1
|
Stühler MR, Kreische M, Fornacon-Wood C, Rupf SM, Langer R, Plajer AJ. Monomer centred selectivity guidelines for sulfurated ring-opening copolymerisations. Chem Sci 2024:d4sc05858e. [PMID: 39479163 PMCID: PMC11515943 DOI: 10.1039/d4sc05858e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Sulfur-containing polymers, such as thioesters and thiocarbonates, offer sustainability advantages, including enhanced degradability and chemical recyclability. However, their synthesis remains underdeveloped compared to that of their oxygen-containing counterparts. Although catalytic ring-opening copolymerization (ROCOP) can provide access to sulfur-containing polymers, these materials often exhibit uncontrolled microstructures and unpredictable properties. A comprehensive model that elucidates the factors determining selectivity in these catalytic reactions is still lacking, despite its central importance for advancing these polymerizations into widely applicable methodologies. In this study, we investigate the factors that lead to selectivity in sulfurated ROCOP across various monomer combinations, including thioanhydrides or carbon disulfide with epoxides, thiiranes, and oxetanes. We find that unwanted by-products primarily arise from backbiting reactions of catalyst-bound alkoxide chain ends, which can be mitigated by (i) selecting monomers that form primary alkoxide of thiolate chain ends, (ii) maximizing ring strain in the backbiting step, and (iii) timely termination of the polymerization. By applying these strategies, the selectivity of the catalytic ROCOP can be controlled and we successfully synthesized perfectly alternating poly(esters-alt-thioesters) from various oxetanes and the highly industrially relevant ethylene oxide. Our study thereby shifts the focus for achieving selectivity from catalyst to monomer choice providing valuable mechanistic insights for the development of future selective polymerizations, paving the way for sulfurated polymers as potential alternatives to current commodity materials.
Collapse
Affiliation(s)
- Merlin R Stühler
- Makromolekulare Chemie, Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
- Intitut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | - Marie Kreische
- Intitut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | | | - Susanne M Rupf
- Intitut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | - Robert Langer
- Institute for Chemistry, Martin-Luther-University Halle-Wittenberg Kurt-Mothes-Str. 2 06120 Halle Germany
| | - Alex J Plajer
- Makromolekulare Chemie, Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
- Bayrisches Polymer Institut (BPI), Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
2
|
Yang H, Zhang J, Huang W, Zhang G. Transforming Element Sulfur to High Performance Closed-Loop Recyclable Polymer via Proton Transfer Enabled Anionic Hybrid Copolymerization. Angew Chem Int Ed Engl 2024:e202414244. [PMID: 39263929 DOI: 10.1002/anie.202414244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
The utilization of sulfur has been a global issue. Copolymerization of element sulfur (S8) with other monomers is a promising route to convert it to useful materials but is limited by the comonomers. Here, we report anionic hybrid copolymerization of S8 with acrylate and epoxide at room temperature, where S8 does not copolymerize with epoxide in the absence of acrylate. Yet, the proton transfer from the methyne in acrylate to the oxygen anion enables the ring-opening of the cyclic comonomer and hence the copolymerization. The cyclic comonomers can be expanded to lactone and cyclic carbonate. Specifically, the copolymer of S8 with bisphenl A diglycidyl ether and diacrylate displays mechanical properties comparable to those of most common plastics, namely, it has ultimate tensile strength as high as 60.8 MPa and Young's modulus up to 680 MPa. It also exhibits high UV resistance and good transparency. Particularly, it has excellent UV-induced self-healing, reprocessability and closed-loop recyclability due to the abundant dynamic S-S bonds and ester groups. This study provides an efficient strategy to turn element sulfur into closed-loop recyclable polymer with high mechanical and optical performances.
Collapse
Affiliation(s)
- Hongjun Yang
- Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, P. R. China
- Changzhou University Huaide College, Jingjiang, 214500, Jiangsu, P. R. China
| | - Jikai Zhang
- Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, P. R. China
| | - Wenyan Huang
- Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangou, 510640, Guangdong, P. R. China
| |
Collapse
|
3
|
Grimm AP, Plank M, Stihl A, Schmitt CW, Voll D, Schacher FH, Lahann J, Théato P. Inverse Vulcanization of Activated Norbornenyl Esters-A Versatile Platform for Functional Sulfur Polymers. Angew Chem Int Ed Engl 2024; 63:e202411010. [PMID: 38895894 DOI: 10.1002/anie.202411010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Elemental sulfur has shown to be a promising alternative feedstock for development of novel polymeric materials with high sulfur content. However, the utilization of inverse vulcanized polymers is restricted by the limitation of functional comonomers suitable for an inverse vulcanization. Control over properties and structure of inverse vulcanized polymers still poses a challenge to current research due to the dynamic nature of sulfur-sulfur bonds and high temperature of inverse vulcanization reactions. In here, we report for the first time the inverse vulcanization of norbornenyl pentafluorophenyl ester (NB-PFPE), allowing for post-modification of inverse vulcanized polymers via amidation of reactive PFP esters to yield high sulfur content polymers under mild conditions. Amidation of the precursor material with three functional primary amines (α-amino-ω-methoxy polyethylene glycol, aminopropyl trimethoxy silane, allylamine) was investigated. The resulting materials were applicable as sulfur containing poly(ethylene glycol) nanoparticles in aqueous environment. Cross-linked mercury adsorbents, sulfur surface coatings, and high-sulfur content networks with predictable thermal properties were achievable using aminopropyl trimethoxy silane and allylamine for post-polymerization modification, respectively. With the broad range of different amines available and applicable for post-polymerization modification, the versatility of poly(sulfur-random-NB-PFPE) as a platform precursor polymer for novel specialized sulfur containing materials was showcased.
