1
|
Li HS, Zheng R, Liu Y, Pei L, Wu P, Yang Y, Wang J. Synergistic Enhancement of Ligand & Cluster Connectivity to Construct Highly Stable Fluorescein-Based MOFs with Thickened Channel Walls for Boosting Photocatalytic Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410922. [PMID: 39831830 DOI: 10.1002/smll.202410922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Fabricating visible-light-responsive metal-organic frameworks (MOFs) with high stability and effective catalytic functionality remains a long-term pursuit yet a great challenge. Herein, a strategy of increasing ligand and cluster connectivity is developed to construct highly stable fluorescein MOFs, La-CFL, presenting a new (4,8)-connected topological structure compared to Cd-FL constructed using 6-connected dinuclear clusters and 3-connected tritopic ligands. La8(CFL)4 containers like Chinese "Ritual Wine Vessels (Jue)" resemble linear arrangements interconnected by the [La2(COO)4] clusters. This arrangement induces benzene rings and xanthene rings to locate on the inner walls of 1D channels, resulting in thicker channel walls that contribute to enhanced stability. Consequently, La-CFL demonstrates outstanding catalytic performance in thiol-ene reactions under green LED irradiation. It exhibits 2.3 times higher efficiency than Cd-FL while reducing reaction time to one-fifth at 20 min. Furthermore, La-CFL displays size-selective catalysis and retains full activity for 20 cycles without degradation, an improvement over Cd-FL's recyclability limitations.
Collapse
Affiliation(s)
- Han-Shu Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| | - Ruiting Zheng
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| | - Yanhong Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| | - Li Pei
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| | - Pengyan Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| | - Yan Yang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| | - Jian Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| |
Collapse
|
2
|
Li P, Liu Y, Yan D. Facts and Fictions About Photocatalytic CO 2 Reduction to C 2+ Products. CHEMSUSCHEM 2025; 18:e202401174. [PMID: 39183181 DOI: 10.1002/cssc.202401174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
In response to carbon neutrality, photocatalytic reduction of CO2 has been the subject of growing interest for researchers over the past few years. Multi-carbon products (C2+) with higher energy density and larger market value produced from photocatalytic reduction of CO2 are still very limited owing to the low photocatalytic productivity and poor selectivity of products. This review focuses on the recent progress on photocatalytic reduction of CO2 towards C2+ products from the perspective of performance evaluation and mechanistic understanding. We first provide a systematic description of the entire fundamental procedures of photocatalytic reduction of CO2. An in-depth strategy analysis for improving the selectivity of photocatalytic reduction of CO2 to C2+ products is then addressed. Then the focus was on summarizing the ways to improve C2+ selectivity. The intrinsic mechanisms of photocatalytic reduction of CO2 to C2+ products are summarized in the final. Combining the foundation of photocatalysis with promising catalyst strategies, this review will offer valuable guidance for the development of efficient photocatalytic systems for the synthesis of C2+ products.
Collapse
Affiliation(s)
- Pengyan Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yumin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
3
|
Zhang J, Duan L, Zhang W, Ma B, Zhang J, Li J, Wang A, Guo P, Zhao D, Ma Y. Crystal-Facet Engineering of Mesoporous CuS Cascade Nanoreactors Enhances Photocatalytic C-C Coupling of CO 2-to-C 2H 4. Angew Chem Int Ed Engl 2025:e202423861. [PMID: 39801469 DOI: 10.1002/anie.202423861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Indexed: 01/19/2025]
Abstract
Crystal-facet heterojunction engineering of mesoporous nanoreactors with highly redox-active represents an efficacious strategy for the transformation of CO2 into valuable C2 products (e.g., C2H4). Herein, hollow mesoporous cube-like CuS nanoreactors (~860 nm) with controlled anisotropic crystal-facets are prepared through an interfacial-confined ion dynamic migration-rearrangement strategy. The regulation of the S2- ion concentration facilitates the modulation of the highly active (110) to (100) crystal-facet ratios from 0.119 to 0.288, and induces the formation of anisotropic crystal-facet heterojunctions. The controllable crystal-facet heterojunctions trigger the directional charge carrier migration, and are accompanied with the formation of tandem S-defect sites (Cu0-S1@S3). Both of them promote the efficient electron-hole pair dissociation and attain asymmetric C-C coupling. The hollow mesoporous CuS nanoreactors with optimized crystal-facet ratio of 0.224 (HMe-CuS-3) deliver a high selectivity of 72.7 % for the photocatalytic reduction of CO2 to acetylene (C2H2). Further constructed Au-(110) and Co3O4-(100) spatially separated cascade nanoreactors (SS-Au@Co3O4-CuS) achieve CO2-C2H4 photoreduction, in which the Co-sites enhance H2O dissociation to provide protons and the protonation of *CO to *COH. The *COH is further captured by Au-sites to accomplish the asymmetric *CO-*COH coupling and subsequent protonation, ensuring a high C2H4 generation rate of 4.11 μmol/g/h with a selectivity as high as 90.6 %.
Collapse
Affiliation(s)
- Jiaming Zhang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Linlin Duan
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Zhang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Bing Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Jiangwei Zhang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Jinying Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Aixia Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Peiting Guo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yuzhu Ma
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| |
Collapse
|
4
|
Yang Y, Dong M, Wu Q, Qin C, Chen W, Geng Y, Wu S, Sun C, Shao K, Su Z, Wang X. In-Situ Growth of Metallocluster Inside Heterometal-Organic Cage to Switch Electron Transfer for Targeted CO 2 Photoreduction. Angew Chem Int Ed Engl 2024:e202423018. [PMID: 39720952 DOI: 10.1002/anie.202423018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 12/26/2024]
Abstract
Construction of metal-organic cages (MOCs) with internal modifications is a promising avenue to build enzyme-like cavities and unlocking the mystery of highly catalytic activity and selectivity of enzymes. However, current interests are mainly focused on single-metal-node cages, little achievement has been expended to metallocluster-based architectures, and the in situ endogenous generation of metal clusters. Herein, based on the hard-soft-acids-bases (HSAB), the metallocluster-based heterometallic MOC (Cu3VMOP) constructed of [Cu3OPz3]+ and [V6O6(OCH3)9(SO4)(CO2)3]2- clusters was obtained by one-pot method. In addition, Cu4I4 was generated in situ in the cage to form Cu4I4@Cu3VMOP by the coordination-driven hierarchical self-assembly strategy. As catalysts for CO2 reduction, Cu3VMOP produces HCOOH and CH3COOH as the main reduction product with yield of CH3COOH up to 0.9 mmol g-1, ranking among the highest value of reported materials, whereas Cu4I4@Cu3VMOP exhibited targeted CO2-to-HCOOH conversion with 100 % formic acid selectivity and the yield outperforms that of Cu3VMOP by 5 fold. Theoretical calculations and femtosecond time-resolved transient absorption reveal that endogenous Cu4I4 not only regulates orbital arrangements and enhances localized electron states to generate a long-lived charge-separated state, but also raises *CO coupling energy barrier, resulting in the targeted conversion of CO2 to formic acid.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
- International Joint Research Center of Human-machine Intelligent, Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Man Dong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Qi Wu
- Key Laboratory of UV-Emitting Materials and Technology of Chinese, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Chao Qin
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Weichao Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yun Geng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Shuangxue Wu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Chunyi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kuizhan Shao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhongmin Su
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
5
|
Zhou T, Xie Z, Luo H, Chen H, Li L, Chen M, Shi W. Collective Effect in Hierarchical Porous MOFs Combining Single Atoms and Nanoparticles for Enhanced CO 2 Photoreduction to CO. Inorg Chem 2024. [PMID: 39688543 DOI: 10.1021/acs.inorgchem.4c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Reasonable construction of atomically accurate photocatalysts is the key to building efficient photocatalytic systems. Herein, we propose a collective effects strategy that enables the consolidation of both cobalt single atoms (CoSAs) and nickel nanoparticles (NiNPs) in hierarchical porous MOFs for the foundational features for the preparation of high-performance photocatalysts. Among them, the optimal sample CoSAs/Al-bpydc/NiNPs achieved a CO generation rate of 12.8 mmol·g-1·h-1 and selectivity of 91% in 4 h. According to the experiment characterizations and theoretical simulations, we found that CoSAs facilitate CO2 adsorption and activation, while NiNPs promote hydrogen spillover and transfer of hydrogen protons to CoSAs, highlighting the collective effect of the catalytic system with multiple active sites. Most importantly, as a proof of concept, this performance enhancement strategy can also be applied to other hierarchically porous MOF photocatalysts, such as Al-bpdc, DUT-4, and UiO-67. This work provides new insight into the development of performance optimization of CO2 conversion photocatalysts through the ingenious design of collective catalytic sites.
