1
|
Jana S, Cramer N. Tunable Thiazolium Carbenes for Enantioselective Radical Three-Component Dicarbofunctionalizations. J Am Chem Soc 2024; 146:35199-35207. [PMID: 39656150 DOI: 10.1021/jacs.4c11947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Asymmetric N-heterocyclic carbene (NHC) organocatalysis is a cornerstone of synthetic organic chemistry. The emerging concept of single-electron NHC catalysis broadened the scope of C-C bond-forming reactions, facilitating the synthesis of a variety of attractive racemic compounds. However, the development of effective and selective chiral NHC catalysts for asymmetric radical-mediated reactions has been challenging. In this report, we introduce a family of highly tunable chiral thiazolium carbenes with three distinct positions for broad electronic and steric modulation featuring bulky chiral flanking groups. We demonstrate the catalytic efficacy of these chiral carbenes in an enantioselective SET-type three-component acyl-difluoroalkylation of olefins using a broad range of aldehydes and difluoroalkyl bromides. This method provides straightforward access to a diverse set of β-difluoroalkylated α-chiral ketones (65 examples) with an up to 87% yield and excellent enantioselectivities of up to >99:1 er. The utility of this methodology is further outlined by enantio- and diastereoselective late-stage modifications of pharmaceutically relevant compounds and selective twofold orthogonal acyl-difluoroalkylations of linchpin reagents.
Collapse
Affiliation(s)
- Sripati Jana
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Kale V, Shee S, Dutt S, Sinha N, Biju AT, Banerjee P. Electroredox N-Heterocyclic Carbene-Catalyzed Enantioselective (3 + 3) Annulation of Enals with 2-Naphthols. Org Lett 2024. [PMID: 39698975 DOI: 10.1021/acs.orglett.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Developing asymmetric transformations using electroredox and N-heterocyclic carbene (NHC)-catalyzed radical pathways is still desirable and challenging. Herein, we report an iodide-promoted β-carbon activation (LUMO-lowering process) of enals via electroredox carbene catalysis coupled with a hydrogen evolution reaction (HER). This strategy offers an environmentally friendly and sustainable route for rapidly assembling synthetically useful chiral naphthopyran-3-one in good to excellent yield and enantioselectivity using traceless electrons as inexpensive and greener oxidants. The mechanistic studies and cyclic voltammetry suggest that the reaction proceeds via direct single electron transfer (SET) of the in situ-generated Breslow intermediate.
Collapse
Affiliation(s)
- Vikas Kale
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sayan Shee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Shiv Dutt
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Nidhi Sinha
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
3
|
Chakraborty S, Barik S, Biju AT. N-Heterocyclic carbene (NHC) organocatalysis: from fundamentals to frontiers. Chem Soc Rev 2024. [PMID: 39690964 DOI: 10.1039/d4cs01179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
N-Heterocyclic carbenes (NHCs) have been used as organocatalysts for a multitude of C-C and C-heteroatom bond-forming reactions. They enable diverse modalities of activating a wide range of structurally distinct substrate classes and allow access to electronically distinct intermediates. The easy tunability of the NHC scaffold contributes to its versatility. Recent years have witnessed a surge of interest in various organocatalytic reactions of NHCs, leading to the forays of NHC catalysis into the relatively newer domains such as reactions involving radical intermediates, atroposelective synthesis, umpolung of electrophiles other than aldehydes, and the use of NHCs as non-covalent templates for enantioinduction. This tutorial review provides an overview of various important structural features and reactivity modes of NHCs and delves deep into some frontiers of NHC-organocatalysis.
Collapse
Affiliation(s)
- Sukriyo Chakraborty
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Soumen Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
Gao F, Wang T, Yan X. Cooperative photoredox and N-heterocyclic carbene-catalyzed formal C-H acylation of cyclopropanes via a deconstruction-reconstruction strategy. Chem Sci 2024; 16:323-328. [PMID: 39611035 PMCID: PMC11601121 DOI: 10.1039/d4sc06355d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Cyclopropanes are ubiquitous and key structural motifs in commercially available drugs and bioactive molecules. Herein, we present regio-selective acylation of aryl cyclopropanes with cooperative photoredox and N-heterocyclic carbene catalysis. This approach involves a deconstruction-reconstruction strategy via γ-chloro-ketones as intermediates and fulfills the formal C(sp3)-H functionalization of cyclopropanes.
Collapse
Affiliation(s)
- Fan Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China
| | - Tian Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China
| |
Collapse
|
5
|
Wang SJ, Jiang LR, Wang H, Hu TY, Zhou L, Chen J. Halogen-Bond-Assisted NHC-Catalyzed (Dynamic) Kinetic Resolution for the Atroposelective Synthesis of Heterobiaryls. Org Lett 2024; 26:9079-9084. [PMID: 39405047 DOI: 10.1021/acs.orglett.4c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
We report a novel halogen-bond-assisted NHC-catalyzed (dynamic) kinetic resolution strategy for the synthesis of axially chiral heterobiaryls. A class of axially chiral quinolines are prepared efficiently in excellent enantioselectivities (≤98% ee) employing 3-5 mol % NHC catalyst. Mechanistic studies reveal the indispensability of 5-bromo-2-iodobenzaldehyde in this reaction, in which a pivotal halogen bonding interaction plays a crucial role in the process.