Collapse
Affiliation(s)
- Alexander P Grimm
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martina Plank
- Institute of Functional Interfaces (IFG) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Stihl
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena (FSU), Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena (FSU), Philosophenweg 7, 07743, Jena, Germany
| | - Christian W Schmitt
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dominik Voll
- Institute for Technical Chemistry and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena (FSU), Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena (FSU), Philosophenweg 7, 07743, Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743, Jena, Germany
| | - Jörg Lahann
- Institute of Functional Interfaces (IFG) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Patrick Théato
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Technical Chemistry and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Marshall CM, Molineux J, Kang KS, Kumirov V, Kim KJ, Norwood RA, Njardarson JT, Pyun J. Synthesis of Polycyclic Olefinic Monomers from Norbornadiene for Inverse Vulcanization: Structural and Mechanistic Consequences. J Am Chem Soc 2024; 146:24061-24074. [PMID: 39143005 DOI: 10.1021/jacs.4c08113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The preparation of high-sulfur content organosulfur polymers has generated considerable interest as an emerging area in polymer science that has been driven by advances in the inverse vulcanization polymerization of elemental sulfur with organic comonomers. While numerous new inverse vulcanized polysulfides have been made over the past decade, insights into the mechanism of inverse vulcanization and structural characterization of the high-sulfur-content copolymers remain limited in scope. Furthermore, the exploration of new molecular architectures for organic comonomer synthesis remains an important frontier to enhance the properties of these new polymeric materials. In the current report, the first detailed study on the synthesis and inverse vulcanization of polycyclic rigid comonomers derived from norbornadiene was conducted, affording a quantitative assessment of polymer microstructure for these organopolysulfides and insights into the inverse vulcanization polymerization mechanism for this class of monomers. In particular, a stereoselective synthesis of the endo-exo norbornadiene cyclopentadiene adduct (Stillene) was achieved, which enabled direct comparison with the known exo-exo norbornadiene dimer (NBD2) previously used for inverse vulcanization. Reductive degradation of these sulfur copolymers and detailed structural analysis of the recovered sulfurated organic fragments revealed that remarkable exo-stereospecificity was achieved in the inverse vulcanization of elemental sulfur with both these polycyclic dienyl comonomers, which correlated to the robust thermomechanical properties associated with organopolysulfides made from NBD2 previously. Melt processing and molding of these sulfur copolymers were conducted to fabricate free-standing plastic lenses for long-wave infrared thermal imaging.
Collapse
Affiliation(s)
- Christopher M Marshall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jake Molineux
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Vlad Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyung-Jo Kim
- C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Robert A Norwood
- C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
- Department of Materials Science & Engineering, College of Engineering, University of Arizona, Tucson, Arizona 85719, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Luo Y, Tan M, Shin J, Zhang C, Yang S, Song N, Zhang W, Jiao Y, Xie J, Geng Z, He J, Xia M, Xu J, Yang R. Ultrarobust, Self-Healing Poly(urethane-urea) Elastomer with Superior Tensile Strength and Intrinsic Flame Retardancy Enabled by Coordination Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43979-43990. [PMID: 39116414 DOI: 10.1021/acsami.4c08185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Poly(urethane-urea) elastomers (PUUEs) have gained significant attention recently due to their growing demand in electronic skin, wearable electronic devices, and aerospace applications. The practical implementation of these elastomers necessitates many exceptional properties to ensure robust and safe utilization. However, achieving an optimal balance between high mechanical strength, good self-healing at moderate temperatures, and efficient flame retardancy for poly(urethane-urea) elastomers remains a formidable challenge. In this study, we incorporated metal coordination bonds and flame-retarding phosphinate groups into the design of poly(urethane-urea) simultaneously, resulting in a high-strength, self-healing, and flame-retardant elastomer, termed PNPU-2%Zn. Additional supramolecular cross-links and plasticizing effects of phosphinate-endowed PUUEs with relatively remarkable tensile strength (20.9 MPa), high elastic modulus (10.8 MPa), and exceptional self-healing efficiency (above 97%). Besides, PNPU-2%Zn possessed self-extinguishing characteristics with a limiting oxygen index (LOI) of 26.5%. Such an elastomer with superior properties can resist both mechanical fracture and fire hazards, providing insights into the development of robust and high-performance components for applications in wearable electronic devices.
