1
|
Ji X, Bian Y, Zhang C, Zhong Z, Wang Y. Making Accessible and Attractive Porosities in Block Copolymer Nanofibers for Highly Permeable and Durable Air Filtration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410692. [PMID: 39723691 DOI: 10.1002/smll.202410692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Submicron particulate matter (PM) can penetrate deeply into human tissue, posing a serious threat to human health. However, the electrostatic charge of commercial respirators is easily dissipated, making it difficult to maintain long-term filtration. Herein, a hierarchically porous filter based on nanofibers with accessible porosity and particulate-attractive surfaces, achieving significant filtration performance is developed through polarity-driven interactions. This is achieved by selective swelling of electrospun nanofibers of the block copolymer of polysulfone and poly(ethylene glycol) (PSF-b-PEG), in which the originally solid nanofibers are 3D perforated with the PEG chains lined along the pore walls. Thus-produces nanofiber filters exhibit a long-term continuous filtration with an efficiency of over 95% for PM0.3 and a low pressure drop of only 40 Pa. In particular, it maintains superior filtration performance even under high particle concentrations and high humidity conditions. Additionally, the filter exhibits high air permeability (10814 m3 m-2 h-1 kPa-1) and water vapor transmission rate (3707 g m-2 d-1). This work provides new strategies and understandings on the development of porous structures simultaneously exhibiting high gas permeability and efficient particulate rejection.
Collapse
Affiliation(s)
- Xuzheng Ji
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Ye Bian
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Chencheng Zhang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Yong Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
2
|
Ding Z, Bao X, Chen T, Zhang J, Xu C, Tang N, Hu M, Liu Z. Biocompatible Metal-Organic Framework-Based Fabric Composite as an Efficient Personal Protective Equipment for Particulate Matter-Induced Pulmonary Injury. Adv Healthc Mater 2024:e2403061. [PMID: 39470050 DOI: 10.1002/adhm.202403061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Indexed: 10/30/2024]
Abstract
Efficient personal protection has emerged as a crucial approach for reducing pulmonary injury induced by particulate matter (PM). However, current personal protective equipments usually lack essential biosafety concerns and fail to own adsorbing/antioxidant/antibacterial function together, making it a challenge to develop an integrated platform with the above characteristics. Herein, a facile oxygen-free hydrothermal strategy is proposed to synthesize new copper-based metal-organic frameworks, Cu-HHTPs, (HHTP: 2,3,6,7,10,11-hexahydroxytriphenylene), with great adsorbing/antioxidant/antibacterial activity and high biosafety. The Cu-HHTPs can serve as an efficient additive incorporated with various fabrics including cellulose acetate (CA) membrane to achieve novel fabric composites, such as CA@Cu-HHTPs, with ideal scavenging outcome for the main components of PM. Evidenced by the animal experiments, CA@Cu-HHTPs can highly mitigate PM-induced adverse effects via adsorbing PM, scavenging ROS, and killing bacteria, leading to a significant reduction in lung permeability, inflammation and oxidative stress, and pulmonary infection. Last but not least, a two-week exposure of CA@Cu-HHTPs exhibits no obvious damage toward the animals by examining their long-term toxicity. Collectively, this study not only highlights the potential of Cu-HHTPs as attractive additives for the preparation of fabric composites, but also lays out a new concept toward the development of new-generation multifunctional personal protective equipment against PM.