Collapse
Affiliation(s)
- Shao-Jie Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Li-Rong Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - He Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Tian-Yi Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
6
|
Li M, Wu Y, Song X, Sun J, Zhang Z, Zheng G, Zhang Q. Visible light-mediated organocatalyzed 1,3-aminoacylation of cyclopropane employing N-benzoyl saccharin as bifunctional reagent. Nat Commun 2024; 15:8930. [PMID: 39414792 PMCID: PMC11484876 DOI: 10.1038/s41467-024-53202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The carboamination of unsaturated molecules using bifunctional reagents is considered an attractive approach for the synthesis of nitrogen-containing compounds. However, bifunctional C-N reagents have never been employed in the carboamination of cyclopropane. In this study, we use an N-heterocyclic carbene (NHC), N-benzoyl saccharin, as a bifunctional reagent and a photoredox catalyst for a dual-catalyzed 1,3-aminoacylation of cyclopropane. NHCs play multiple roles, functioning as Lewis base catalysts to activate C-N bonds, promoting the oxidative quenching process of PC*, and acting as efficient acyl radical transfer catalysts for the formation of C-C bonds. The oxidative quenching process between the excited-state PC* and acyl NHC adduct is the key to the photooxidation generality of aryl cyclopropanes.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yingtao Wu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Xiao Song
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Jiaqiong Sun
- Department of Chemistry, Northeast Normal University, Changchun, China.
- School of Environment, Northeast Normal University, Changchun, China.
| | - Zuxiao Zhang
- Department of Chemistry, University of Hawai'i at Mānoa. 2545 McCarthy Mall, Honolulu, HI, USA
| | - Guangfan Zheng
- Department of Chemistry, Northeast Normal University, Changchun, China.
| | - Qian Zhang
- Department of Chemistry, Northeast Normal University, Changchun, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai, China
| |
Collapse
|
7
|
Liu WD, Gao J, Mo JN, Zhou Y, Zhao J. Cooperative NHC and Photoredox Catalyzed Radical Aminoacylation of Alkenes to Tetrahydropyridazines. Chemistry 2024; 30:e202402288. [PMID: 39072808 DOI: 10.1002/chem.202402288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Tetrahydropyridazines constitute an important structural motif found in numerous natural products and pharmaceutical compounds. Herein, we report an aminoacylation reaction of alkenes that enables the synthesis of 1,4,5,6-tetrahydropyridazines through cooperative N-heterocyclic carbene (NHC) and photoredox catalysis. This approach involves the 6-endo-trig cyclization of N-centered hydrazonyl radicals, generated via single-electron oxidation of hydrazones, followed by a radical-radical coupling step. The mild process tolerates a wide range of common functional groups and affords a variety of tetrahydropyridazines in moderate to high yields. Preliminary investigations using chiral NHC catalysts demonstrate the potential of this protocol for asymmetric radical reactions.
Collapse
Affiliation(s)
- Wen-Deng Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiyuan Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
8
|
Huang B, Zhang Z, Jiao J, Liu W, Yan X. Redox-Paired Reductive Heck Reaction and Oxidative Esterification Catalyzed by Mesoionic Carbenes. Org Lett 2024; 26:7419-7424. [PMID: 39172063 DOI: 10.1021/acs.orglett.4c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Paring a reductive reaction and an oxidative reaction in one reaction could be immensely important in achieving atom economic and environmental advantages. Herein, we report a simple protocol that combines two such reductive Heck reactions and oxidative esterification by using mesoionic carbenes as catalysts to synthesize multiple valuable products under mild conditions.
Collapse
Affiliation(s)
- Benkai Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Jie Jiao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Wei Liu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
9
|
Zhao Y, Zhang Y, Huang Y. Enantioselective Relay Coupling of Perfluoroalkyl and Vinylogous Ketyl Radicals. Angew Chem Int Ed Engl 2024; 63:e202409566. [PMID: 38865105 DOI: 10.1002/anie.202409566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
β-Chiral carboxylic acids and their derivatives are highly valuable structural motifs in the fields of asymmetric synthesis and medicinal chemistry. However, the introduction of a sterically demanding sidechain to the β-carbon, such as an all-carbon quaternary center, remains a significant challenge in classical polar processes. Recently, N-heterocyclic carbene (NHC) mediated coupling reactions involving persistent ketyl radicals have emerged as a promising strategy to assemble highly crowded carbon-carbon bonds. Nevertheless, achieving enantioselectivity in these reactions remains highly challenging. In this work, we report our recent progress in controlling enantioselectivity for relay coupling of perfluoroalkyl and persistent vinylogous ketyl radicals. We developed a chiral bifunctional NHC-squaramide catalyst that achieves high facial selectivity in a critical bond-forming event involving the coupling of a congested tertiary carbon radical and vinylogous ketyl radical. Chiral carboxylates bearing an all-carbon quaternary center at the β-position can be prepared in good yield and excellent enantiomeric excess. Results from density functional theory (DFT) calculations and nuclear Overhauser effect (NOE) experiments indicate that the N,N'-diaryl squaramide motif adopts an unusual syn-syn conformation, enabling hydrogen bonding interactions with the enolate oxygen, thereby rigidifying the overall conformation of the transition state.