Collapse
Affiliation(s)
- Yuxin Luo
- National Engineering Technology Research Center of Flame-Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meiyan Tan
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jaeman Shin
- Department of Materials Science and Engineering, Soongsil University, Hanseong, Seoul 06978, South Korea
- Department of Green Chemistry and Materials Engineering, Soongsil University, Hanseong, Seoul 06978, South Korea
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology and The Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shiyuan Yang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Ningning Song
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenchao Zhang
- National Engineering Technology Research Center of Flame-Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yunhong Jiao
- College of Chemistry and Environmental Science, Hebei University, Beijing, Hebei 071002, PR China
| | - Jixing Xie
- College of Chemistry and Environmental Science, Hebei University, Beijing, Hebei 071002, PR China
| | - Zhishuai Geng
- National Engineering Technology Research Center of Flame-Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiyu He
- National Engineering Technology Research Center of Flame-Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Min Xia
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianzhong Xu
- College of Chemistry and Environmental Science, Hebei University, Beijing, Hebei 071002, PR China
| | - Rongjie Yang
- National Engineering Technology Research Center of Flame-Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Deng Y, Huang Z, Feringa BL, Tian H, Zhang Q, Qu DH. Converting inorganic sulfur into degradable thermoplastics and adhesives by copolymerization with cyclic disulfides. Nat Commun 2024; 15:3855. [PMID: 38719820 PMCID: PMC11079033 DOI: 10.1038/s41467-024-48097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Converting elementary sulfur into sulfur-rich polymers provides a sustainable strategy to replace fossil-fuel-based plastics. However, the low ring strain of eight-membered rings, i.e., S8 monomers, compromises their ring-opening polymerization (ROP) due to lack of an enthalpic driving force and as a consequence, poly(sulfur) is inherently unstable. Here we report that copolymerization with cyclic disulfides, e.g., 1,2-dithiolanes, can enable a simple and energy-saving way to convert elementary sulfur into sulfur-rich thermoplastics. The key strategy is to combine two types of ROP-both mediated by disulfide bond exchange-to tackle the thermodynamic instability of poly(sulfur). Meanwhile, the readily modifiable sidechain of the cyclic disulfides provides chemical space to engineer the mechanical properties and dynamic functions over a large range, e.g., self-repairing ability and degradability. Thus, this simple and robust system is expected to be a starting point for the organic transformation of inorganic sulfur toward sulfur-rich functional and green plastics.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zhengtie Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
| |
Collapse
|
7
|
Gallizioli C, Battke D, Schlaad H, Deglmann P, Plajer AJ. Ring-Opening Terpolymerisation of Elemental Sulfur Waste with Propylene Oxide and Carbon Disulfide via Lithium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202319810. [PMID: 38421100 DOI: 10.1002/anie.202319810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Elemental sulfur, a waste product of the oil refinement process, represents a promising raw material for the synthesis of degradable polymers. We show that simple lithium alkoxides facilitate the polymerisation of elemental sulfur S8 with industrially relevant propylene oxide (PO) and CS2 (a base chemical sourced from waste S8 itself) to give poly(monothiocarbonate-alt-Sx) in which x can be controlled by the amount of supplied sulfur. The in situ generation of thiolate intermediates obtained by a rearrangement, which follows CS2 and PO incorporation, allows to combine S8 and epoxides into one polymer sequence that would otherwise not be possible. Mechanistic investigations reveal that alkyl oligosulfide intermediates from S8 ring opening and sulfur chain length equilibration represent the better nucleophiles for inserting the next PO if compared to the trithiocarbonates obtained from the competing CS2 addition, which causes the sequence selectivity. The polymers can be crosslinked in situ with multifunctional thiols to yield reprocessable and degradable networks. Our report demonstrates how mechanistic understanding allows to combine intrinsically incompatible building blocks for sulfur waste utilisation.