Collapse
Affiliation(s)
- Ting Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhongkai Xie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongyun Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongjing Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
6
|
Sun K, Qian Y, Li D, Jiang HL. Reticular Materials for Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411118. [PMID: 39601158 DOI: 10.1002/adma.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Photocatalysis leverages solar energy to overcome the thermodynamic barrier, enabling efficient chemical reactions under mild conditions. It can greatly reduce reliance on traditional energy sources and has attracted significant research interest. Reticular materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), represent a class of crystalline materials constructed from molecular building blocks linked by coordination and covalent bonds, respectively. Reticular materials function as heterogeneous catalysts, combining well-defined structures and high tailorability akin to homogeneous catalysts. In this review, the regulation of light absorption, charge separation, and surface reactions in the photocatalytic process through precise molecular-level design based on the features of reticular materials is elaborated. Notably, for MOFsmicroenvironment modulation around catalytic sites affects photocatalytic performance is delved, with emphasis on their unique dynamic and flexible microenvironments. For COFs, the inherent excitonic effects due to their fully organic nature is discussed and highlight the strategies to regulate excitonic effects for charge- and/or energy-transfer-mediated photocatalysis. Finally, the current challenges and future directions in this field, aiming to provide a comprehensive understanding of how reticular materials can be optimized for enhanced photocatalysis is discussed.
Collapse
Affiliation(s)
- Kang Sun
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
7
|
Pan R, Wang Q, Zhao Y, Feng Z, Xu Y, Wang Z, Li Y, Zhang X, Zhang H, Liu J, Gu XK, Zhang J, Weng Y, Zhang J. Bioinspired catalytic pocket promotes CO 2-to-ethanol photoconversion on colloidal quantum wells. SCIENCE ADVANCES 2024; 10:eadq2791. [PMID: 39565844 PMCID: PMC11578185 DOI: 10.1126/sciadv.adq2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Sluggish surface reaction is a critical factor that strongly governs the efficiency of photocatalytic solar fuel production, particularly in CO2-to-ethanol photoconversion. Here, inspired by the principles underlying enzyme catalytic proficiency and specificity, we report a biomimetic photocatalyst that affords superior CO2-to-ethanol photoreduction efficiency (5.5 millimoles gram-1 hour-1 in average with 98.2% selectivity) distinctly surpassing the state of the art. The key is to create a class of catalytic pocket, which contains spatially organized NH2…Cu-Se(-Zn) multiple functionalities at close range, over ZnSe colloidal quantum wells. Such structure offers a platform to mimic the concerted cooperation between the active site and surrounding secondary/outer coordination spheres in enzyme catalysis. This is manifested by the chemical adsorption and activation of CO2 via a bent geometry, favorable stabilization toward a variety of important intermediates, promotion of multielectron/proton transfer processes, etc. These results highlight the potential of incorporating enzyme-like features into the design of photocatalysts to overcome the challenges in CO2 reduction.
Collapse
Affiliation(s)
- Rongrong Pan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Qi Wang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yan Zhao
- Science Center of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Zhendong Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuan Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yapeng Li
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiuming Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Haoqing Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Jia Liu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Jiangwei Zhang
- Science Center of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Yuxiang Weng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiatao Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Zhao J, Zhang T, Xu H, Hou S, Ren F, Han J, Zhao B. CO-Free Aminocarbonylation of Terminal Alkynes Catalyzed by Synergistic Effect From Metal-Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405308. [PMID: 39234812 PMCID: PMC11538656 DOI: 10.1002/advs.202405308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Incorporation of CO into substrates to construct high-value carbonyl compounds is an intensive industrial carbonylation procedure, however, high toxicity and wide explosion limits (12.5-74.0 vol% in air) of CO limit its application in industrial production. The development of a CO-free catalytic system for carbonylation is one of ideal methods, but full of challenge. Herein, this study reports the CO-free aminocarbonylation conversion of terminal alkynes synergistically catalyzed by a unique Co(ІІ)/Ag(І) metal-organic framework (MOF), in which the combination of isocyanides and O2 is employed as safe and green source of aminocarbonyl. This reaction has broad substrate applicability in terminal alkyne and isocyanides components with 100% atom economy. The bimetal MOF catalyst can be recycled at least five times without substantial loss of catalytic activities. Mechanistic investigations demonstrate that the synergistic effect between Ag(I) and Co(II) sites can efficiently activate terminal alkyne and isocyanides, respectively. Free radical capture experiments, FT-IR analysis and theoretical explorations further reveal that terminal alkynes and isocyanides can be catalytically transformed into an anionic intermediate through heterolysis pathways. This work provides secure and practical access to carbonylation as well as a new approach to aminocarbonylation of terminal alkynes.
Collapse
Affiliation(s)
- Jian Zhao
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| | - Tianze Zhang
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| | - Hang Xu
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| | - Sheng‐Li Hou
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| | - Fang‐Yu Ren
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| | - Jie Han
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| | - Bin Zhao
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| |
Collapse
|
9
|
Du Y, Wang P, Fang Y, Zhu M. Asymmetric Charge Distribution in Atomically Precise Metal Nanoclusters for Boosted CO 2 Reduction Catalysis. CHEMSUSCHEM 2024:e202402085. [PMID: 39472281 DOI: 10.1002/cssc.202402085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Recently, atomically precise metal nanoclusters (NCs) have been widely applied in CO2 reduction reaction (CO2RR), achieving exciting activity and selectivity and revealing structure-performance correlation. However, at present, the efficiency of CO2RR is still unsatisfactory and cannot meet the requirements of practical applications. One of the main reasons is the difficulty in CO2 activation due to the chemical inertness of CO2. Constructing symmetry-breaking active sites is regarded as an effective strategy to promote CO2 activation by modulating electronic and geometric structure of CO2 molecule. In addition, in the subsequent CO2RR process, asymmetric charge distributed sites can break the charge balance in adjacent adsorbed C1 intermediates and suppress electrostatic repulsion between dipoles, benefiting for C-C coupling to generate C2+ products. Although compared to single atoms, metal nanoparticles, and inorganic materials the research on the construction of asymmetric catalytic sites in metal NCs is in a newly-developing stage, the precision, adjustability and diversity of metal NCs structure provide many possibilities to build asymmetric sites. This review summarizes several strategies of construction asymmetric charge distribution in metal NCs for boosting CO2RR, concludes the mechanism investigation paradigm of NCs-based catalysts, and proposes the challenges and opportunities of NCs catalysis.