Collapse
Affiliation(s)
- Zhen Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xingfu Bao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Tianyan Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jinming Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chengjing Xu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Nan Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Min Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhen Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
3
|
Zhou Z, You T, Pan Z, Wang D, Wang H, Wang L, Xu G, Liang Y, Hu J, Tang M. Trichome-Like Biomimetic Air Filters via Templated Silicone Nanofilaments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311129. [PMID: 38557985 DOI: 10.1002/adma.202311129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Air pollution threats to human health have increased awareness of the role of filter units in air cleaning applications. As an ideal energy-saving strategy for air filters, the slip effect on nanofiber surfaces can potentially overcome the trade-off between filtration efficiency and pressure drop. However, the potential of the slip effect in nanofibrous structures is significantly limited by the tight nanofiber stacks. In this study, trichome-like biomimetic (TLB) air filters with 3D-templated silicone nanofilaments (average diameter: ≈74 nm) are prepared based on an in situ chemical vapor deposition (CVD) method inspired by plant purification. Theoretical modeling and experimental results indicate that TLB air filters make significant use of the slip effect to overcome the efficiency-resistance tradeoff. The selectable filter class (up to U15, ≈99.9995%) allows TLB air filters to meet various requirements, and their integral filtration performance surpasses that of most commodity air filters, including melt-blown cloth, ePTFE membranes, electrospun mats, and glass fiber paper. The proposed strategy directly transforms commercial filter media and filters into TLB air filters using a bottom-up, one-step approach. As a proof-of-concept, reusable N95 respirators and air purifiers equipped with TLB air filters are fabricated, overcoming the limitations of existing filter designs and fabrication methods.
Collapse
Affiliation(s)
- Zhiqiang Zhou
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Tianle You
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhengyuan Pan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Di Wang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hao Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Lingyun Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Guilong Xu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yun Liang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jian Hu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Min Tang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
4
|
Zhou Z, Wang D, Pan Z, You T, Xu G, Liang Y, Tang M. Bioinspired Structures Made of Silicone Nanofilaments for Upcycling Waste Masks to Reusable N95 Respirators. NANO LETTERS 2024; 24:4415-4422. [PMID: 38577835 DOI: 10.1021/acs.nanolett.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The increasing demand for personal protective equipment such as single-use masks has led to large amounts of nondegradable plastic waste, aggravating economic and environmental burdens. This study reports a simple and scalable approach for upcycling waste masks via a chemical vapor deposition technique, realizing a trichome-like biomimetic (TLB) N95 respirator with superhydrophobicity (water contact angle ≥150°), N95-level protection, and reusability. The TLB N95 respirator comprising templated silicone nanofilaments with an average diameter of ∼150 nm offers N95-level protection and breathability comparable to those of commercial N95 respirators. The TLB N95 respirator can still maintain its N95-level protection against particulate matter and viruses after 10 disinfection treatment cycles (i.e., ultraviolet irradiation, microwave irradiation, dry heating, and autoclaving), demonstrating durable reusability. The proposed strategy provides new insight into upcycle waste masks, breaking the existing design and preparation concept of reusable masks.
Collapse
Affiliation(s)
- Zhiqiang Zhou
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Di Wang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhengyuan Pan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tianle You
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Guilong Xu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yun Liang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Min Tang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
5
|
Xu Y, Zhang X, Zhao T, Li Y, Zhang Y, Huang H, Zeng Y. Radiative Thermal Management in Face Masks with a Micro/Nanofibrous Filter. NANO LETTERS 2024; 24:4462-4470. [PMID: 38574275 DOI: 10.1021/acs.nanolett.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Micro/nanofiber-based face masks are recommended as personal protective equipment (PPE) against particulate matter (PM), especially PM0.3. Ensuring thermal comfort in daily use face masks is essential in many situations. Here, radiative thermal management is introduced into face masks to elevate the user comfort. An interlayered poly(lactic acid) (PLA) micro/nanofibrous filter effectively captures PM0.3 (99.69%) with minimal pressure drop (49 Pa). Thermal regulation is accomplished by controlling the mid-infrared (MIR) emissivity of the face mask's outer surface. Cooling face masks feature cotton nonwovens with high MIR emissivity (90.7%) for heat dissipation, while warming face masks utilize perforated Al/PE films with minimal MIR emissivity (10.7%) for warmth retention. Skin temperature measurements indicate that the skin covered by the cooling face mask could be 1.1 °C lower than that covered by the 3M face mask, while the skin covered by the warming face mask could be 1.3 °C higher than that covered by the 3M face mask.