Collapse
Affiliation(s)
- Cesare Gallizioli
- Makromolekulare Chemie I, Universität Bayreuth, Universitätsstraße 30, 95447, Bayreuth
| | - David Battke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin
| | - Helmut Schlaad
- Institute für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam
| | - Peter Deglmann
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen am Rhein
| | - Alex J Plajer
- Makromolekulare Chemie I, Universität Bayreuth, Universitätsstraße 30, 95447, Bayreuth
| |
Collapse
|
8
|
Bao J, Kang KS, Molineux J, Bischoff DJ, Mackay ME, Pyun J, Njardarson JT. Dithiophosphoric Acids for Polymer Functionalization. Angew Chem Int Ed Engl 2024; 63:e202315963. [PMID: 38225715 DOI: 10.1002/anie.202315963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 01/17/2024]
Abstract
Dithiophosphoric acids (DTPAs) are an intriguing class of compounds that are sourced from elemental sulfur and white phosphorus and are prepared from the reaction of phosphorus pentasulfide with alcohols. The electrophilic addition of DTPAs to alkenes and unsaturated olefinic substrates is a known reaction, but has not been applied to polymer synthesis and polymer functionalization. We report on the synthesis and application of DTPAs for the functionalization of challenging poly-enes, namely polyisoprene (PI) and polynorbornene (pNB) prepared by ring-opening metathesis polymerization (ROMP). The high heteroatom content within DTPA moieties impart intriguing bulk properties to poly-ene materials after direct electrophilic addition reactions to the polymer backbone introducing DTPAs as side chain groups. The resulting materials possess both enhanced optical and flame retardant properties vs the poly-ene starting materials. Finally, we demonstrate the ability to prepare crosslinked polydiene films with di-functional DTPAs, where the crosslinking density and thermomechanical properties can be directly tuned by DTPA feed ratios.
Collapse
Affiliation(s)
- Jianhua Bao
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Jake Molineux
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Derek J Bischoff
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Michael E Mackay
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
9
|
Bischoff DJ, Lee T, Kang KS, Molineux J, O'Neil Parker W, Pyun J, Mackay ME. Unraveling the rheology of inverse vulcanized polymers. Nat Commun 2023; 14:7553. [PMID: 37985754 PMCID: PMC10662295 DOI: 10.1038/s41467-023-43117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
Multiple relaxation times are used to capture the numerous stress relaxation modes found in bulk polymer melts. Herein, inverse vulcanization is used to synthesize high sulfur content (≥50 wt%) polymers that only need a single relaxation time to describe their stress relaxation. The S-S bonds in these organopolysulfides undergo dissociative bond exchange when exposed to elevated temperatures, making the bond exchange dominate the stress relaxation. Through the introduction of a dimeric norbornadiene crosslinker that improves thermomechanical properties, we show that it is possible for the Maxwell model of viscoelasticity to describe both dissociative covalent adaptable networks and living polymers, which is one of the few experimental realizations of a Maxwellian material. Rheological master curves utilizing time-temperature superposition were constructed using relaxation times as nonarbitrary horizontal shift factors. Despite advances in inverse vulcanization, this is the first complete characterization of the rheological properties of this class of unique polymeric material.
Collapse
Affiliation(s)
- Derek J Bischoff
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Taeheon Lee
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Jake Molineux
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Jeffrey Pyun
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| | - Michael E Mackay
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
10
|
Bao J, Martin KP, Cho E, Kang KS, Glass RS, Coropceanu V, Bredas JL, Parker WO, Njardarson JT, Pyun J. On the Mechanism of the Inverse Vulcanization of Elemental Sulfur: Structural Characterization of Poly(sulfur- random-(1,3-diisopropenylbenzene)). J Am Chem Soc 2023. [PMID: 37224413 DOI: 10.1021/jacs.3c03604] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organosulfur polymers, such as those derived from elemental sulfur, are an important new class of macromolecules that have recently emerged via the inverse vulcanization process. Since the launching of this new field in 2013, the development of new monomers and organopolysulfide materials based on the inverse vulcanization process is now an active area in polymer chemistry. While numerous advances have been made over the last decade concerning this polymerization process, insights into the mechanism of inverse vulcanization and structural characterization of the high-sulfur-content copolymers that are produced remain challenging due to the increasing insolubility of the materials with a higher sulfur content. Furthermore, the high temperatures used in this process can result in side reactions and complex microstructures of the copolymer backbone, complicating detailed characterization. The most widely studied case of inverse vulcanization to date remains the reaction between S8 and 1,3-diisopropenylbenzene (DIB) to form poly(sulfur-random-1,3-diisopropenylbenzene)(poly(S-r-DIB)). Here, to determine the correct microstructure of poly(S-r-DIB), we performed comprehensive structural characterizations of poly(S-r-DIB) using nuclear magnetic resonance spectroscopy (solid state and solution) and analysis of sulfurated DIB units using designer S-S cleavage polymer degradation approaches, along with complementary de novo synthesis of the sulfurated DIB fragments. These studies reveal that the previously proposed repeating units for poly(S-r-DIB) were incorrect and that the polymerization mechanism of this process is significantly more complex than initially proposed. Density functional theory calculations were also conducted to provide mechanistic insights into the formation of the derived nonintuitive microstructure of poly(S-r-DIB).