Collapse
Affiliation(s)
- Yuanxin Du
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Pei Wang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yi Fang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Manzhou Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| |
Collapse
|
10
|
Wang Z, Fei H, Wu YN. Unveiling Advancements: Trends and Hotspots of Metal-Organic Frameworks in Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2024; 17:e202400504. [PMID: 38666390 DOI: 10.1002/cssc.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Metal-organic frameworks (MOFs) are robust, crystalline, and porous materials featured by their superior CO2 adsorption capacity, tunable energy band structure, and enhanced photovoltaic conversion efficiency, making them highly promising for photocatalytic CO2 reduction reaction (PCO2RR). This study presents a comprehensive examination of the advancements in MOFs-based PCO2RR field spanning the period from 2011 to 2023. Employing bibliometric analysis, the paper scrutinizes the widely adopted terminology and citation patterns, elucidating trends in publication, leading research entities, and the thematic evolution within the field. The findings highlight a period of rapid expansion and increasing interdisciplinary integration, with extensive international and institutional collaboration. A notable emphasis on significant research clusters and key terminologies identified through co-occurrence network analysis, highlighting predominant research on MOFs such as UiO, MIL, ZIF, porphyrin-based MOFs, their composites, and the hybridization with photosensitizers and molecular catalysts. Furthermore, prospective design approaches for catalysts are explored, encompassing single-atom catalysts (SACs), interfacial interaction enhancement, novel MOF constructions, biocatalysis, etc. It also delves into potential avenues for scaling these materials from the laboratory to industrial applications, underlining the primary technical challenges that need to be overcome to facilitate the broader application and development of MOFs-based PCO2RR technologies.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
11
|
Chen C, Ye C, Zhao X, Zhang Y, Li R, Zhang Q, Zhang H, Wu Y. Supported Au single atoms and nanoparticles on MoS 2 for highly selective CO 2-to-CH 3COOH photoreduction. Nat Commun 2024; 15:7825. [PMID: 39244601 PMCID: PMC11380681 DOI: 10.1038/s41467-024-52291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Effectively controlling the selective conversion of CO2 photoreduction to C2 products presents a significant challenge. Here, we develop a heterojunction photocatalyst by controllably implanting Au nanoparticles and single atoms into unsaturated Mo atoms of edge-rich MoS2, denoted as Aun/Au1-CMS. Photoreduction of CO2 results in the production of CH3COOH with a selectivity of 86.4%, which represents a 6.4-fold increase compared to samples lacking single atoms, and the overall selectivity for C2 products is 95.1%. Furthermore, the yield of CH3COOH is 22.4 times higher compared to samples containing single atoms and without nanoparticles. Optical experiments demonstrate that the single atoms domains can effectively capture photoexcited electrons by the Au nanoparticles, or the local electric field generated by the nanoparticles promotes the transfer of photogenerated electrons in MoS2 to Au single atoms, prolonging the relaxation time of photogenerated electrons. Mechanistic investigations reveal that the orbital coupling of Au5d and Mo4d strengthens the oxygen affinity of Mo and carbon affinity of Au. The hybridized orbitals reduce energy splitting levels of CO molecular orbitals, aiding C-C coupling. Moreover, the Mo-Au dual-site stabilize the crucial oxygen-associated intermediate *CH2CO, thereby enhancing the selectivity towards CH3COOH. The cross-scale heterojunctions provide an effective strategy to simultaneously address the kinetical and thermodynamical limitations of CO2-to-CH3COOH conversion.
Collapse
Affiliation(s)
- Cai Chen
- Institute of Carbon Neutrality, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunyin Ye
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinglei Zhao
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing, China
| | - Yizhen Zhang
- Institute of Carbon Neutrality, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China
| | - Ruilong Li
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Qun Zhang
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Zhang
- Institute of Carbon Neutrality, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China.
| | - Yuen Wu
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
12
|
Shi H, Liang Y, Hou J, Wang H, Jia Z, Wu J, Song F, Yang H, Guo X. Boosting Solar-Driven CO 2 Conversion to Ethanol via Single-Atom Catalyst with Defected Low-Coordination Cu-N 2 Motif. Angew Chem Int Ed Engl 2024; 63:e202404884. [PMID: 38760322 DOI: 10.1002/anie.202404884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Cu-based catalysts have been shown to selectively catalyze CO2 photoreduction to C2+ solar fuels. However, they still suffer from poor activity and low selectivity. Herein, we report a high-performance carbon nitride supported Cu single-atom catalyst featuring defected low-coordination Cu-N2 motif (Cu-N2-V). Lead many recently reported photocatalysts and its Cu-N3 and Cu-N4 counterparts, Cu-N2-V exhibits superior photocatalytic activity for CO2 reduction to ethanol and delivers 69.8 μmol g-1 h-1 ethanol production rate, 97.8 % electron-based ethanol selectivity, and a yield of ~10 times higher than Cu-N3 and Cu-N4. Revealed by the extensive experimental investigation combined with DFT calculations, the superior photoactivity of Cu-N2-V stems from its defected Cu-N2 configuration, in which the Cu sites are electron enriched and enhance electron delocalization. Importantly, Cu in Cu-N2-V exist in both Cu+ and Cu2+ valence states, although predominantly as Cu+. The Cu+ sites support the CO2 activation, while the co-existence of Cu+/Cu2+ sites are highly conducive for strong *CO adsorption and subsequent *CO-*CO dimerization enabling C-C coupling. Furthermore, the hollow microstructure of the catalyst also promotes light adsorption and charge separation efficiency. Collectively, these make Cu-N2-V an effective and high-performance catalyst for the solar-driven CO2 conversion to ethanol. This study also elucidates the C-C coupling reaction path via *CO-*CO to *COCOH and rate-determining step, and reveals the valence state change of partial Cu species from Cu+ to Cu2+ in Cu-N2-V during CO2 photoreduction reaction.
Collapse
Affiliation(s)
- Hainan Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yan Liang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhenghao Jia
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
- Division of Energy Research Resources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jiaming Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Fei Song
- Shanghai Synchrotron Radiation Faciality, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Hong Yang
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
13
|
Cao Y, Zhuang C, Wang B, Wang J, Chen S, Zhang Q, Ye W, Jing H. Photoelectrothermocatalytic reduction of CO 2 to glycol via Cu 2S/MoS 2-Vs octahedral heterostructure with synergistic mechanism. J Colloid Interface Sci 2024; 666:141-150. [PMID: 38593649 DOI: 10.1016/j.jcis.2024.03.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
The defects and interface engineering are efficient approaches to adjust the physical and chemical properties of nanomaterials to enhance catalytic performance. In this study, we report a new MOFs-driven porous Cu2S/MoS2-Vs octahedral semiconductor with heterostructure and photothermal effect. The introduction of sulfur vacancies directly improves the adsorption performance of CO2, and the formation of heterostructure significantly increases the charge transfer rate. The C-penetrating material obtained from MOFs not only acts as an octahedral skeleton support, but also gives photothermal effects under photoelectric conditions. The formation rate of sole C2 products in photoelectrocatalytic CO2 reduction by using Cu2S/MoS2-Vs heterostructure is up to 52 μM·h-1·cm-2 equal to the total electron transfer rate of 541 μM·h-1·cm-2. The carbene mechanism and reaction pathways were proposed and verified by 13CO2 isotopic labelling and operando Fourier transform infrared (FT-IR) spectra. The important intermediates of *CO2-, *CO, *CHO and *CHO-CHO were identified by operando FT-IR spectra. In the comparative experiments, the photothermal electrons are beneficial to C2 products. DFT calculations indicate that the presence of S vacancies (Vs) reduces the energy barrier for product generation.
Collapse
Affiliation(s)
- Youzhi Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, PR China; College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Changwan Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, PR China
| | - Bing Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Jianhua Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, PR China; College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Si Chen
- School of Chemical Engineering, Lanzhou University of Arts and Sciences, Lanzhou 730010, PR China.
| | - Qiaolan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, PR China.
| | - Weichun Ye
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, PR China.
| | - Huanwang Jing
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, PR China.
| |
Collapse
|
14
|
Kang X, Wang Z, Shi X, Jiang X, Liu Z, Zhao B. Effective Reduction of CO 2 with Aromatic Amines into N-Formamides Triggered by Noble-Free Metal-Organic Framework Catalysts Under Mild Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311511. [PMID: 38319022 DOI: 10.1002/smll.202311511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/14/2024] [Indexed: 02/07/2024]
Abstract
The reductive transformation of carbon dioxide (CO2) into high-valued N‑formamides matches well with the atom economy and the sustainable development intention. Nevertheless, developing a noble-free metal catalyst under mild reaction conditions is desirable and challenging. Herein, a caged metal-organic framework (MOFs) [H2N(CH3)2]2{[Ni3(µ3-O)(XN)(BDC)3]·6DMF}n (1) (XN = 6″-(pyridin-4-yl)-4,2″:4″,4″'-terpyridine), H2BDC = terephthalic acid) is harvested, presenting high thermal and chemical stabilities. Catalytic investigation reveals that 1 as a renewable noble-free MOFs catalyst can catalyze the CO2 reduction conversion with aromatic amines tolerated by broad functional groups at least ten times, resulting in various formamides in excellent yields and selectivity under the mildest reaction system (room temperature and 1 bar CO2). Density functional theory (DFT) theoretical studies disclose the applicable reaction path, in which the CO2 hydrosilylation process is initiated by the [Ni3] cluster interaction with CO2 via η2-C, O coordination mode. This work may open up an avenue to seek high-efficiency noble-free catalysts in CO2 chemical reduction into high value-added chemicals.