Collapse
Affiliation(s)
- Yuxin Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yichi Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Wang T, Zhang Z, Gao F, Yan X. Homologation of Ketones: Direct Transformation of Alkyl Ketones to Aryl Ketones via Photoredox Catalyzed Deacylation-Aroylation Sequence. Org Lett 2024; 26:6915-6920. [PMID: 39115264 DOI: 10.1021/acs.orglett.4c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Ketones, as essential functional group skeletons, have garnered significant interest due to their diverse transformations. Herein, we describe a versatile photoredox catalyzed deacylation-aroylation strategy that enables the direct transformation of alkyl ketones to aryl ketones. This process involves photoredox deacylation of dihydroquinazolinones derived from alkyl ketones to generate alkyl radicals, followed by subsequent NHC-catalyzed or NHC-mediated radical aroylation.
Collapse
Affiliation(s)
- Tian Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Fan Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
11
|
Li QZ, He MH, Zeng R, Lei YY, Yu ZY, Jiang M, Zhang X, Li JL. Molecular Editing of Ketones through N-Heterocyclic Carbene and Photo Dual Catalysis. J Am Chem Soc 2024; 146:22829-22839. [PMID: 39086019 DOI: 10.1021/jacs.4c08163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The molecular editing of ketones represents an appealing strategy due to its ability to maximize the structural diversity of ketone compounds in a straightforward manner. However, developing efficient methods for the arbitrary modification of ketonic molecules, particularly those integrated within complex skeletons, remains a significant challenge. Herein, we present a unique strategy for ketone recasting that involves radical acylation of pre-functionalized ketones facilitated by N-heterocyclic carbene and photo dual catalysis. This protocol features excellent substrate tolerance and can be applied to the convergent synthesis and late-stage functionalization of structurally complex bioactive ketones. Mechanistic investigations, including experimental studies and density functional theory (DFT) calculations, shed light on the reaction mechanism and elucidate the basis of the regioselectivity.
Collapse
Affiliation(s)
- Qing-Zhu Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Mei-Hao He
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Rong Zeng
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yuan-Yuan Lei
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhao-Yuan Yu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Min Jiang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiang Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jun-Long Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
12
|
Mo JN, Sun S, Xu H, Shu H, Zhao J. Synthesis of γ-Oxo-phosphonates via N-Heterocyclic Carbene-Catalyzed Acylphosphorylation of Alkenes. Org Lett 2024; 26:2197-2201. [PMID: 38451224 DOI: 10.1021/acs.orglett.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In this study, we present an N-heterocyclic carbene-catalyzed method for the radical acylphosphorylation of alkenes. Electrochemical investigations were employed to identify an appropriate class of oxime phosphonates capable of undergoing a single-electron transfer (SET) with Breslow enolates. The resulting phosphoryl radicals were effectively coupled with diverse styrenes and aldehydes to yield a variety of γ-oxo-phosphonates. Both radical clock experiments and electrochemical studies support our reaction design, and a plausible mechanism for the organocatalytic transformation is proposed.
Collapse
Affiliation(s)
- Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shengbin Sun
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Huiwei Xu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Hanyu Shu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Jin ML, Dong YX, Gao ZH, Ye S. Phosphonylacylation of Alkenes Enabled by Visible-Light-Induced N-Heterocyclic Carbene Catalysis. Org Lett 2024; 26:1711-1717. [PMID: 38377588 DOI: 10.1021/acs.orglett.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Herein, we report the phosphonylacylation of alkenes via visible-light-induced N-heterocyclic carbene (NHC) catalysis to afford a series of γ-ketophosphonates in moderate to good yields. This protocol features mild conditions, free of photocatalyst, and good compatibility of functional groups. The excited Breslow enolate intermediate was proposed to undergo single-electron transfer with oxime phosphonate to generate the corresponding ketyl radical and phosphonyl radical.
Collapse
Affiliation(s)
- Ming-Lei Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Xiong Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Hua Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Chao D, Liu TX, Zhang P, Xia S, Yang P, Huang M, Liu Q, Zhang G. Interrupted N-Heterocyclic Carbene-Catalyzed Radical Coupling Strategy: A Versatile Platform for Alkylation and Arylation of [60]Fullerene. Org Lett 2024; 26:1432-1436. [PMID: 38350149 DOI: 10.1021/acs.orglett.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
An interrupted N-heterocyclic carbene-catalyzed radical coupling strategy is disclosed for efficient alkylation and arylation of [60]fullerene. This novel and general strategy bridges the gap between organocatalytic radical cross-coupling and functionalization of fullerenes. Readily available feedstocks, remarkably broad substrate scope and functional group compatibility, and convenient late-stage nanomodification of complex molecules make this strategy with incomparable diversity and practicality in the synthesis of monoalkylated and -arylated fullerenes.