Collapse
Affiliation(s)
- Jianhua Bao
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kaitlyn P Martin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Eunkyung Cho
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Richard S Glass
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jean-Luc Bredas
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Wallace O'Neil Parker
- Physical Chemistry Department, Eni, Research & Technical Innovation, ENI S.p.A., Via Maritano 26, 20097 San Donato Milanese, Italy
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
11
|
Gao J, Zhang Q, Wu B, Gao X, Liu Z, Yang H, Yuan J, Huang J. Mussel-Inspired, Underwater Self-Healing Ionoelastomers Based on α-Lipoic Acid for Iontronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207334. [PMID: 36869411 DOI: 10.1002/smll.202207334] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/31/2023] [Indexed: 05/25/2023]
Abstract
Weak adhesion and lack of underwater self-healability hinder advancing soft iontronics particularly in wet environments like sweaty skin and biological fluids. Mussel-inspired, liquid-free ionoelastomers are reported based on seminal thermal ring-opening polymerization of a biomass molecule of α-lipoic acid (LA), followed by sequentially incorporating dopamine methacrylamide as a chain extender, N,N'-bis(acryloyl) cystamine, and lithium bis(trifluoromethanesulphonyl) imide (LiTFSI). The ionoelastomers exhibit universal adhesion to 12 substrates in both dry and wet states, superfast self-healing underwater, sensing capability for monitoring human motion, and flame retardancy. The underwater self-repairabilitiy prolongs over three months without deterioration, and sustains even when mechanical properties greatly increase. The unprecedented underwater self-mendability benefits synergistically from the maximized availability of dynamic disulfide bonds and diverse reversible noncovalent interactions endowed by carboxylic groups, catechols, and LiTFSI, along with the prevented depolymerization by LiTFSI and tunability in mechanical strength. The ionic conductivity reaches 1.4 × 10-6 -2.7 × 10-5 S m-1 because of partial dissociation of LiTFSI. The design rationale offers a new route for creating a wide range of LA- and sulfur-derived supramolecular (bio)polymers with superior adhesion, healability, and other functionalities, and thus has technological implications for coatings, adhesives, binders and sealants, biomedical engineering and drug delivery, wearable and flexible electronics, and human-machine interfaces.
Collapse
Affiliation(s)
- Jiaxiang Gao
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Zhang
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bo Wu
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaodan Gao
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhengyuan Liu
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haoyu Yang
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jikang Yuan
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, Zhejiang, 313000, P. R. China
| | - Jijun Huang
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Qian K, Zhou J, Miao M, Wu H, Thaiboonrod S, Fang J, Feng X. Highly Ordered Thermoplastic Polyurethane/Aramid Nanofiber Conductive Foams Modulated by Kevlar Polyanion for Piezoresistive Sensing and Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2023; 15:88. [PMID: 37029266 PMCID: PMC10082146 DOI: 10.1007/s40820-023-01062-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference (EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane (TPU) foams reinforced by aramid nanofibers (ANF) with adjustable pore-size distribution were successfully obtained via a non-solvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles (Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti3C2Tx MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti3C2Tx MXene (PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0-344.5 kPa (50% strain) with good sensitivity at 0.46 kPa-1. Meanwhile, the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human-machine interfaces.
Collapse
Affiliation(s)
- Kunpeng Qian
- School of Materials Sciences and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jianyu Zhou
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Miao Miao
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hongmin Wu
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Sineenat Thaiboonrod
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jianhui Fang
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xin Feng
- School of Materials Sciences and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
13
|
Cherumukkil S, Agrawal S, Jasra RV. Sulfur Polymer as Emerging Advanced Materials: Synthesis and Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Sandeep Cherumukkil
- Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited Vadodara Gujarat 391346 India
| | - Santosh Agrawal
- Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited Vadodara Gujarat 391346 India
| | - Raksh Vir Jasra
- Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited Vadodara Gujarat 391346 India
| |
Collapse
|
14
|
Xue Y, Lin J, Wan T, Luo Y, Ma Z, Zhou Y, Tuten BT, Zhang M, Tao X, Song P. Stretchable, Ultratough, and Intrinsically Self-Extinguishing Elastomers with Desirable Recyclability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207268. [PMID: 36683185 PMCID: PMC10037964 DOI: 10.1002/advs.202207268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Advanced elastomers are increasingly used in emerging areas, for example, flexible electronics and devices, and these real-world applications often require elastomers to be stretchable, tough and fire safe. However, to date there are few successes in achieving such a performance portfolio due to their different governing mechanisms. Herein, a stretchable, supertough, and self-extinguishing polyurethane elastomers by introducing dynamic π-π stacking motifs and phosphorus-containing moieties are reported. The resultant elastomer shows a large break strain of ≈2260% and a record-high toughness (ca. 460 MJ m-3 ), which arises from its dynamic microphase-separated microstructure resulting in increased entropic elasticity, and strain-hardening at large strains. The elastomer also exhibits a self-extinguishing ability thanks to the presence of both phosphorus-containing units and π-π stacking interactions. Its promising applications as a reliable yet recyclable substrate for strain sensors are demonstrated. The work will help to expedite next-generation sustainable advanced elastomers for flexible electronics and devices applications.
