-assembly of multiple nanozippers along single mRNAs. The nanozipper enables real-time imaging of the mobility and dynamic translation of individual viral mRNAs in live cells, providing information on the spatial dynamics and translational elongation rate of viral mRNAs.
Collapse
Affiliation(s)
- Yu-Peng Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yi-Fan Tian
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Lin-Han Jiang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Liang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Xing Li
- Beijing Institutes of Life Science, Chinese Academy of Science, Beijing, 100101, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Engineering Research Center of Nano Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
7
|
Wang C, Jiang W, Tan D, Huang L, Li J, Qiao Q, Yadav P, Liu X, Xu Z. Monitoring amyloid aggregation via a twisted intramolecular charge transfer (TICT)-based fluorescent sensor array. Chem Sci 2023; 14:4786-4795. [PMID: 37181777 PMCID: PMC10171079 DOI: 10.1039/d2sc06710b] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Imaging amyloid-beta (Aβ) aggregation is critical for understanding the pathology and aiding the pre-symptomatic intervention of Alzheimer's disease (AD). Amyloid aggregation consists of multiple phases with increasing viscosities and demands probes with broad dynamic ranges and gradient sensitivities for continuous monitoring. Yet, existing probes designed based on the twisted intramolecular charge transfer (TICT) mechanism mainly focused on donor engineering, limiting the sensitivities and/or dynamic ranges of these fluorophores to a narrow window. Herein, using quantum chemical calculations, we investigated multiple factors affecting the TICT process of fluorophores. It includes the conjugation length, the net charge of the fluorophore scaffold, the donor strength, and the geometric pre-twisting. We have established an integrative framework for tuning TICT tendencies. Based on this framework, a platter of hemicyanines with varied sensitivities and dynamic ranges is synthesized, forming a sensor array and enabling the observation of various stages of Aβ aggregations. This approach will significantly facilitate the development of TICT-based fluorescent probes with tailored environmental sensitivities for numerous applications.
Collapse
Affiliation(s)
- Chao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Fluorescence Research Group, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Wenchao Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Lu Huang
- Fluorescence Research Group, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
- Ocean College, Minjiang University Fuzhou 350108 China
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Priya Yadav
- Fluorescence Research Group, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
8
|
Chen W, Zhao X, Yang N, Li X. Single mRNA Imaging with Fluorogenic RNA Aptamers and Small-molecule Fluorophores. Angew Chem Int Ed Engl 2023; 62:e202209813. [PMID: 36420710 DOI: 10.1002/anie.202209813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
Messenger RNA (mRNA) is the fundamental information transfer system in the cell. Tracking single mRNA from transcription to degradation with fluorescent probes provides spatiotemporal information in cells about how the genetic information is transferred from DNA to proteins. The traditional single mRNA imaging approach utilizes RNA hairpins (e.g. MS2) and tethered fluorescent protein as probes. As an exciting alternative, RNA aptamers: small-molecule fluorophores (SFs) systems have emerged as novel single mRNA imaging probes since 2019, exhibiting several advantages including fluorogenic ability and minimal perturbation. This review summarizes all five reported RNA aptamers: SFs systems for single mRNA imaging in living cells so far. It also discusses the challenges and provides prospects for single mRNA imaging applications. This review is expected to inspire researchers to develop RNA aptamers: SFs systems for studying gene expression at single-molecule resolution in cells.
Collapse
Affiliation(s)
- Wei Chen
- Institute of Cytology and Genetics, the Hengyang Key Laboratory of Cellular Stress Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,Beijing Institutes of Life Science, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Science, Beijing, 100101, China
| | - Xiaoying Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Nanyang Yang
- Institute of Cytology and Genetics, the Hengyang Key Laboratory of Cellular Stress Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xing Li
- Beijing Institutes of Life Science, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Science, Beijing, 100101, China
| |
Collapse
|
9
|
Hyun Lee K, Kimoto M, Kawai G, Okamoto I, Fin A, Hirao I. Dye‐Conjugated Spinach RNA by Genetic Alphabet Expansion. Chemistry 2022; 28:e202104396. [DOI: 10.1002/chem.202104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Kyung Hyun Lee
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| | - Michiko Kimoto
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| | - Gota Kawai
- Chiba Institute of Technology (CIT) Tsudanuma 2-17-1 Narashino Chiba 275-0016 Japan
| | - Itaru Okamoto
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| | - Andrea Fin
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| | - Ichiro Hirao
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| |
Collapse
|
10
|
Monitoring Molecular Properties of a Fluorescence Light-Up Aptamer Using Fluorescence Cross-Correlation Spectroscopy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fluorescence light-up aptamers (FLAPs) are tools for RNA imaging, wherein the RNA of interest is appended with a FLAP sequence that can bind to a corresponding small-molecule fluorogen and enhance its fluorescence. The fluorescence properties of FLAPs have mostly been analyzed in bulk and described as the average of a large number of RNA–fluorogen complexes. In this study, we evaluated the feasibility of fluorescence correlation spectroscopy (FCS)- and fluorescence cross-correlation spectroscopy (FCCS)-based quantifications of FLAPs in a solution using Broccoli, a common FLAP, and its corresponding fluorogen, DFHBI-1T. We investigated the folding efficiency, photostability, and photophysical properties of the Broccoli–DFHBI-1T complex using their FCS/FCCS characteristics. With FCS, we observed that the fluorescence was affected by the affinity between Broccoli and DFHBI-1T and the folding (maturation) state of Broccoli RNA. Moreover, the FCCS measurement of ATTO647N-labeled Broccoli and its complex with DFHBI-1T revealed the proportion of the mature Broccoli–DFHBI-1T complex. The current FCS/FCCS-based study of Broccoli–DFHBI-1T provides a model for analyzing FLAPs and their fluorogen pairs at the single-molecule level.
Collapse
|