Collapse
Affiliation(s)
- Yuanqiang Xu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaomin Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Tienan Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ying Li
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yu Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Hui Huang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yongchun Zeng
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Yang Y, Li X, Zhou Z, Qiu Q, Chen W, Huang J, Cai W, Qin X, Lai Y. Ultrathin, ultralight dual-scale fibrous networks with high-infrared transmittance for high-performance, comfortable and sustainable PM 0.3 filter. Nat Commun 2024; 15:1586. [PMID: 38383519 PMCID: PMC10881466 DOI: 10.1038/s41467-024-45833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Highly permeable particulate matter (PM) can carry various bacteria, viruses and toxics and pose a serious threat to public health. Nevertheless, current respirators typically sacrifice their thickness and base weight for high-performance filtration, which inevitably causes wearing discomfort and significant consumption of raw materials. Here, we show a facile yet massive splitting eletrospinning strategy to prepare an ultrathin, ultralight and radiative cooling dual-scale fiber membrane with about 80% infrared transmittance for high-protective, comfortable and sustainable air filter. By tailoring antibacterial surfactant-triggered splitting of charged jets, the dual-scale fibrous filter consisting of continuous nanofibers (44 ± 12 nm) and submicron-fibers (159 ± 32 nm) is formed. It presents ultralow thickness (1.49 μm) and base weight (0.57 g m-2) but superior protective performances (about 99.95% PM0.3 removal, durable antibacterial ability) and wearing comfort of low air resistance, high heat dissipation and moisture permeability. Moreover, the ultralight filter can save over 97% polymers than commercial N95 respirator, enabling itself to be sustainable and economical. This work paves the way for designing advanced and sustainable protective materials.
Collapse
Affiliation(s)
- Yuchen Yang
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Xiangshun Li
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Zhiyong Zhou
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Qiaohua Qiu
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Wenjing Chen
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Jianying Huang
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Weilong Cai
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China.
| | - Yuekun Lai
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China.
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
7
|
Wang G, Xiao D, Fang Y, Ning G, Ye J. Polarity-dominated chitosan biguanide hydrochloride-based nanofibrous membrane with antibacterial activity for long-lasting air filtration. Int J Biol Macromol 2024; 254:127729. [PMID: 38287566 DOI: 10.1016/j.ijbiomac.2023.127729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Facemasks play a significant role as personal protective equipment during the COVID-19 pandemic, but their longevity is limited by the easy dissipation of electrostatic charge and the accumulation of bacteria. In this study, nanofibrous membranes composed of polyacrylonitrile and chitosan biguanide hydrochloride (PAN@CGH) with remarkable antibacterial characteristics were prepared through the coaxial electrospinning process. Particulate matter could be efficiently captured by the fibrous membrane, up to 98 % or more, via polarity-dominated forces derived from cyano and amino groups. As compared commercial N95 masks, the PAN@CGH was more resistant to a wider variety of disinfection protocols. Additionally, the nanofibrous membrane could kill >99.99 % of both Escherichia coli and Staphylococcus aureus. Based on these characteristics, PAN@CGH nanofibrous membrane was applied to facial mask, which possessed an excellent and long-lasting effect on the capture of airborne particles. This work may be one of the most promising strategies on designing high-performance face masks for public health protection.
Collapse
Affiliation(s)
- Guangyao Wang
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116012, PR China
| | - Dingwen Xiao
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116012, PR China
| | - Yueguang Fang
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116012, PR China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116012, PR China; Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116012, PR China; Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China.
| |
Collapse
|
8
|
Yang Y, Yang Y, Huang J, Li S, Meng Z, Cai W, Lai Y. Electrospun Nanocomposite Fibrous Membranes for Sustainable Face Mask Based on Triboelectric Nanogenerator with High Air Filtration Efficiency. ADVANCED FIBER MATERIALS 2023; 5:1-14. [PMID: 37361106 PMCID: PMC10184097 DOI: 10.1007/s42765-023-00299-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Abstract Air pollution caused by the rapid development of industry has always been a great issue to the environment and human being's health. However, the efficient and persistent filtration to PM0.3 remains a great challenge. Herein, a self-powered filter with micro-nano composite structure composed of polybutanediol succinate (PBS) nanofiber membrane and polyacrylonitrile (PAN) nanofiber/polystyrene (PS) microfiber hybrid mats was prepared by electrospinning. The balance between pressure drop and filtration efficiency was achieved through the combination of PAN and PS. In addition, an arched TENG structure was created using the PAN nanofiber/PS microfiber composite mat and PBS fiber membrane. Driven by respiration, the two fiber membranes with large difference in electronegativity achieved contact friction charging cycles. The open-circuit voltage of the triboelectric nanogenerator (TENG) can reach to about 8 V, and thus the high filtration efficiency for particles was achieved by the electrostatic capturing. After contact charging, the filtration efficiency of the fiber membrane for PM0.3 can reach more than 98% in harsh environments with a PM2.5 mass concentration of 23,000 µg/m3, and the pressure drop is about 50 Pa, which doesn't affect people's normal breathing. Meanwhile, the TENG can realize self-powered supply by continuously contacting and separating the fiber membrane driven by respiration, which can ensure the long-term stability of filtration efficiency. The filter mask can maintain a high filtration efficiency (99.4%) of PM0.3 for 48 consecutive hours in daily environments. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00299-z.