Collapse
Affiliation(s)
- Xiaomin Kang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Zhiqiang Wang
- Department of Basic Courses, Shanxi Agricultural University, Taigu, Shanxi, 030801, P. R. China
| | - Xinlei Shi
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xiaolei Jiang
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Bin Zhao
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
15
|
Yang S, Byun WJ, Zhao F, Chen D, Mao J, Zhang W, Peng J, Liu C, Pan Y, Hu J, Zhu J, Zheng X, Fu H, Yuan M, Chen H, Li R, Zhou M, Che W, Baek JB, Lee JS, Xu J. CO 2 Enrichment Boosts Highly Selective Infrared-Light-Driven CO 2 Conversion to CH 4 by UiO-66/Co 9S 8 Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312616. [PMID: 38190551 DOI: 10.1002/adma.202312616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 01/10/2024]
Abstract
Photocatalytic CO2 reduction to high-value chemicals is an attractive approach to mitigate climate change, but it remains a great challenge to produce a specific product selectively by IR light. Hence, UiO-66/Co9S8 composite is designed to couple the advantages of metallic photocatalysts and porous CO2 adsorbers for IR-light-driven CO2-to-CH4 conversion. The metallic nature of Co9S8 endows UiO-66/Co9S8 with exceptional IR light absorption, while UiO-66 dramatically enhances its local CO2 concentration, revealed by finite-element method simulations. As a result, Co9S8 or UiO-66 alone does not show observable IR-light photocatalytic activity, whereas UiO-66/Co9S8 exhibits exceptional activity. The CH4 evolution rate over UiO-66/Co9S8 reaches 25.7 µmol g-1 h-1 with ca.100% selectivity under IR light irradiation, outperforming most reported catalysts under similar reaction conditions. The X-ray absorption fine structure spectroscopy spectra verify the presence of two distinct Co sites and confirm the existence of metallic Co─Co bond in Co9S8. Energy diagrams analysis and transient absorption spectra manifest that CO2 reduction mainly occurs on Co9S8 for UiO-66/Co9S8, while density functional theory calculations demonstrate that high-electron-density Co1 sites are the key active sites, possessing lower energy barriers for further protonation of *CO, leading to the ultra-high selectivity toward CH4.
Collapse
Affiliation(s)
- Siheng Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Woo Jin Byun
- School of Energy and Chemical Engineering, Ulsan National lnstitute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Fangming Zhao
- Hefei National Research Center for Physical Science at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dingwen Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Jiawei Mao
- Sichuan Institute of Product Quality Supervision and Inspection, Chengdu, Sichuan, 610100, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Jing Peng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chengyuan Liu
- Hefei National Research Center for Physical Science at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Pan
- Hefei National Research Center for Physical Science at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jun Hu
- Hefei National Research Center for Physical Science at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Junfa Zhu
- Hefei National Research Center for Physical Science at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Maolin Yuan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Science at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wei Che
- School of Energy and Chemical Engineering, Ulsan National lnstitute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering, Ulsan National lnstitute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jae Sung Lee
- School of Energy and Chemical Engineering, Ulsan National lnstitute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| |
Collapse
|
16
|
Sun Y, Yang YL, Chen HJ, Liu J, Shi XL, Suo G, Hou X, Ye X, Zhang L, Lu S, Chen ZG. Flexible, recoverable, and efficient photocatalysts: MoS 2/TiO 2 heterojunctions grown on amorphous carbon-coated carbon textiles. J Colloid Interface Sci 2023; 651:284-295. [PMID: 37542903 DOI: 10.1016/j.jcis.2023.07.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Most traditional powder photocatalysts are not easily recovered. Herein, we report a flexible and recoverable photocatalyst with superior photocatalytic activity, in which MoS2/TiO2 heterojunctions are grown on amorphous carbon-coated carbon textiles (CT@C-MoS2/TiO2). Recoverable CT@C-MoS2/TiO2 textile was used to degrade 10 mg L-1 rhodamine B, leading to a degradation rate of up to 98.8 % within 30 min. Such a degradation rate is much higher than that of most of the reported studies. A density functional theory (DFT) calculation results illustrate charge transfer mechanism inside TiO2-C, MoS2-C, and MoS2/TiO2 heterojunctions, which shows that CT@C-MoS2/TiO2 textile with three electron separation channels has a high photogenerated carrier separation rate, which remarkably enhances the photocatalytic activity. Our work provides a novel strategy to design an efficient and recoverable photocatalyst with high activity.
Collapse
Affiliation(s)
- Yu Sun
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan-Ling Yang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Hua-Jun Chen
- School of Environment and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Jiajun Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiao-Lei Shi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Guoquan Suo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaojiang Hou
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaohui Ye
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Li Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Gang Chen
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
17
|
Yang MM, Cao JM, Qi GD, Shen XY, Yan GY, Wang Y, Dong WW, Zhao J, Li DS, Zhang Q. Construction of Low-Cost Z-Scheme Heterojunction Cu 2O/PCN-250 Photocatalysts Simultaneously for the Enhanced Photoreduction of CO 2 to Alcohols and Photooxidation of Water. Inorg Chem 2023; 62:15963-15970. [PMID: 37725073 DOI: 10.1021/acs.inorgchem.3c02026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Solar-driven high-efficiency conversion of CO2 with water vapor into high-value-added alcohols is a promising approach for reducing CO2 emissions and achieving carbon neutrality. However, the rapid recombination of photogenerated carriers and low CO2 adsorption capacity of photocatalysts are usually the factors that limit their applicability. Herein, a series of low-cost Z-scheme heterostructures Cu2O/PCN-250-x are constructed by in situ growth of ultrasmall Cu2O nanoparticles on PCN-250. A systematic investigation revealed that there is a strong interaction between Cu2O nanoparticles and PCN-250. The resulting Cu2O/PCN-250-2 exhibits excellent photogenerated carrier separation efficiency and CO2 adsorption capacity, which dramatically promote the conversion of CO2 into alcohols. Notably, the total yield of 268 μmol gcat-1 for the production of CH3OH and CH3H2OH is superior to that of isolated PCN-250 and Cu2O. This study provides a new perspective for the design of a Cu2O nanoparticle/metal-organic framework Z-scheme heterojunction for the reduction of CO2 to alcohols with water vapor.