Collapse
Affiliation(s)
- Yijiao Xue
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Jinyou Lin
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Tao Wan
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2502Australia
| | - Yanlong Luo
- College of ScienceNanjing Forestry UniversityNanjing210037China
| | - Zhewen Ma
- Department of Polymer MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Bryan T. Tuten
- Centre for Materials ScienceSchool of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Meng Zhang
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Xinyong Tao
- College of Materials Science and EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Pingan Song
- Centre for Future MaterialsUnviersity of Southern QueenslandSpringfield4300Australia
- School of Agriculture and Environmental ScienceUnviersity of Southern QueenslandSpringfield4300Australia
| |
Collapse
|
15
|
Yang J, Yang Q, Zhao H, He L. Elastomeric Polyurethane Foam from Elemental Sulfur with Exceptional Mercury Capture Capability. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Jun Yang
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Qin Yang
- Section for Hepato-Pancreato-Biliary Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Hui Zhao
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Lirong He
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Kandiyil J, Vasudevan S, Athiyanathil S. Efficient selective methylene blue adsorption by polyurethane/montmorillonite‐based antifouling electrospun composite membranes. J Appl Polym Sci 2022. [DOI: 10.1002/app.53464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Juraij Kandiyil
- Department of Chemistry, Materials Research Laboratory National Institute of Technology Calicut Kozhikode India
| | - Suni Vasudevan
- Department of Chemistry, Inorganic and Bio‐inorganic Laboratory National Institute of Technology Calicut Kozhikode India
| | - Sujith Athiyanathil
- Department of Chemistry, Materials Research Laboratory National Institute of Technology Calicut Kozhikode India
| |
Collapse
|
17
|
Tan Y, Chen H, Kang W, Wang X. Versatile Light-Mediated Synthesis of Dry Ion-Conducting Dynamic Bottlebrush Networks with High Elasticity, Interfacial Adhesiveness, and Flame Retardancy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Tan
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
| | - Huan Chen
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
| | - Wenbing Kang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
| |
Collapse
|
18
|
Dong H, Wang Y, Fan M, Zhao J, Zhang Z, Zhang J. Synthesis and properties of multi-block thermoplastic polyurethanes constructed with polystyrene and poly(butylene adipate) sequences. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Zhang W, Xia W, Shi Y, Zhou C, Chen R, Wang L, Qu J. A
DOPO
‐anchored benzothiadiazole derivative toward efficiently P/N/S synergistic flame retarding of epoxy thermoset. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wu Zhang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Hubei Three Gorges Laboratory Yichang Hubei China
| | - Weikang Xia
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Hubei Three Gorges Laboratory Yichang Hubei China
| | - Yasheng Shi
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Hubei Three Gorges Laboratory Yichang Hubei China
| | - Changlin Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Hubei Three Gorges Laboratory Yichang Hubei China
| | - Ran Chen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Hubei Three Gorges Laboratory Yichang Hubei China
| | - Lei Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Hubei Three Gorges Laboratory Yichang Hubei China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| |
Collapse
|
20
|
Kang K, Iyer KA, Pyun J. On the Fundamental Polymer Chemistry of Inverse Vulcanization for Statistical and Segmented Copolymers from Elemental Sulfur. Chemistry 2022; 28:e202200115. [DOI: 10.1002/chem.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Kyung‐Seok Kang
- Department of Chemistry and Biochemistry University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - Krishnan A. Iyer
- ExxonMobil Chemical Company 5200 Bayway Drive Baytown TX 77520 USA
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| |
Collapse
|
21
|
Chao JY, Yue TJ, Ren BH, Gu GG, Lu XB, Ren WM. Controlled Disassembly of Elemental Sulfur: An Approach to the Precise Synthesis of Polydisulfides. Angew Chem Int Ed Engl 2022; 61:e202115950. [PMID: 35129257 DOI: 10.1002/anie.202115950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/08/2023]
Abstract
The usage of elemental sulfur (S8 ) for constructing sulfur-containing polymers is of great significance in terms of sulfur resource utilization or fabrication of high-performance polymers. Currently, the random disassembly of S8 hinders its direct use in the precise synthesis of sulfur-containing polymers. Herein, we provide an effective strategy for controlling the dismantlement of S8 to synthesize polydisulfides, a promising category of dynamic bonds containing polymers. In this strategy, the completely alternating copolymerization of one sulfur atom, which is orderly derived from S8 , with episulfides is achieved with MTBD (7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene) as catalyst and [PPN]SbF6 ([PPN]+ is bis(triphenylphosphine)iminium) as cocatalyst. Delightedly, the living- polymerization feature, and the good monomer compatibility allows for the access to diverse polydisulfides. Furthermore, the density functional theory (DFT) was employed to elaborate the copolymerization process.