Collapse
Affiliation(s)
- Yue Yang
- College of Chemical Engineering, Fuzhou University, 350116 Fuzhou, People’s Republic of China
| | - Yuchen Yang
- College of Chemical Engineering, Fuzhou University, 350116 Fuzhou, People’s Republic of China
- Qingyuan Innovation Laboratory, 362801 Quanzhou, People’s Republic of China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, 350116 Fuzhou, People’s Republic of China
- Qingyuan Innovation Laboratory, 362801 Quanzhou, People’s Republic of China
| | - Shuhui Li
- Department of Chemistry, University College London, London, WC1H 0AJ UK
- Wenzhou Institute, University of Chinese Academy of Science, Zhejiang 325000 Wenzhou, People’s Republic of China
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620 Shanghai, People’s Republic of China
| | - Weilong Cai
- College of Chemical Engineering, Fuzhou University, 350116 Fuzhou, People’s Republic of China
- Qingyuan Innovation Laboratory, 362801 Quanzhou, People’s Republic of China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, 350116 Fuzhou, People’s Republic of China
- Qingyuan Innovation Laboratory, 362801 Quanzhou, People’s Republic of China
| |
Collapse
|
9
|
Desai AV, Vornholt SM, Major LL, Ettlinger R, Jansen C, Rainer DN, de Rome R, So V, Wheatley PS, Edward AK, Elliott CG, Pramanik A, Karmakar A, Armstrong AR, Janiak C, Smith TK, Morris RE. Surface-Functionalized Metal-Organic Frameworks for Binding Coronavirus Proteins. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9058-9065. [PMID: 36786318 PMCID: PMC9940617 DOI: 10.1021/acsami.2c21187] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Since the outbreak of SARS-CoV-2, a multitude of strategies have been explored for the means of protection and shielding against virus particles: filtration equipment (PPE) has been widely used in daily life. In this work, we explore another approach in the form of deactivating coronavirus particles through selective binding onto the surface of metal-organic frameworks (MOFs) to further the fight against the transmission of respiratory viruses. MOFs are attractive materials in this regard, as their rich pore and surface chemistry can easily be modified on demand. The surfaces of three MOFs, UiO-66(Zr), UiO-66-NH2(Zr), and UiO-66-NO2(Zr), have been functionalized with repurposed antiviral agents, namely, folic acid, nystatin, and tenofovir, to enable specific interactions with the external spike protein of the SARS virus. Protein binding studies revealed that this surface modification significantly improved the binding affinity toward glycosylated and non-glycosylated proteins for all three MOFs. Additionally, the pores for the surface-functionalized MOFs can adsorb water, making them suitable for locally dehydrating microbial aerosols. Our findings highlight the immense potential of MOFs in deactivating respiratory coronaviruses to be better equipped to fight future pandemics.
Collapse
Affiliation(s)
- Aamod V. Desai
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Simon M. Vornholt
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Louise L. Major
- School
of Biology, University of St Andrews, Biomedical Sciences Research Complex
North Haugh, St Andrews KY16 9ST, U.K.
| | - Romy Ettlinger
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Christian Jansen
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Daniel N. Rainer
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Richard de Rome
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Venus So
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Paul S. Wheatley
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Ailsa K. Edward
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Caroline G. Elliott
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Atin Pramanik
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Avishek Karmakar
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United
States of America
| | - A. Robert Armstrong
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Christoph Janiak
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Terry K. Smith
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
- School
of Biology, University of St Andrews, Biomedical Sciences Research Complex
North Haugh, St Andrews KY16 9ST, U.K.