Collapse
Affiliation(s)
- Miao-Miao Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Jia-Min Cao
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Guang-Dong Qi
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xian-Yu Shen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Guan-Yu Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Ye Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Wen-Wen Dong
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Jun Zhao
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, SAR 999077, P. R. China
| |
Collapse
|
18
|
Zhao Y, Zheng X, Gao P, Li H. Recent advances in defect-engineered molybdenum sulfides for catalytic applications. MATERIALS HORIZONS 2023; 10:3948-3999. [PMID: 37466487 DOI: 10.1039/d3mh00462g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Electrochemical energy conversion and storage driven by renewable energy sources is drawing ever-increasing interest owing to the needs of sustainable development. Progress in the related electrochemical reactions relies on highly active and cost-effective catalysts to accelerate the sluggish kinetics. A substantial number of catalysts have been exploited recently, thanks to the advances in materials science and engineering. In particular, molybdenum sulfide (MoSx) furnishes a classic platform for studying catalytic mechanisms, improving catalytic performance and developing novel catalytic reactions. Herein, the recent theoretical and experimental progress of defective MoSx for catalytic applications is reviewed. This article begins with a brief description of the structure and basic catalytic applications of MoS2. The employment of defective two-dimensional and non-two-dimensional MoSx catalysts in the hydrogen evolution reaction (HER) is then reviewed, with a focus on the combination of theoretical and experimental tools for the rational design of defects and understanding of the reaction mechanisms. Afterward, the applications of defective MoSx as catalysts for the N2 reduction reaction, the CO2 reduction reaction, metal-sulfur batteries, metal-oxygen/air batteries, and the industrial hydrodesulfurization reaction are discussed, with a special emphasis on the synergy of multiple defects in achieving performance breakthroughs. Finally, the perspectives on the challenges and opportunities of defective MoSx for catalysis are presented.
Collapse
Affiliation(s)
- Yunxing Zhao
- School of Materials, Sun Yat-sen University, Guangzhou 510275, China.
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xiaolin Zheng
- Department of Mechanical Engineering, Stanford University, California 94305, USA.
| | - Pingqi Gao
- School of Materials, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 637553, Singapore
- Centre for Micro-/Nano-electronics (NOVITAS), School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
19
|
Wu Y, Hu Q, Chen Q, Jiao X, Xie Y. Fundamentals and Challenges of Engineering Charge Polarized Active Sites for CO 2 Photoreduction toward C 2 Products. Acc Chem Res 2023; 56:2500-2513. [PMID: 37658473 DOI: 10.1021/acs.accounts.3c00373] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
ConspectusGlobal warming and climatic deterioration are partly caused by carbon dioxide (CO2) emission. Given this, CO2 reduction into valuable carbonaceous fuels is a win-win route to simultaneously alleviate the greenhouse effect and the energy crisis, where CO2 reduction into hydrocarbon fuels by solar energy may be a potential strategy. Up to now, most of the current photocatalysts photoconvert CO2 to C1 products. It is extremely difficult to achieve production of C2 products, which have higher economic value and energy density, due to the kinetic challenge of C-C coupling of the C1 intermediates. Therefore, to realize CO2 photoreduction to C2 fuels, design of high-activity photocatalysts to expedite the C-C coupling is significant. Besides, the current mechanism for CO2 photoreduction toward C2 fuels is usually uncertain, which is possibly attributed to the following two reasons: (1) It is arduous to determine the actual catalytic sites for the C-C coupling step. (2) It is hard to monitor the low-concentration active intermediates during the multielectron transfer step.Most traditional metal-based photocatalysts usually possess charge balanced active sites that have the same charge density. In this aspect, the neighboring C1 intermediates may also show the same charge distribution, which would lead to dipole-dipole repulsion, thus preventing C-C coupling for producing C2 fuels. By contrast, photocatalysts with charge polarized active sites possess obviously different charge distributions in the adjacent C1 intermediates, which can effectively suppress the electrostatic repulsion to steer the C-C coupling. Based on this analysis, higher asymmetric charge density on the active sites would be more beneficial to anchoring between the adjacent intermediates and active atoms in catalysts, which can boost C-C coupling.In this Account, we summarize various strategies, including vacancy engineering, doping engineering, loading engineering, and heterojunction engineering, for tailoring charge polarized active sites to boost the C-C coupling for the first time. Also, we overview diverse in situ characterization technologies, such as in situ X-ray photoelectron spectroscopy, in situ Raman spectroscopy, and in situ Fourier transform infrared spectroscopy, for determining charge polarized active sites and monitoring reaction intermediates, helping to reveal the internal catalytic mechanism of CO2 photoreduction toward C2 products. We hope this Account may help readers to understand the crucial function of charge polarized active sites during CO2 photoreduction toward C2 products and provide guidance for designing and preparing highly active catalysts for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qinyuan Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Liu P, Men YL, Meng XY, Peng C, Zhao Y, Pan YX. Electronic Interactions on Platinum/(Metal-Oxide)-Based Photocatalysts Boost Selective Photoreduction of CO 2 to CH 4. Angew Chem Int Ed Engl 2023; 62:e202309443. [PMID: 37523150 DOI: 10.1002/anie.202309443] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
By supporting platinum (Pt) and cadmium sulfide (CdS) nanoparticles on indium oxide (In2 O3 ), we fabricated a CdS/Pt/In2 O3 photocatalyst. Selective photoreduction of carbon dioxide (CO2 ) to methane (CH4 ) was achieved on CdS/Pt/In2 O3 with electronic Pt-In2 O3 interactions, with CH4 selectivity reaching to 100 %, which is higher than that on CdS/Pt/In2 O3 without electronic Pt-In2 O3 interactions (71.7 %). Moreover, the enhancement effect of electronic Pt-(metal-oxide) interactions on selective photoreduction of CO2 to CH4 also occurs by using other common metal oxides, such as photocatalyst supports, including titanium oxide, gallium oxide, zinc oxide, and tungsten oxide. The electronic Pt-(metal-oxide) interactions separate photogenerated electron-hole pairs and convert CO2 into CO2 δ- , which can be easily hydrogenated into CH4 via a CO2 δ- →HCOO*→HCO*→CH*→CH4 path, thus boosting selective photoreduction of CO2 to CH4 . This offers a new way to achieve selective photoreduction of CO2 .
Collapse
Affiliation(s)
- Peng Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yu-Long Men
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xin-Yu Meng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Yiyi Zhao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yun-Xiang Pan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| |
Collapse
|
21
|
Li M, Liu X, Che Y, Xing H, Sun F, Zhou W, Zhu G. Controlled Partial Linker Thermolysis in Metal-Organic Framework UiO-66-NH 2 to Give a Single-Site Copper Photocatalyst for the Functionalization of Terminal Alkynes. Angew Chem Int Ed Engl 2023; 62:e202308651. [PMID: 37466011 DOI: 10.1002/anie.202308651] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
Metal-organic frameworks (MOFs) with expanding porosity and tailored pore environments are intriguing for catalytic applications. We report herein a straightforward method of controlled partial linker thermolysis to introduce desirable mesopores into mono-ligand MOFs, which is different from the classical thermolyzing method that starts from mixed-linker MOFs. UiO-66-NH2 , after partial ligand thermolysis, exhibits significant mesoporosity, retained crystal structure, improved charge photogeneration and abundant anchoring sites, which is ideal to explore single-site photocatalysis. Atomically dispersed Cu is then accommodated in the tailored pore. The resulting single-site Cu catalyst exhibits excellent performance for photocatalytic alkylation and oxidation coupling for the functionalization of terminal alkynes. The study highlights the advantage of controlled partial linker thermolysis to synthesize hierarchical MOFs to achieve the advanced single-site photocatalysis.
Collapse
Affiliation(s)
- Mengying Li
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| | - Xin Liu
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| | - Yan Che
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| | - Hongzhu Xing
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guangshan Zhu
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| |
Collapse
|
22
|
Yin HQ, Cui MY, Wang H, Peng YZ, Chen J, Lu TB, Zhang ZM. CO 2 Cycloaddition under Ambient Conditions over Cu-Fe Bimetallic Metal-Organic Frameworks. Inorg Chem 2023; 62:13722-13730. [PMID: 37540079 DOI: 10.1021/acs.inorgchem.3c01011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Carbon dioxide cycloaddition into fine chemicals is prospective technology to solve energy crisis and environmental issues. However, high temperature and pressure are usually required in the conventional cycloaddition reactions of CO2 with epoxides. Moreover, metal active sites play a vital role in the CO2 cycloaddition, but it is still unclear. Herein, we select the isostructural MOF-919-Cu-Fe and MOF-919-Cu-Al as models to promote the performance and clarify the effects of metal type on the CO2 cycloaddition. The MOF-919-Cu-Fe with exposed Fe and Cu Lewis acid sites reaches the CO2 cycloaddition with over 99.9% conversion and over 99.9% selectivity at room temperature and a 1 bar CO2 atmosphere, 3.0- and 52.6-fold higher than those of the MOF-919-Cu-Al with Al and Cu sites (33.8%) and the 1H-pyrazole-4-carboxylic acid, Fe, and Cu mixed system (1.9%), respectively. The proposed mechanism demonstrated that the exposed Fe3+ sites facilitate the ring opening of epoxide and CO2 activation to boost the CO2 cycloaddition reaction. This work provides a new insight to tune the catalytic sites of MOFs to achieve high performance for CO2 fixation.