Collapse
Affiliation(s)
- Ji-Yan Chao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Ge-Ge Gu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| |
Collapse
|
22
|
Scheiger JM, Hoffmann M, Falkenstein P, Wang Z, Rutschmann M, Scheiger VW, Grimm A, Urbschat K, Sengpiel T, Matysik J, Wilhelm M, Levkin PA, Theato P. Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bonds. Angew Chem Int Ed Engl 2022; 61:e202114896. [PMID: 35068039 PMCID: PMC9302686 DOI: 10.1002/anie.202114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/10/2022]
Abstract
The inverse vulcanization produces high sulfur content polymers from alkenes and elemental sulfur. Control over properties such as the molar mass or the solubility of polymers is not well established, and existing strategies lack predictability or require large variations of the composition. Systematic design principles are sought to allow for a targeted design of materials. Herein, we report on the inverse vulcanization of norbornenylsilanes (NBS), with a different number of hydrolysable groups at the silicon atom. Inverse vulcanization of mixtures of NBS followed by polycondensation yielded soluble high sulfur content copolymers (50 wt % S) with controllable weight average molar mass (MW ), polydispersity (Đ), glass transition temperature (TG ), or zero-shear viscosity (η0 ). Polycondensation was conducted in the melt with HCl as a catalyst, abolishing the need for a solvent. Purification by precipitation afforded polymers with a greatly reduced amount of low molar mass species.
Collapse
Affiliation(s)
- Johannes M. Scheiger
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Maxi Hoffmann
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Patricia Falkenstein
- Leipzig UniversityInstitute of Analytical ChemistryLinnéstrasse 304103LeipzigGermany
| | - Zhenwu Wang
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Mark Rutschmann
- Institute of Inorganic Chemistry (IAC)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| | - Valentin W. Scheiger
- Institute of Applied Informatics and Formal Description Methods (AIFB)Karlsruhe Institute of Technology (KIT)Kaiserstrasse 8976133KarlsruheGermany
| | - Alexander Grimm
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Klara Urbschat
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Tobias Sengpiel
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Jörg Matysik
- Leipzig UniversityInstitute of Analytical ChemistryLinnéstrasse 304103LeipzigGermany
| | - Manfred Wilhelm
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676313Eggenstein-LeopoldshafenGermany
| | - Patrick Theato
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
- Soft Matter Synthesis Laboratory - Institute for Biological Interfaces III (IBG-3)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
23
|
Chao J, Yue T, Ren B, Gu G, Lu X, Ren W. Controlled Disassembly of Elemental Sulfur: An Approach to the Precise Synthesis of Polydisulfides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ji‐Yan Chao
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Tian‐Jun Yue
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Bai‐Hao Ren
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Ge‐Ge Gu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Xiao‐Bing Lu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Wei‐Min Ren
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| |
Collapse
|
24
|
Scheiger JM, Hoffmann M, Falkenstein P, Wang Z, Rutschmann M, Scheiger VW, Grimm A, Urbschat K, Sengpiel T, Matysik J, Wilhelm M, Levkin PA, Theato P. Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Johannes Martin Scheiger
- Karlsruher Institut fur Technologie Institute of Technical Chemistry and Polymer Chemistry Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen GERMANY
| | - Maxi Hoffmann
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | | | - Zhenwu Wang
- Karlsruhe Institute of Technology Institute of Biological and Chemical Systems GERMANY
| | - Mark Rutschmann
- Karlsruhe Institute of Technology Institute of Inorganic Chemistry GERMANY
| | - Valentin W. Scheiger
- Karlsruhe Institute of Technology Institute of Applied Informatics and Formal Description Methods GERMANY
| | - Alexander Grimm
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Klara Urbschat
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Tobias Sengpiel
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Jörg Matysik
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Manfred Wilhelm
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Pavel A. Levkin
- Karlsruhe Institute of Technology Institute of Biological and Chemical Systems GERMANY
| | - Patrick Theato
- Karlruher Institut für Technologie (KIT) Präparative Makromolekulare Chemie Kaiserstr. 12 76131 Karlsruhe GERMANY
| |
Collapse
|
25
|
Park S, Chung M, Lamprou A, Seidel K, Song S, Schade C, Lim J, Char K. High strength, epoxy cross-linked high sulfur content polymers from one-step reactive compatibilization inverse vulcanization. Chem Sci 2022; 13:566-572. [PMID: 35126988 PMCID: PMC8729804 DOI: 10.1039/d1sc05896g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/11/2021] [Indexed: 11/27/2022] Open
Abstract
Inverse vulcanization provides a simple, solvent-free method for the preparation of high sulfur content polymers using elemental sulfur, a byproduct of refining processes, as feedstock. Despite the successful demonstration of sulfur polymers from inverse vulcanization in optical, electrochemical, and self-healing applications, the mechanical properties of these materials have remained limited. We herein report a one-step inverse vulcanization using allyl glycidyl ether, a heterobifunctional comonomer. The copolymerization, which proceeds via reactive compatibilization, gives an epoxy cross-linked sulfur polymer in a single step, as demonstrated through isothermal kinetic experiments and solid-state 13C NMR spectroscopy. The resulting high sulfur content (≥50 wt%) polymers exhibited tensile strength at break in the range of 10-60 MPa (70-50 wt% sulfur), which represents an unprecedentedly high strength for high sulfur content polymers from vulcanization. The resulting high sulfur content copolymer also exhibited extraordinary shape memory behavior along with shape reprogrammability attributed to facile polysulfide bond rearrangement.