| | - Russell E. Morris
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
10
|
Su C, Zhang L, Zhang Y, Huang X, Ye Y, Xia Y, Gong Z, Qin X, Liu Y, Guo S. P(VDF-TrFE)/BaTiO 3 Nanofibrous Membrane with Enhanced Piezoelectricity for High PM 0.3 Filtration and Reusable Face Masks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5845-5855. [PMID: 36652453 DOI: 10.1021/acsami.2c19569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the background of air pollution and regular COVID-19 prevention, personal protective masks are necessary for our daily life. However, protective masks with high PM0.3 filtration usually have poor air permeability and are mostly disposable, leading to a heavy burden on the environment. In this work, a reusable membrane based on piezoelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] nanofibers embedded with BaTiO3 nanoparticles (BTO NPs) was developed. The P(VDF-TrFE)/BTO composite nanofibers not only have enhanced piezoelectricity and surface polarity but also have reduced diameters that could be beneficial for electrostatic adhesion, pole-polar interactions, and mechanical sieving to increase the PM0.3 capture capacity. Moreover, the BTO NPs also improved the charge storage capacity of the composite membrane, which could further enhance the PM0.3 filtration efficiency after corona treatment. The piezoelectric mask based on P(VDF-TrFE)/BTO composite nanofibers has high filtration efficiencies of 96% for PM0.3 and 98% for bacteria, while the pressure drop was only 182 Pa, which is lower than the commercial N95 standard of 343.2 Pa. Furthermore, the piezoelectric mask has a long and stable filtration performance after 5 cycles of 75% alcohol disinfection, demonstrating that the P(VDF-TrFE)/BTO composite membrane has a potential application in personal protective masks with comfortable and reusable properties.
Collapse
Affiliation(s)
- Cuicui Su
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan430071, China
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan430072, China
| | - Lingling Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan430071, China
| | - Yuanzheng Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan430072, China
| | - Xiaocheng Huang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo315211, China
| | - Yumin Ye
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo315211, China
| | - Yu Xia
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan430072, China
| | - Zhiyi Gong
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan430072, China
| | - Xiaojuan Qin
- Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan030032, China
| | - Yichao Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan430071, China
| | - Shishang Guo
- Hubei Yangtze Memory Laboratories, Wuhan430205, China
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan430072, China
| |
Collapse
|
11
|
Ling H, Xin W, Qian Y, He X, Yang L, Chen W, Wu Y, Du H, Liu Y, Kong XY, Jiang L, Wen L. Heterogeneous Electrospinning Nanofiber Membranes with pH-regulated Ion Gating for Tunable Osmotic Power Harvesting. Angew Chem Int Ed Engl 2023; 62:e202212120. [PMID: 36329000 DOI: 10.1002/anie.202212120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Biological ion channels existing in organisms are critical for many biological processes. Inspired by biological ion channels, the heterogeneous electrospinning nanofiber membranes (HENM) with functional ion channels are constructed by electrospinning technology. The HENM successfully realizes ion-gating effects, which can be used for tunable energy conversions. Introduction of pyridine and carboxylic acid groups into the HENM plays an important role in generating unique and stable ion transport behaviors, in which gates become alternative states of open and close, responding to symmetric/asymmetric pH stimulations. Then we used the HENM to convert osmotic energy into electric energy which reach a maximum value up to 12.34 W m-2 and the output power density of HENM-based system could be regulated by ion-gating effects. The properties of the HENM provide widespread potentials in application of smart nanofluidic devices, energy conversion, and water treatment.