Collapse
Affiliation(s)
- Di Chao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tong-Xin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shilu Xia
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Panting Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengjiao Huang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qingfeng Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
15
|
Xia J, Guo Y, Lv Z, Sun J, Zheng G, Zhang Q. Visible Light-Mediated Monofluoromethylation/Acylation of Olefins by Dual Organo-Catalysis. Molecules 2024; 29:790. [PMID: 38398543 PMCID: PMC10892033 DOI: 10.3390/molecules29040790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Monofluoromethyl (CH2F) motifs exhibit unique bioactivities and are considered privileged units in drug discovery. The radical monofluoromethylative difunctionalization of alkenes stands out as an appealing approach to access CH2F-containing compounds. However, this strategy remains largely underdeveloped, particularly under metal-free conditions. In this study, we report on visible light-mediated three-component monofluoromethylation/acylation of styrene derivatives employing NHC and organic photocatalyst dual catalysis. A diverse array of α-aryl-β-monofluoromethyl ketones was successfully synthesized with excellent functional group tolerance and selectivity. The mild and metal-free CH2F radical generation strategy from NaSO2CFH2 holds potential for further applications in fluoroalkyl radical chemistry.
Collapse
Affiliation(s)
- Jiuli Xia
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun 130024, China; (J.X.); (Z.L.); (Q.Z.)
| | - Yunliang Guo
- School of Environment, Northeast Normal University, Changchun 130117, China;
| | - Zhiguang Lv
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun 130024, China; (J.X.); (Z.L.); (Q.Z.)
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University, Changchun 130117, China;
| | - Guangfan Zheng
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun 130024, China; (J.X.); (Z.L.); (Q.Z.)
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun 130024, China; (J.X.); (Z.L.); (Q.Z.)
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
16
|
Abdellaoui M, Oppel K, Vianna A, Soleilhavoup M, Yan X, Melaimi M, Bertrand G. 1 H-1,2,3-Triazol-5-ylidenes as Catalytic Organic Single-Electron Reductants. J Am Chem Soc 2024; 146:2933-2938. [PMID: 38253007 DOI: 10.1021/jacs.3c14360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Most of the known single-electron reductants are either metal based reagents, used in a stoichiometric amount, or a combination of an organic species and a photocatalyst. Here we report that 1H-1,2,3-triazol-5-ylidenes act not only as stoichiometric one-electron donors but also as catalytic organic reducing agents, without the need of a photocatalyst. As a proof of concept, we studied the reduction of quinones, which are well-known electron conveyors that are involved in various biological and industrial processes. This work also provides experimental evidence for the formation of a bis(triazolium)carbonate adduct, which acts as the resting state of the catalytic cycle and as the carbene reservoir.
Collapse
Affiliation(s)
- Mehdi Abdellaoui
- UCSD-CNRS Joint Research Laboratory (IRL3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Kai Oppel
- UCSD-CNRS Joint Research Laboratory (IRL3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Adam Vianna
- UCSD-CNRS Joint Research Laboratory (IRL3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Michele Soleilhavoup
- UCSD-CNRS Joint Research Laboratory (IRL3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing,100872, China
| | - Mohand Melaimi
- UCSD-CNRS Joint Research Laboratory (IRL3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (IRL3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
17
|
Xu Y, Chen H, Yu L, Peng X, Zhang J, Xing Z, Bao Y, Liu A, Zhao Y, Tian C, Liang Y, Huang X. A light-driven enzymatic enantioselective radical acylation. Nature 2024; 625:74-78. [PMID: 38110574 DOI: 10.1038/s41586-023-06822-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Enzymes are recognized as exceptional catalysts for achieving high stereoselectivities1-3, but their ability to control the reactivity and stereoinduction of free radicals lags behind that of chemical catalysts4. Thiamine diphosphate (ThDP)-dependent enzymes5 are well-characterized systems that inspired the development of N-heterocyclic carbenes (NHCs)6-8 but have not yet been proved viable in asymmetric radical transformations. There is a lack of a biocompatible and general radical-generation mechanism, as nature prefers to avoid radicals that may be harmful to biological systems9. Here we repurpose a ThDP-dependent lyase as a stereoselective radical acyl transferase (RAT) through protein engineering and combination with organophotoredox catalysis10. Enzyme-bound ThDP-derived ketyl radicals are selectively generated through single-electron oxidation by a photoexcited organic dye and then cross-coupled with prochiral alkyl radicals with high enantioselectivity. Diverse chiral ketones are prepared from aldehydes and redox-active esters (35 examples, up to 97% enantiomeric excess (e.e.)) by this method. Mechanistic studies reveal that this previously elusive dual-enzyme catalysis/photocatalysis directs radicals with the unique ThDP cofactor and evolvable active site. This work not only expands the repertoire of biocatalysis but also provides a unique strategy for controlling radicals with enzymes, complementing existing chemical tools.
Collapse
Affiliation(s)
- Yuanyuan Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongwei Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Lu Yu
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Xichao Peng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jiawei Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhongqiu Xing
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yuyan Bao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Aokun Liu
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Changlin Tian
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China.
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, China.