Collapse
Affiliation(s)
- Hua-Qing Yin
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ming-Yang Cui
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hao Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yuan-Zhao Peng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jia Chen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
23
|
Su X, Xu T, Ye R, Guo C, Wabaidur SM, Chen DL, Aftab S, Zhong Y, Hu Y. One-pot solvothermal synthesis of In-doped amino-functionalized UiO-66 Zr-MOFs with enhanced ligand-to-metal charge transfer for efficient visible-light-driven CO 2 reduction. J Colloid Interface Sci 2023; 646:129-140. [PMID: 37187046 DOI: 10.1016/j.jcis.2023.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Metal organic frameworks (MOFs) with high porosity and highly tunable physical/chemical properties can serve as heterogeneous catalysts for CO2 photoreduction, but the application is hindered by the large band gap (Eg) and insufficient ligand-to-metal charge transfer (LMCT). In this study, a simple one-pot solvothermal strategy is proposed to prepare an amino-functionalized MOF (aU(Zr/In)) featuring an amino-functionalizing ligand linker and In-doped Zr-oxo clusters, which enables efficient CO2 reduction driven with visible light. The amino functionalization leads to a significant reduction of Eg as well as a charge redistribution of the framework, allowing the absorption of visible light and the efficient separation of photogenerated carriers. Furthermore, the incorporation of In not only promotes the LMCT process by creating oxygen vacancies in Zr-oxo clusters, but also greatly lowers the energy barrier of the intermediates for CO2-to-CO conversion. With the synergistic effects of the amino groups and the In dopants, the optimized aU(Zr/In) exhibits a CO production rate of 37.58 ± 1.06 μmol g-1 h-1, outperforming the isostructural University of Oslo-66- and Material of Institute Lavoisier-125-based photocatalysts. Our work demonstrates the potential of modifying MOFs with ligands and heteroatom dopants in metal-oxo clusters for solar energy conversion.
Collapse
Affiliation(s)
- Xiaoxuan Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Tongfei Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ruixiang Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Changfa Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | | | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Yijun Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China; Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China.
| |
Collapse
|
24
|
Wang X, Wang X, Shi T, Li G, Wang L, Li S, Huang J, Meng A, Li Z. Janus Z-scheme heterostructure of ZnIn2S4/MoSe2/In2Se3 for efficient photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 642:669-679. [PMID: 37030203 DOI: 10.1016/j.jcis.2023.03.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Artificial manipulation of charge separation and transfer are central issues dominating hydrogen evolution reaction triggered via photocatalysis. Herein, through elaborate designing on the architecture, band alignment, and interface bonding mode, a sulfur vacancy-rich ZnIn2S4-based (Vs-ZIS) multivariate heterostructure ZnIn2S4/MoSe2/In2Se3 (Vs-ZIS/MoSe2/In2Se3) with specific Janus Z-scheme charge transfer mechanism is constructed through a two-step hydrothermal process. Steering by the Janus Z-scheme charge transfer mechanism, photogenerated electrons in the conduction band of MoSe2 transfer synchronously to the valence band of Vs-ZIS and In2Se3, resulting in abundant highly-active photogenerated electrons reserved in the conduction band of Vs-ZIS and In2Se3, therefore significantly enhancing the photocatalytic activity of hydrogen evolution. Under visible light irradiation, the optimized Vs-ZIS/MoSe2/In2Se3 with the mass ratio of MoSe2 and In2Se3 to ZnIn2S4 at 3 % and 30 %, respectively, performs a high hydrogen evolution rate of 124.42 mmol·g-1·h-1, about 43.5-folds of the original ZIS photocatalyst. Besides, an apparent quantum efficiency (AQE) of 22.5 % at 420 nm and favorable durability are also achieved over Vs-ZIS/MoSe2/In2Se3 photocatalyst. This work represents an important development in efficient photocatalysts and donates a sound foundation for the design of regulating charge transfer pathways.
Collapse
Affiliation(s)
- Xuehua Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, PR China
| | - Xianghu Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE. College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, PR China
| | - Tianyu Shi
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, PR China
| | - Guicun Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, PR China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE. College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, PR China
| | - Shaoxiang Li
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, Shandong, PR China
| | - Jianfeng Huang
- School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Alan Meng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE. College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, PR China.
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, PR China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, Shandong, PR China.
| |
Collapse
|
25
|
Guo F, Li RX, Yang S, Zhang XY, Yu H, Urban JJ, Sun WY. Designing Heteroatom-Codoped Iron Metal-Organic Framework for Promotional Photoreduction of Carbon Dioxide to Ethylene. Angew Chem Int Ed Engl 2023; 62:e202216232. [PMID: 36748922 DOI: 10.1002/anie.202216232] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value-added C2 products. In this study, we designed an N,S-codoped Fe-based MIL-88B catalyst with well-defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2-benzisothiazolin-3-one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2 H4 evolution yield of 17.7 μmol g-1 ⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe-N coordinated sites and reasonable defects in the N,S-codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C-C coupling intermediates for C2 H4 effectively.
Collapse
Affiliation(s)
- Fan Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.,Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Rui-Xia Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Sizhuo Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Xiao-Yu Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Hongjian Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
26
|
Gao XJ, Cao JM, Yang MM, Wang Y, Dong WW, Zhao J, Li DS. Photocatalytic CO2 reduction to CH4 mediated by MoS2@NH2-MIL-68 heterojunction with water vapor. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
27
|
Cao X, Yu K, Zhang Y, Li N, Wang P, Zhou L, Gong X, Wang H, Yang F, Zhu W, He R. Efficient Strategy for U(VI) Photoreduction: Simultaneous Construction of U(VI) Confinement Sites and Water Oxidation Sites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1063-1072. [PMID: 36542096 DOI: 10.1021/acsami.2c17849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reduction of hexavalent uranium [U(VI)] by the photocatalytic method opens up a novel way to promote the selectivity, kinetics, and capacity during uranium removal, where organic molecules act as the sacrificial agents. However, the addition of sacrificial agents can cause a secondary environmental pollution and increase the cost. Here, a UiO-66-based photocatalyst (denoted as MnOx/NH2-UiO-66) simultaneously with efficient U(VI) confinement sites and water oxidation sites was successfully developed, achieving excellent U(VI) removal without sacrificial agents. In MnOx/NH2-UiO-66, the amino groups served as efficient U(VI) confinement sites and further decreased the U(VI) reduction potential. Besides, MnOx nanoparticles separated the photogenerated electron-hole pairs and provided water oxidation sites. The U(VI) confinement sites and water oxidation sites jointly promoted the U(VI) photoreduction performance of MnOx/NH2-UiO-66, resulting in the removal ratio of MnOx/NH2-UiO-66 for U(VI) achieving 97.8% in 2 h without hole sacrifice agents. This work not only provides an effective UiO-66-based photocatalyst but also offers a strategy for effective U(VI) photoreduction.