Collapse
Affiliation(s)
- Haoyang Ling
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiwen Xin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xiaofeng He
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Linsen Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yadong Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huaqing Du
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Zhang X, Xu Y, Zeng Y. Efficient, Breathable and Biodegradable Filter Media for Face Masks. FIBERS AND POLYMERS 2023; 24:1613-1621. [PMCID: PMC10071238 DOI: 10.1007/s12221-023-00178-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 09/03/2023]
Abstract
The global outbreak of COVID-19 results in the surge of disposable sanitary supplies, especially personal protective face masks. However, the charge dissipation of the electret meltblown nonwovens, which predominate in the commercial face mask filters, confines the durability and safety of commercial face masks. Furthermore, most of the face masks are made from nondegradable materials (such as PP) or part of their degradation products are toxic and contaminative to the environment. Herein, a type of face mask with biodegradable and highly effective PLA bi-layer complex fibrous membrane as filter core is reported. The prepared PLA complex membrane possesses a high-filtration efficiency of 99.1% for PM0.3 while providing a favorable pressure drop of 93.2 Pa. With the PLA complex membrane as the filter core, our face mask exhibits comparable or even higher wearability to commercial face masks, which further manifests our designed PLA complex membrane a promising filter media for face masks.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Yuanqiang Xu
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Yongchun Zeng
- College of Textiles, Donghua University, Shanghai, 201620 China
| |
Collapse
|
13
|
Deng T, Chen Y, Liu Y, Shang Z, Gong J. Constructing Janus Microsphere Membranes for Particulate Matter Filtration, Directional Water Vapor Transfer, and High-Efficiency Broad-Spectrum Sterilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205010. [PMID: 36328738 DOI: 10.1002/smll.202205010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Commercial masks have significant drawbacks, including low water vapor transmission efficiency and limited ability to inhibit harmful microorganisms, whereas in this contribution, a series of Janus microsphere membranes are developed with hierarchical structures by quenching and crystallizing 12-hydroxystearic acid and halicin layer-by-layer on a polypropylene non-woven fabric, laminating them with hydrophilic cotton fibers in a one-pot process, and further demonstrate the potential of this composite system as masks. Through further optimization, excellent superhydrophobic/superhydrophilic properties (contact angle 157.1°/0°), superior filtering effects (93.54% for PM2.5 and 98.35% for PM10 ), with a low-filtration resistance (57 Pa) and a quality factor of up to 0.072 Pa-1 are achieved, all better than that of commercial N95 masks. In addition, the membrane allows for the directional transport of water vapor from the inside out, increasing the water vapor transmission rate by more than 20% compared with the monolayer hydrophobic microsphere membrane. It also has a bactericidal capacity of over 99.9999% against Escherichia coli and is tested for robustness and stability in various extreme environments. This work may shed light on designing novel filter media with versatile functions, meanwhile, the materials can also be used in protective equipment against the new coronavirus.
Collapse
Affiliation(s)
- Tong Deng
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Yifu Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Yanbo Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Zeren Shang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
14
|
Rao Y, Feng S, Low ZX, Wu J, Ju S, Zhong Z, Xing W. Biocompatible curcumin coupled nanofibrous membrane for pathogens sterilization and isolation. J Memb Sci 2022; 661:120885. [PMID: 35966152 PMCID: PMC9364930 DOI: 10.1016/j.memsci.2022.120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Airborne transmission of pathogens is the most probable cause for the spread of respiratory diseases, which can be intercepted by personal protective equipment such as masks. In this study, an efficient antiviral personal protective filter was fabricated by coupling the biocompatible curcumin (CCM) with nanofibrous polytetrafluoroethylene (PTFE) membrane. The CCM extracted from plants was first dissolved in acidified ethanol at a certain pH and temperature to optimize its loading concentration, antiviral activation, and binding forces on the polyethylene terephthalate (PET) support to form a pre-filtration layer at the front section of the filter. Ultrathin PTFE membrane was then fabricated on the antibacterial-antiviral PET support (A-A PET) by controllable heating lamination. This functional layer of the filter exhibits good gas permeance (3423.6 m3/(m2·h·kPa)) and ultrafine particles rejection rate (>98.79%). Moreover, the obtained A-A filter exhibit a high antibacterial rate against a variety of bacteria (E. coli, B. subtilis, A. niger, and Penicillium were 99.84%, 99.02%, 93.60%, 95.23%, respectively). Forthwith virucidal (SARS-CoV-2) efficiency of the A-A filter can reach 99.90% for 5 min. The filter shows good stability after 10 heating cycles, demonstrating its reusability.