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China.
| | - Xiaoqiang Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
18
|
Shu H, Mo JN, Liu WD, Zhao J. Synthesis of Pyrroloindolines via N-Heterocyclic Carbene Catalyzed Dearomative Amidoacylation of Indole Derivatives. Org Lett 2023. [PMID: 37996081 DOI: 10.1021/acs.orglett.3c03588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Pyrroloindoline is a privileged heterocyclic motif that is widely present in many natural products and pharmaceutical compounds. Herein, we report an amidyl radical-mediated dearomatization for synthesizing a series of pyrroloindolines via N-heterocyclic carbene catalysis. In this organocatalytic process, the Breslow enolate served as both a single electron donor and an acyl radical equivalent to assemble C3a-acyl pyrroloindolines with a broad substrate scope. Sequential reduction of the indole derivatives provided the analogues of (±)-desoxyeseroline, which exhibited potential anticancer activity.
Collapse
Affiliation(s)
- Hanyu Shu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wen-Deng Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Liang F, Chen N, Cheng K, Wang Q. N-Heterocyclic Carbene and Manganese Synergistic Catalysis: A Three-Component Radical Acylmonofluoroalkylation of Alkenes. Org Lett 2023; 25:8168-8172. [PMID: 37922199 DOI: 10.1021/acs.orglett.3c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Despite the importance of monofluoroalkyl groups in pharmaceutically relevant molecules, catalytic protocols for their incorporation into alkenes remain limited. We describe herein a three-component acylmonofluoroalkylation of alkenes for the introduction of such moieties through an unprecedented cooperativity between the N-heterocyclic carbene catalyst and earth-abundant Mn(II) complex. This general method can be applied to a variety of alkenes, including styrenes, 1,3-enynes, and allenes, as well as complex substrates containing natural product and drug motifs.
Collapse
Affiliation(s)
- Feng Liang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China
| | - Ning Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China
| | - Keguang Cheng
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China
| | - Quande Wang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China
| |
Collapse
|
20
|
Li QZ, Zeng R, Xu PS, Jin XH, Xie C, Yang QC, Zhang X, Li JL. Direct Acylation of Unactivated Alkyl Halides with Aldehydes through N-Heterocyclic Carbene Organocatalysis. Angew Chem Int Ed Engl 2023; 62:e202309572. [PMID: 37581950 DOI: 10.1002/anie.202309572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Catalytic acylation of organohalides with aldehydes is an ideal strategy for the direct synthesis of ketones. However, the utilization of unactivated alkyl halides in such a transformation remains a formidable challenge. In this study, we developed a cross-coupling reaction of aldehydes with unactivated alkyl halides through N-heterocyclic carbene catalysis. With this protocol, various ketones could be rapidly synthesized from readily available starting materials under mild conditions. This organocatalytic system was successfully applied in the late-stage functionalization of pharmaceutical derivatives. Mechanistic investigations suggest a closed-shell nucleophilic substitution mechanism for this reaction.
Collapse
Affiliation(s)
- Qing-Zhu Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Rong Zeng
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Peng-Shuai Xu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Xin-Hang Jin
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Chuan Xie
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Qi-Chun Yang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Xiang Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Jun-Long Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
21
|
Xu H, Zheng W, Liu WD, Zhou Y, Lin L, Zhao J. Silylacylation of Alkenes through N-Heterocyclic Carbene Catalysis. Org Lett 2023. [PMID: 37486251 DOI: 10.1021/acs.orglett.3c01840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The construction of silicon-containing molecules has received increasing attention in recent years. Herein, we report the generation of silyl radicals through NHC catalysis under mild reaction conditions. This methodology offers a novel and convenient route to a diverse range of β-silyl ketones with a broad substrate scope and good functional group compatibility. Both the radical clock and electrochemical studies are consistent with the hypothesis of ground-state SET, and a plausible mechanism for the organocatalytic transformation is proposed.
Collapse
Affiliation(s)
- Huiwei Xu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wanyao Zheng
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wen-Deng Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Luqing Lin
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
22
|
Rourke MJ, Wang CT, Schull CR, Scheidt KA. Acyl Azolium-Photoredox-Enabled Synthesis of β-Keto Sulfides. ACS Catal 2023; 13:7987-7994. [PMID: 37969469 PMCID: PMC10651059 DOI: 10.1021/acscatal.3c01558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
α-Heteroatom functionalization is a key strategy for C-C bond formation in organic synthesis, as exemplified by the addition of a nucleophile to electrophilic functional groups, such as iminium ions; oxocarbenium ions; and their sulfur analogues, sulfenium ions. We envisioned a photoredox-enabled radical Pummerer-type reaction realized through the single-electron oxidation of a sulfide. Following this oxidative event, α-deprotonation would afford α-thio radicals that participate in radical-radical coupling reactions with azolium-bound ketyl radicals, thereby accessing a commonly proposed mechanistic intermediate of the radical-radical coupling en route to functionalized additive Pummerer products. This system provides a complementary synthetic approach to highly functionalized sulfurous products, including modification of methionine residues in peptides, and beckons further exploration in C-C bond formations previously limited in the standard two-electron process.