Collapse
Affiliation(s)
- Sangwoo Park
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Minju Chung
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Alexandros Lamprou
- Functional Polymers Global Research, Innovation Campus Asia Pacific, BASF 200137 Shanghai China
| | - Karsten Seidel
- Material Physics, Analytics & Formulation Research, BASF SE 67056 Ludwigshafen Germany
| | - Sanghoon Song
- Department of Chemistry, Kyung Hee University Seoul 02447 Republic of Korea
| | - Christian Schade
- Functional Polymers Global Research, BASF SE 67056 Ludwigshafen Germany
| | - Jeewoo Lim
- Department of Chemistry, Kyung Hee University Seoul 02447 Republic of Korea
| | - Kookheon Char
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
26
|
Davis AE, Sayer KB, Jenkins CL. A comparison of adhesive polysulfides initiated by garlic essential oil and elemental sulfur to create recyclable adhesives. Polym Chem 2022. [DOI: 10.1039/d2py00418f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfur and garlic essential oil can initiate polymerization with a variety of natural monomers to form sustainable adhesives. The sulfur source has a substantial impact on the adhesion strength and material properties.
Collapse
Affiliation(s)
- Anthony E. Davis
- Department of Chemistry, Idaho State University, 921 South 8th Ave, Pocatello, ID 83209, USA
| | - Kyler B. Sayer
- Department of Chemistry, Idaho State University, 921 South 8th Ave, Pocatello, ID 83209, USA
| | - Courtney L. Jenkins
- Department of Chemistry, Idaho State University, 921 South 8th Ave, Pocatello, ID 83209, USA
| |
Collapse
|
27
|
Zhou Z, Wang Y, Zhu L, Dang D, Zhang Z. Tributylphosphine-catalyzed aziridine-based cycloaddition polymerization toward thiacyclic polymers. Polym Chem 2022. [DOI: 10.1039/d2py00569g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cycloaddition polymerization of bis(N-sulfonyl aziridine)s with diisocyanates in the presence of tributylphosphine allows the facile synthesis of poly(thiazolidin-2-imine)s.
Collapse
Affiliation(s)
- Zhi Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ying Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Linlin Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dai Dang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, P. R. China
| |
Collapse
|
28
|
Onose Y, Ito Y, Kuwabara J, Kanbara T. Tracking side reactions of the inverse vulcanization process and developing monomer selection guidelines. Polym Chem 2022. [DOI: 10.1039/d2py00774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various olefin monomers were inverse-vulcanized. The structural analysis and evaluation of the thermal stability of the products revealed that aliphatic internal olefins are suitable monomers for suppressing side reactions.
Collapse
Affiliation(s)
- Yusuke Onose
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yuri Ito
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
29
|
Silvano S, Tritto I, Losio S, boggioni L. Sulfur-Dipentene polysulfides: from industrial waste to sustainable, low-cost materials. Polym Chem 2022. [DOI: 10.1039/d2py00095d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of poly(S-dipentene) with a sulfur content greater than 50 wt % by catalytic inverse vulcanization in the presence of zinc-based accelerators was investigated at 140 °C for the...
Collapse
|
30
|
Lee T, Dirlam PT, Njardarson JT, Glass RS, Pyun J. Polymerizations with Elemental Sulfur: From Petroleum Refining to Polymeric Materials. J Am Chem Soc 2021; 144:5-22. [PMID: 34936350 DOI: 10.1021/jacs.1c09329] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The production of elemental sulfur from petroleum refining has created a technological opportunity to increase the valorization of elemental sulfur by the synthesis of high-performance sulfur-based plastics with improved optical, electrochemical, and mechanical properties aimed at applications in thermal imaging, energy storage, self-healable materials, and separation science. In this Perspective, we discuss efforts in the past decade that have revived this area of organosulfur and polymer chemistry to afford a new class of high-sulfur-content polymers prepared from the polymerization of liquid sulfur with unsaturated monomers, termed inverse vulcanization.
Collapse
Affiliation(s)
- Taeheon Lee
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Philip T Dirlam
- Department of Chemistry, San José State University, San Jose, California 95195-0101, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Richard S Glass
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|