Collapse
Affiliation(s)
- Yuanyuan Rao
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, China
| | - Shasha Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, China
| | - Ze-Xian Low
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, China.,Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Junwei Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, China.,Jiangsu Jiulang High-Tech Co., Ltd, Nanjing, 210009, China
| | - Shengui Ju
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
15
|
Yang G, Zhang M, Su K, Li Z. OPPS Fibers with High Temperature Resistance and Excellent Antioxidant Properties by an Oxidation Method. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50225-50234. [PMID: 36306440 DOI: 10.1021/acsami.2c15777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polyphenylene sulfide (PPS) fiber products have been widely used for separation and filtration in harsh environments due to their excellent chemical resistance and relatively economical price. However, the poor temperature and weak oxidation resistance of PPS significantly shorten its service life under high temperature and strong oxidation environments. Herein, we report a type of oxidation-modified PPS (OPPS) fibers with excellent high temperature and oxidation resistance. This is achieved by oxidizing the thioether sulfide groups in PPS molecular chains into sulfoxide and sulfone groups and cross-linking the intermolecular chains. Both experiments and density functional theory (DFT) calculations indicate that hypochlorous acid (HClO) molecules can rapidly oxidize the PPS fiber surface. In addition, molecular dynamics (MD) simulations prove that there are strong hydrogen bonds and van der Waals interactions between HClO molecules and OPPS molecular chains, which promote the penetration of HClO molecules into the interior of the fiber to complete the layer-by-layer oxidation. The prepared OPPS-20 fibers exhibit excellent structural stability under high temperature and strong oxidant environments. Impressively, the OPPS-20 nonwoven filter still exhibits a high dust filtration efficiency of 99.95% after aging at 320 °C for 12 h, and the corresponding pressure drop is 24 Pa. In addition, the OPPS-20 nonwoven filter also maintains excellent filtration performance after aging in 60% HNO3 solution for 12 h, and the filtration efficiency and pressure drop are 99.96% and 29 Pa, respectively. This work demonstrates that the novel OPPS fibers have excellent application prospects in the field of separation and filtration in harsh environments.
Collapse
Affiliation(s)
- Guofeng Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, P. R. China
| | - Maliang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, P. R. China
| | - Kunmei Su
- School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, P. R. China
| | - Zhenhuan Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, P. R. China
| |
Collapse
|
16
|
Continuous air purification by aqueous interface filtration and absorption. Nature 2022; 610:74-80. [PMID: 36163287 DOI: 10.1038/s41586-022-05124-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
The adverse impact of particulate air pollution on human health1,2 has prompted the development of purification systems that filter particulates out of air3-5. To maintain performance, the filter units must inevitably be replaced at some point, which requires maintenance, involves costs and generates solid waste6,7. Here we show that an ion-doped conjugated polymer-coated matrix infiltrated with a selected functional liquid enables efficient, continuous and maintenance-free air purification. As the air to be purified moves through the system in the form of bubbles, the functional fluid provides interfaces for filtration and for removal of particulate matter and pollutant molecules from air. Theoretical modelling and experimental results demonstrate that the system exhibits high efficiency and robustness: its one-time air purification efficiency can reach 99.6%, and its dust-holding capacity can reach 950 g m-2. The system is durable and resistant to fouling and corrosion, and the liquid acting as filter can be reused and adjusted to also enable removal of bacteria or odours. We anticipate that our purification approach will be useful for the development of specialist air purifiers that might prove useful in a settings such as hospitals, factories and mines.
Collapse
|
17
|
Wang S, Liu Y, Xu M, Hu F, Yu Q, Wang L. Polymersomes as virus-surrogate particles for evaluating the performance of air filter materials. GIANT (OXFORD, ENGLAND) 2022; 10:100104. [PMID: 35600793 PMCID: PMC9116050 DOI: 10.1016/j.giant.2022.100104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 05/15/2023]
Abstract
The development of antivirus air filter materials has attracted considerable interests due to the pandemic of coronavirus disease 2019 (COVID-19). Filtration efficiency (FE) of these materials against virus is critical in the assessment of their use in disease prevention. Due to the high cost and biosafety laboratory required for conducting research using actual virus samples, surrogates for virus are commonly used in the filtration test. Here, we explore the employment of polymersomes (polymeric vesicles) as a new type of surrogate. The polymersomes are hollow shell nanoparticles with amphiphilic bilayer membranes, which can be fabricated in nanosized, and possess similar size and structural features to virus. The performance of commercial KN95 mask and surgical mask with micro-sized fibers, and electrospun polyvinylidene fluoride (PVDF) and polyacrylonitrile (PAN) nanofibers were chosen to be evaluated. The filtration tests against fluorescent-labeled virus-surrogate particles (VSPs), i.e. polymersomes, allowed the determination of the FE of the multilayered filter materials in a layer-specific manner. The results suggested the importance of hydrophobicity in designing the nanofibrous filter materials. The employment of VSPs in filtration performance evaluation allows a cost-effective way to estimate the FE against virus, providing guidance on future development of air filter materials.