Collapse
Affiliation(s)
- Michael J Rourke
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charles T Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Cullen R Schull
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Delfau L, Assani N, Nichilo S, Pecaut J, Philouze C, Broggi J, Martin D, Tomás-Mendivil E. On the Redox Properties of the Dimers of Thiazol-2-ylidenes That Are Relevant for Radical Catalysis. ACS ORGANIC & INORGANIC AU 2023; 3:136-142. [PMID: 37303499 PMCID: PMC10251502 DOI: 10.1021/acsorginorgau.3c00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/13/2023]
Abstract
We report the isolation and study of dimers stemming from popular thiazol-2-ylidene organocatalysts. The model featuring 2,6-di(isopropyl)phenyl (Dipp) N-substituents was found to be a stronger reducing agent (Eox = -0.8 V vs SCE) than bis(thiazol-2-ylidenes) previously studied in the literature. In addition, a remarkable potential gap between the first and second oxidation of the dimer also allows for the isolation of the corresponding air-persistent radical cation. The latter is an unexpected efficient promoter of the radical transformation of α-bromoamides into oxindoles.
Collapse
Affiliation(s)
| | - Nadhrata Assani
- Aix
Marseille Univ., CNRS, Institut de Chimie Radicalaire - UMR 7273,
Faculté de Pharmacie, 13005 Marseille, France
| | | | - Jacques Pecaut
- Univ.
Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819 38000 Grenoble, France
| | | | - Julie Broggi
- Aix
Marseille Univ., CNRS, Institut de Chimie Radicalaire - UMR 7273,
Faculté de Pharmacie, 13005 Marseille, France
| | - David Martin
- Univ.
Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | |
Collapse
|
24
|
Li S, Wang S, Feng H, Tang F, Yang W, Li XX, Zhang Q, Fan S, Feng YS. Visible-Light-Mediated NHC and Tertiary Amine Catalysis Enabling α-H Acylation of Alkenes. Org Lett 2023; 25:3369-3374. [PMID: 37144912 DOI: 10.1021/acs.orglett.3c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An intermolecular direct α-C-H acylation of alkenes was revealed by the visible-light-mediated N-heterocyclic carbene and quinuclidine catalysis. This convenient protocol provides a facile synthesis toward novel natural products and drug derivatives of α-substituted vinyl ketones. Mechanistic investigations indicated that the transformation proceeded via sequential radical addition, radical coupling, and an elimination process.
Collapse
Affiliation(s)
- Shihao Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
| | - Sheng Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
| | - Huiyi Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
| | - Fei Tang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
| | - Wenqing Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
| | - Xiao-Xuan Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Shilu Fan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| |
Collapse
|
25
|
Xu H, Mo JN, Liu WD, Zhao J. N-Heterocyclic Carbene-Catalyzed Remote C(sp3)−H Acylation of Amides. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Yang HB, Jin XF, Jiang HY, Luo W. Construction of C(CO)-C(CO) Bond via NHC-Catalyzed Radical Cross-Coupling Reaction. Org Lett 2023; 25:1829-1833. [PMID: 36897255 DOI: 10.1021/acs.orglett.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
A C(sp2)-C(sp2) bond can be constructed via a photoredox/N-heterocyclic carbene (NHC)-cocatalyzed radical cross-coupling reaction, which provides a complementary strategy to classic electron pair processes. The present protocol represents the first example of an NHC-catalyzed two-component radical cross-coupling reaction involving C(sp2)-centered radical species. The decarboxylative acylation of oxamic acid with acyl fluoride was conducted under mild conditions and allowed the preparation of a variety of useful α-keto amides, including sterically congested ones.
Collapse
Affiliation(s)
- Hai-Bin Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Fang Jin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Hui-Ying Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenwei Luo
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
27
|
Man Y, Zeng X, Xu B. Synthesis of Thioesters from Aldehydes via N-Heterocyclic Carbene (NHC) Catalyzed Radical Relay. Chemistry 2023; 29:e202203716. [PMID: 36583288 DOI: 10.1002/chem.202203716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
We have developed an efficient N-heterocyclic carbene (NHC)-catalyzed thioesterification of aldehydes using N-thiosuccinimides as the thiolation reagent. This organocatalyzed transition involves the generation of sulfur radicals by single electron transfer of the Breslow enolate (generated from aldehyde and NHC catalyst) with N-thiosuccinimides. This method offers facile access to various highly functionalized thioesters and exhibits good chemical yields and functional group tolerance.