Collapse
Affiliation(s)
- Xin Cao
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Kaifu Yu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Yang Zhang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Nan Li
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Peng Wang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Li Zhou
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Xiang Gong
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
- CGN Isotope (Mian yang) Co., Ltd., Mianyang621024, Sichuan, P. R. China
| | - Hongbin Wang
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang621900, Sichuan, P. R. China
| | - Fan Yang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| |
Collapse
|
28
|
Zhang Z, Zhang N, Liu Y, Fang Q, Xi J, Xiao Y, Zhou P, Xu L. Efficient degradation of organic dyes and reduced Cr(VI) in environmental water purification by in-situ deposition of silver nanoparticles on polydopamine-modified M-ATP/PCN. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Gong G, Wu B, Liu L, Li J, Zhu Q, He M, Hu G. Metabolic engineering using acetate as a promising building block for the production of bio-based chemicals. ENGINEERING MICROBIOLOGY 2022; 2:100036. [PMID: 39628702 PMCID: PMC11610983 DOI: 10.1016/j.engmic.2022.100036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/06/2024]
Abstract
The production of biofuels and biochemicals derived from microbial fermentation has received a lot of attention and interest in light of concerns about the depletion of fossil fuel resources and climatic degeneration. However, the economic viability of feedstocks for biological conversion remains a barrier, urging researchers to develop renewable and sustainable low-cost carbon sources for future bioindustries. Owing to the numerous advantages, acetate has been regarded as a promising feedstock targeting the production of acetyl-CoA-derived chemicals. This review aims to highlight the potential of acetate as a building block in industrial biotechnology for the production of bio-based chemicals with metabolic engineering. Different alternative approaches and routes comprised of lignocellulosic biomass, waste streams, and C1 gas for acetate generation are briefly described and evaluated. Then, a thorough explanation of the metabolic pathway for biotechnological acetate conversion, cellular transport, and toxin tolerance is described. Particularly, current developments in metabolic engineering of the manufacture of biochemicals from acetate are summarized in detail, with various microbial cell factories and strategies proposed to improve acetate assimilation and enhance product formation. Challenges and future development for acetate generation and assimilation as well as chemicals production from acetate is eventually shown. This review provides an overview of the current status of acetate utilization and proves the great potential of acetate with metabolic engineering in industrial biotechnology.
Collapse
Affiliation(s)
| | | | - Linpei Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Qili Zhu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| |
Collapse
|
30
|
Ajmal Z, Haq MU, Naciri Y, Djellabi R, Hassan N, Zaman S, Murtaza A, Kumar A, Al-Sehemi AG, Algarni H, Al-Hartomy OA, Dong R, Hayat A, Qadeer A. Recent advancement in conjugated polymers based photocatalytic technology for air pollutants abatement: Cases of CO 2, NO x, and VOCs. CHEMOSPHERE 2022; 308:136358. [PMID: 36087730 DOI: 10.1016/j.chemosphere.2022.136358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
According to World Health Organization (WHO) survey, air pollution has become the major reason of several fatal diseases, which had led to the death of 7 million peoples around the globe. The 9 people out of 10 breathe air, which exceeds WHO recommendations. Several strategies are in practice to reduce the emission of pollutants into the air, and also strict industrial, scientific, and health recommendations to use sustainable green technologies to reduce the emission of contaminants into the air. Photocatalysis technology recently has been raised as a green technology to be in practice towards the removal of air pollutants. The scientific community has passed a long pathway to develop such technology from the material, and reactor points of view. Many classes of photoactive materials have been suggested to achieve such a target. In this context, the contribution of conjugated polymers (CPs), and their modification with some common inorganic semiconductors as novel photocatalysts, has never been addressed in literature till now for said application, and is critically evaluated in this review. As we know that CPs have unique characteristics compared to inorganic semiconductors, because of their conductivity, excellent light response, good sorption ability, better redox charge generation, and separation along with a delocalized π-electrons system. The advances in photocatalytic removal/reduction of three primary air-polluting compounds such as CO2, NOX, and VOCs using CPs based photocatalysts are discussed in detail. Furthermore, the synergetic effects, obtained in CPs after combining with inorganic semiconductors are also comprehensively summarized in this review. However, such a combined system, on to better charges generation and separation, may make the Adsorb & Shuttle process into action, wherein, CPs may play the sorbing area. And, we hope that, the critical discussion on the further enhancement of photoactivity and future recommendations will open the doors for up-to-date technology transfer in modern research.
Collapse
Affiliation(s)
- Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian, 710072, China; MoA Key Laboratory for Clean Production and Utilization of Renewable Energy, MoST National Center for International Research of BioEnergy Science and Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Mahmood Ul Haq
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yassine Naciri
- Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP, Cité Dakhla, Agadir, 8106, Morocco
| | - Ridha Djellabi
- Department of Chemical Engineering, Universitat Rovira I Virgili, Tarragona, 43007, Spain.
| | - Noor Hassan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR, 100081, China
| | - Shahid Zaman
- Key Laboratory of Energy Conversion and Storage Technologies, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Adil Murtaza
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Key Laboratory of Advanced Functional Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xian Jiaotong University, Xian, Shaanxi, 710049, PR China
| | - Anuj Kumar
- Nanotechnology Laboratory, Department of Chemistry, GLA, University, Mathura, Uttar Pradesh, 281406, India
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed Algarni
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - R Dong
- MoA Key Laboratory for Clean Production and Utilization of Renewable Energy, MoST National Center for International Research of BioEnergy Science and Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
31
|
Ou H, Li G, Ren W, Pan B, Luo G, Hu Z, Wang D, Li Y. Atomically Dispersed Au-Assisted C–C Coupling on Red Phosphorus for CO 2 Photoreduction to C 2H 6. J Am Chem Soc 2022; 144:22075-22082. [DOI: 10.1021/jacs.2c09424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Honghui Ou
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Guosheng Li
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing526061, China
| | - Wei Ren
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou350300, China
| | - Boju Pan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510006, P. R. China
| | - Guanghui Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510006, P. R. China
| | - Zhuofeng Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510006, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing100084, China
- College of Chemistry, Beijing Normal University, Beijing100875, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241002P. R. China
| |
Collapse
|
32
|
Xu S, Shen Q, Zheng J, Wang Z, Pan X, Yang N, Zhao G. Advances in Biomimetic Photoelectrocatalytic Reduction of Carbon Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203941. [PMID: 36008141 PMCID: PMC9631090 DOI: 10.1002/advs.202203941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Emerging photoelectrocatalysis (PEC) systems synergize the advantages of electrocatalysis (EC) and photocatalysis (PC) and are considered a green and efficient approach to CO2 conversion. However, improving the selectivity and conversion rate remains a major challenge. Strategies mimicking natural photosynthesis provide a prospective way to convert CO2 with high efficiency. Herein, several typical strategies are described for constructing biomimetic photoelectric functional interfaces; such interfaces include metal cocatalysts/semiconductors, small molecules/semiconductors, molecular catalysts/semiconductors, MOFs/semiconductors, and microorganisms/semiconductors. The biomimetic PEC interface must have enhanced CO2 adsorption capacity, preferentially activate CO2 , and have an efficient conversion ability; with these properties, it can activate CO bonds effectively and promote electron transfer and CC coupling to convert CO2 to single-carbon or multicarbon products. Interfacial electron transfer and proton coupling on the biomimetic PEC interface are also discussed to clarify the mechanism of CO2 reduction. Finally, the existing challenges and perspectives for biomimetic photoelectrocatalytic CO2 reduction are presented.