Collapse
Affiliation(s)
- Shuo Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuan Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Mengmeng Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Fei Hu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Linge Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
18
|
Advances in particulate matter filtration: Materials, performance, and application. GREEN ENERGY & ENVIRONMENT 2022. [PMCID: PMC10119549 DOI: 10.1016/j.gee.2022.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Air-borne pollutants in particulate matter (PM) form, produced either physically during industrial processes or certain biological routes, have posed a great threat to human health. Particularly during the current COVID-19 pandemic, effective filtration of the virus is an urgent matter worldwide. In this review, we first introduce some fundamentals about PM, including its source and classification, filtration mechanisms, and evaluation parameters. Advanced filtration materials and their functions are then summarized, among which polymers and MOFs are discussed in detail together with their antibacterial performance. The discussion on the application is divided into end-of-pipe treatment and source control. Finally, we conclude this review with our prospective view on future research in this area.
Collapse
|
19
|
Xu Y, Zhang X, Teng D, Zhao T, Li Y, Zeng Y. Multi-layered micro/nanofibrous nonwovens for functional face mask filter. NANO RESEARCH 2022; 15:7549-7558. [PMID: 35578617 PMCID: PMC9094123 DOI: 10.1007/s12274-022-4350-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED The worldwide COVID-19 pandemic has led to an attention on the usage of personal protective face masks. However, the longevity and safety of the commercial face masks are limited due to the charge dissipation of the electret meltblown nonwovens, which are dominate in the face mask filters. Herein, we design a type of multi-layer structured nonwovens using meltblowing and electrospinning technologies. The complex nonwovens involving meltblown and electrospun fibers are designed to possess multilevel fiber diameters and pore sizes. The micro/nanofibers with porous and wrinkled surface morphologies can well capture particulate matters (PMs), and the multilevel pore sizes contribute to low air resistance under high filtration efficiency. Airflow field simulation was carried out to understand the pressure distribution within the nonwovens in the filtration process. Meanwhile, by adding Ag nanoparticles (AgNPs) as additives, the nonwovens exhibit excellent antibacterial performance. The resultant nonwovens exhibit filtration efficiency of 99.1% for PM0.3 and low pressure drop of 105 Pa under the 10.67 cm/s inlet air velocity, and antibacterial rate of > 99.99% for Escherichia coli. These performances and functions make the designed complex nonwovens a promising filter core for face masks. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (Fig. S1. The filtration efficiencies of a brand of surgical mask changes with the storage time under the condition of 100% humidity. Fig. S2. The FE-SEM images of the fibers after blocking PMs. Fig. S3. Illustration of 3D structure models of the nonwovens. Fig. S4. Diameter distribution of AgNPs. Table S1. The structure parameters and filtration performances of the PP-M fibers with and without pores and wrinkles. Table S2. Filtration performance of PP-M/PLA-M/PLA-N nonwovens and commercial face masks. Table S3. The structural parameters for the nonwovens. Table S4. The filtration efficiencies and pressure drops of the PP, PE spunbonded nonwovens, and PP-M/PLA-M/PLA-N@AgNPs nonwovens) is available in the online version of this article at 10.1007/s12274-022-4350-2.
Collapse
Affiliation(s)
- Yuanqiang Xu
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Xiaomin Zhang
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Defang Teng
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Tienan Zhao
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Ying Li
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Yongchun Zeng
- College of Textiles, Donghua University, Shanghai, 201620 China
| |
Collapse
|