Collapse
Affiliation(s)
- Yunquan Man
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, 201620, Shanghai, China
| | - Xiaojun Zeng
- School of Chemistry and chemical Engineering, Nanchang University, 330031, Nanchang, Jiangxi, China
| | - Bo Xu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, 201620, Shanghai, China
| |
Collapse
|
28
|
Mulks FF, Melaimi M, Yan X, Baik MH, Bertrand G. How To Enhance the Efficiency of Breslow Intermediates for SET Catalysis. J Org Chem 2023; 88:2535-2542. [PMID: 36719963 DOI: 10.1021/acs.joc.2c02978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidative carbene organocatalysis, which proceeds via single electron transfer (SET) pathways, has been limited by the moderately reducing properties of deprotonated Breslow intermediates BI-s derived from thiazol-2-ylidene 1 and 1,2,4-triazolylidene 2. Using computational methods, we assess the redox potentials of BI-s based on ten different types of known stable carbenes and report our findings concerning the key parameters influencing the steps of the catalytic cycle. From the calculated values of the first oxidation potential of BI-s derived from carbenes 1 to 10, it appears that, apart from the diamidocarbene 7, all the others are more reducing than thiazol-2-ylidene 1 and the 1,2,4-triazolylidene 2. We observed that while the reducing power of BI-s significantly decreases with increasing solvent polarity, the redox potential of the oxidant can increase at a greater rate, thus facilitating the reaction. The cation, associated with the base, also plays an important role when a nonpolar solvent is used; large and weakly coordinating cations such as Cs+ are beneficial. The radical-radical coupling step is probably the most challenging step due to both electronic and steric constraints. Based on our results, we predict that mesoionic carbene 3 and abnormal NHC 4 are the most promising candidates for oxidative carbene organocatalysis.
Collapse
Affiliation(s)
- Florian F Mulks
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,UCSD-CNRS Joint Research Chemistry Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Mohand Melaimi
- UCSD-CNRS Joint Research Chemistry Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Guy Bertrand
- UCSD-CNRS Joint Research Chemistry Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
29
|
Dong YX, Zhang CL, Gao ZH, Ye S. Iminoacylation of Alkenes via Photoredox N-Heterocyclic Carbene Catalysis. Org Lett 2023; 25:855-860. [PMID: 36700625 DOI: 10.1021/acs.orglett.3c00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The iminoacylation of alkenes via photoredox N-heterocyclic carbene catalysis is developed with the employment of alkene-tethered α-imino-oxy acids and acyl imidazoles. The corresponding substituted 3,4-dihydro-2H-pyrroles were afforded in moderate to good yields with good to high diastereoselectivities in most cases. The reaction involves the 5-exo-trig radical cyclization of an alkene-tethered iminyl radical and the following coupling with a ketyl radical from acyl imidazole under NHC catalysis.
Collapse
Affiliation(s)
- Yi-Xiong Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhong-Hua Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Peltier JL, Serrato MR, Thery V, Pecaut J, Tomás-Mendivil E, Bertrand G, Jazzar R, Martin D. An air-stable radical with a redox-chameleonic amide. Chem Commun (Camb) 2023; 59:595-598. [PMID: 36524847 DOI: 10.1039/d2cc05404c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An air-stable (amino)(amido)radical was synthesized by reacting a cyclic (alkyl)(amino)carbene with carbazoyl chloride, followed by one-electron reduction. We show that an adjacent radical center weakens the amide bond. It enables the amino group to act as a strong acceptor under steric contraint, thus enhancing the stabilizing capto-dative effect.
Collapse
Affiliation(s)
- Jesse L Peltier
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Melinda R Serrato
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Valentin Thery
- University Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.
| | - Jacques Pecaut
- University Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819, Grenoble 38000, France
| | | | - Guy Bertrand
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - David Martin
- University Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.
| |
Collapse
|
31
|
Wang L, Sun J, Xia J, Ma R, Zheng G, Zhang Q. Visible light-mediated NHC and photoredox co-catalyzed 1,2-sulfonylacylation of allenes via acyl and allyl radical cross-coupling. Org Chem Front 2023. [DOI: 10.1039/d2qo01993k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Visible light-mediated NHC and photoredox co-catalyzed radical 1,2-sulfonylacylation of allenes via cross-coupling between an allyl radical and an NHC-stabilized acyl radical.
Collapse
Affiliation(s)
- Lihong Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiuli Xia
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Ruiyang Ma
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Guangfan Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
32
|
Liu WD, Lee W, Shu H, Xiao C, Xu H, Chen X, Houk KN, Zhao J. Diastereoselective Radical Aminoacylation of Olefins through N-Heterocyclic Carbene Catalysis. J Am Chem Soc 2022; 144:22767-22777. [PMID: 36423331 DOI: 10.1021/jacs.2c11209] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There have been significant advancements in radical-mediated reactions through covalent-based organocatalysis. Here, we present the generation of iminyl and amidyl radicals via N-heterocyclic carbene (NHC) catalysis, enabling diastereoselective aminoacylation of trisubstituted alkenes. Different from photoredox catalysis, single electron transfer from the deprotonated Breslow intermediate to O-aryl hydroxylamine generates an NHC-bound ketyl radical, which undergoes diastereocontrolled cross-coupling with the prochiral C-centered radical. This operationally simple method provides a straightforward access to a variety of pyrroline and oxazolidinone heterocycles with vicinal stereocenters (77 examples, up to >19:1 d.r.). Electrochemical studies of the acyl thiazolium salts support our reaction design and highlight the reducing ability of Breslow-type derivatives. A detailed computational analysis of this organocatalytic system suggests that radical-radical coupling is the rate-determining step, in which π-π stacking interaction between the radical intermediates subtly controls the diastereoselectivity.