Collapse
Affiliation(s)
- Shaohan Xu
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Qi Shen
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
- Institute of New Energy, School of Chemistry and Chemical EngineeringShaoxing University508 Huancheng West RoadShaoxingZhejiang312000China
| | - Jingui Zheng
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Zhiming Wang
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Xun Pan
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Nianjun Yang
- Institute of Materials EngineeringUniversity of Siegen57076SiegenGermany
| | - Guohua Zhao
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| |
Collapse
|
33
|
Chen L, Tang Q, Wu S, Zhang L, Feng L, Wang Y, Xie Y, Li Y, Zou JP, Luo SL. Covalent coupling promoting charge transport of CdSeTe/UiO-66 for boosting photocatalytic CO2 reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Du Y, Zhao S, Tang H, Ni Z, Xia S. An active MoS2 with Pt-doping and sulfur vacancy for strengthen CO2 adsorption and fast Capture: A DFT approach. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Zhang Q, Yang C, Guan A, Kan M, Zheng G. Photocatalytic CO 2 conversion: from C1 products to multi-carbon oxygenates. NANOSCALE 2022; 14:10268-10285. [PMID: 35801565 DOI: 10.1039/d2nr02588d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic CO2 conversion into high-value chemicals has been emerging as an attractive research direction in achieving carbon resource sustainability. The chemical products can be categorized into C1 and multi-carbon (C2+) products. In this review, we describe the recent research progress in photocatalytic CO2 conversion systems from C1 products to multi-carbon oxygenates, and analyze the reasons related to their catalytic mechanisms, as the production of multi-carbon oxygenates is generally more difficult than that of C1 products. Then we discuss several examples in promoting the photoconversion of CO2 to value-added multi-carbon products in the aspects of photocatalyst design, mass transfer control, determination of active sites, and intermediate regulation. Finally, we summarize perspectives on the challenges and propose potential directions in this fast-developing field, such as the prospect of CO2 transformation to long-chain hydrocarbons like salicylic acid or even plastics.
Collapse
Affiliation(s)
- Quan Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai 200438, China.
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai 200438, China.
| | - Anxiang Guan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai 200438, China.
| | - Miao Kan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai 200438, China.
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
37
|
Guo F, Yang M, Li RX, He ZZ, Wang Y, Sun WY. Nanosheet-Engineered NH 2-MIL-125 with Highly Active Facets for Enhanced Solar CO 2 Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fan Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Rui-Xia Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zong-Zheng He
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
38
|
Wang Y, Chen E, Tang J. Insight on Reaction Pathways of Photocatalytic CO 2 Conversion. ACS Catal 2022; 12:7300-7316. [PMID: 35747201 PMCID: PMC9207809 DOI: 10.1021/acscatal.2c01012] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Indexed: 11/28/2022]
Abstract
![]()
Photocatalytic CO2 conversion to value-added chemicals
is a promising solution to mitigate the current energy and environmental
issues but is a challenging process. The main obstacles include the
inertness of CO2 molecule, the sluggish multi-electron
process, the unfavorable thermodynamics, and the selectivity control
to preferable products. Furthermore, the lack of fundamental understanding
of the reaction pathways accounts for the very moderate performance
in the field. Therefore, in this Perspective, we attempt to discuss
the possible reaction mechanisms toward all C1 and C2 value-added products, taking into account the experimental
evidence and theoretical calculation on the surface adsorption, proton
and electron transfer, and products desorption. Finally, the remaining
challenges in the field, including mechanistic understanding, reactor
design, economic consideration, and potential solutions, are critically
discussed by us.
Collapse
Affiliation(s)
- Yiou Wang
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
- Department of Physics, Ludwig-Maximilians-Universität München, Königinstr. 10, 80539 Munich, Germany
| | - Enqi Chen
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Junwang Tang
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| |
Collapse
|
39
|
Tan L, Li Y, Lv Q, Gan Y, Fang Y, Tang Y, Wu L, Fang Y. Development of soluble UiO-66 to improve photocatalytic CO2 reduction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Shteinman AA. Metallocavitins as Promising Industrial Catalysts: Recent Advances. Front Chem 2022; 9:806800. [PMID: 35223777 PMCID: PMC8873522 DOI: 10.3389/fchem.2021.806800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022] Open
Abstract
The energy, material, and environmental problems of society require clean materials and impose an urgent need to develop effective chemical processes for obtaining and converting energy to ensure further sustainable development. To solve these challenges, it is necessary, first of all, to learn solar energy harvesting through the development of artificial photosynthesis. In our planet, water, carbon dioxide, and methane are such affordable and inexhaustible clean materials. Electro/photocatalytic water splitting, and also CO2 and CH4 transforming into valuable products, requires the search for relevant efficient and selective processes and catalysts. Of great interest is the emerging new generation of bioinspired catalysts—metallocavitins (MCs). MCs are attracting increasing attention of researchers as advanced models of metalloenzymes, whose efficiency and selectivity are well known. The primary field of MC application is fine organic synthesis and enantioselective catalysis. On the other hand, MCs demonstrate high activity for energy challenging reactions involving small gas molecules and high selectivity for converting them into valuable products. This mini-review will highlight some recent advances in the synthesis of organic substances using MCs, but its main focus will be on the rapid development of advanced catalysts for the activation of small molecules, such as H2O, CO2, and CH4, and the prospects for creating related technological processes in the future.
Collapse
|
41
|
Xie C, Xu YP, Gao ML, Xu ZN, Jiang HL. MOF-Stabilized Pd Single Sites for CO Esterification to Dimethyl Carbonate. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Li Y, Xu X, Wang T, Ji T, Li F, Chen W, Liu D. Defected MoS 2 Modified by Vanadium-Substituted Keggin-Type Polyoxometalates as Electrocatalysts for Triiodide Reduction in Dye-Sensitized Solar Cells. Inorg Chem 2021; 61:422-430. [PMID: 34894682 DOI: 10.1021/acs.inorgchem.1c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rational design of efficient triiodide reduction reaction catalysts that are dependent on cheap and ample elements on Earth has become a challenge. As an extremely encouraging non-noble metallic catalyst, MoS2 requires effective strategies to improve the site accessibility, inherent conductivity, and structural stability. Here, vanadium-substituted Keggin-type polyoxometalates (POMs) can be used as electron aggregates to modify manganese (Mn)-doped MoS2 through the electrochemical deposition strategy, thereby improving the charge transfer ability of MoS2 to I-/I3- redox pairs and accelerating the reduction of I3-. Additionally, with the increase in the number of vanadium atoms substituted in POMs, the conduction band of POMs and MoS2 can also match better, which effectively reduces the energy loss and is more conducive to charge transfer. Meanwhile, the deposition of POMs can improve the stability of metastable MoS2. When POMs/MoS2 materials are used as the counter electrodes of dye-sensitized solar cells, the power conversion efficiency (PCE) obtained is 7.27%, which is higher than that of platinum (Pt) (6.07%). The PCE can still maintain the initial 96% after 9 days. This work provides a valuable way for the improvement of platinum-free catalysts with minimal expense, basic process, high efficiency, and good stability.
Collapse
Affiliation(s)
- Yunjiang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Xueying Xu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Ting Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Tuo Ji
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Fengrui Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Weilin Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Ding Liu
- Northeast Normal University Library, Changchun 130024, PR China
| |
Collapse
|
43
|
Ni 2P nanocrystals embedded Ni-MOF nanosheets supported on nickel foam as bifunctional electrocatalyst for urea electrolysis. Sci Rep 2021; 11:21414. [PMID: 34725381 PMCID: PMC8560839 DOI: 10.1038/s41598-021-00776-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
It’s highly desired but challenging to synthesize self-supporting nanohybrid made of conductive nanoparticles with metal organic framework (MOF) materials for the application in the electrochemical field. In this work, we report the preparation of Ni2P embedded Ni-MOF nanosheets supported on nickel foam through partial phosphidation (Ni2P@Ni-MOF/NF). The self-supporting Ni2P@Ni-MOF/NF was directly tested as electrode for urea electrolysis. When served as anode for urea oxidation reaction (UOR), it only demands 1.41 V (vs RHE) to deliver a current of 100 mA cm−2. And the overpotential of Ni2P@Ni-MOF/NF to reach 10 mA cm−2 for hydrogen evolution reaction HER was only 66 mV, remarkably lower than Ni2P/NF (133 mV). The exceptional electrochemical performance was attributed to the unique structure of Ni2P@Ni-MOF and the well exposed surface of Ni2P. Furthermore, the Ni2P@Ni-MOF/NF demonstrated outstanding longevity for both HER and UOR. The electrolyzer constructed with Ni2P@Ni-MOF/NF as bifunctional electrode can attain a current density of 100 mA cm−2 at a cell voltage as low as 1.65 V. Our work provides new insights for prepare MOF based nanohydrid for electrochemical application.
Collapse
|