Collapse
Affiliation(s)
- Wen-Deng Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, P. R. China
| | - Woojin Lee
- Department of Chemistry and Biochemistry, University of California, California, Los Angeles90095-1569, United States
| | - Hanyu Shu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, P. R. China
| | - Chuyu Xiao
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, P. R. China
| | - Huiwei Xu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, P. R. China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California, California, Los Angeles90095-1569, United States
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, California, Los Angeles90095-1569, United States
| | - Jiannan Zhao
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, P. R. China
| |
Collapse
|
33
|
Zeng R, Xie C, Xing JD, Dai HY, He MH, Xu PS, Yang QC, Han B, Li JL. Construction of alkenyl-isoquinolinones through NHC-catalyzed remote C(sp3)–H acylation and cascade cyclization of benzamides and enals. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Han YF, Huang Y, Liu H, Gao ZH, Zhang CL, Ye S. Photoredox cooperative N-heterocyclic carbene/palladium-catalysed alkylacylation of alkenes. Nat Commun 2022; 13:5754. [PMID: 36180483 PMCID: PMC9525644 DOI: 10.1038/s41467-022-33444-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/19/2022] [Indexed: 11/15/2022] Open
Abstract
Three-component carboacylation of simple alkenes with readily available reagents is challenging. Transition metal-catalysed intermolecular carboacylation works for alkenes with strained ring or directing groups. Herein, we develop a photoredox cooperative N-heterocyclic carbene/Pd-catalysed alkylacylation of simple alkenes with aldehydes and unactivated alkyl halides to provide ketones in good yields. This multicomponent coupling reaction features a wide scope of alkenes, broad functional group compatibility and free of exogenous photosensitizer or external reductant. In addition, a series of chlorinated cyclopropanes with one or two vicinal quaternary carbons is obtained when chloroform or carbon tetrachloride is used as the alkyl halide. The reaction involves the alkyl radicals from halides and the ketyl radicals from aldehydes under photoredox cooperative N-heterocyclic carbene/Pd catalysis. Three-component carboacylation of simple alkenes often requires directing groups and strained substrates. Here, the authors report a photoredox N-heteroyclic carbene/Pd-catalysed alkylacylation of alkenes with aldehydes and unactivated alkyl halides; exogenous photosensitizer or external reductant are not required.
Collapse
Affiliation(s)
- You-Feng Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hao Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhong-Hua Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
35
|
Affiliation(s)
- Kun Liu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Max Schwenzer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
36
|
Electrochemically promoted N-heterocyclic carbene polymer-catalyzed cycloaddition of aldehyde with isocyanide acetate. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Théry V, Molton F, Sirach S, Tillet N, Pécaut J, Tomás-Mendivil E, Martin D. The curious case of a sterically crowded Stenhouse salt. Chem Sci 2022; 13:9755-9760. [PMID: 36091895 PMCID: PMC9400627 DOI: 10.1039/d2sc01895k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
We report a peculiar Stenhouse salt. It does not evolve into cyclopentenones upon basification, due to the steric hindrance of its bulky stable carbene patterns. This allowed for the observation and characterization of the transient open-chain neutral derivative, which was isolated as its cyclized form. The latter features an unusually long reactive C-O bond (150 pm) and a rich electrochemistry, including oxidation into an air-persistent radical cation.
Collapse
Affiliation(s)
| | | | - Selim Sirach
- Univ. Grenoble Alpes, CNRS, DCM Grenoble 38000 France
| | - Neven Tillet
- Univ. Grenoble Alpes, CNRS, DCM Grenoble 38000 France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819 Grenoble 38000 France
| | | | - David Martin
- Univ. Grenoble Alpes, CNRS, DCM Grenoble 38000 France
| |
Collapse
|
38
|
Döben N, Reimler J, Studer A. Cooperative NHC/Photoredox Catalysis: Three Component Radical Coupling of Aroyl Fluorides, Styrenes and Alcohols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Zhou P, Li W, Lan J, Zhu T. Electroredox carbene organocatalysis with iodide as promoter. Nat Commun 2022; 13:3827. [PMID: 35780238 PMCID: PMC9250514 DOI: 10.1038/s41467-022-31453-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Oxidative carbene organocatalysis, inspired from Vitamin B1 catalyzed oxidative activation from pyruvate to acetyl coenzyme A, have been developed as a versatile synthetic method. To date, the α-, β-, γ-, δ- and carbonyl carbons of (unsaturated)aldehydes have been successfully activated via oxidative N-heterocyclic carbene (NHC) organocatalysis. In comparison with chemical redox or photoredox methods, electroredox methods, although widely used in mechanistic study, were much less developed in NHC catalyzed organic synthesis. Herein, an iodide promoted electroredox NHC organocatalysis system was developed. This system provided general solutions for electrochemical single-electron-transfer (SET) oxidation of Breslow intermediate towards versatile transformations. Radical clock experiment and cyclic voltammetry results suggested an anodic radical coupling pathway.
Collapse
Affiliation(s)
- Peng Zhou
- School of chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenchang Li
- School of chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jianyong Lan
- School of chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tingshun Zhu
- School of chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
40
|
Takemura N, Sumida Y, Ohmiya H. Organic Photoredox-Catalyzed Silyl Radical Generation from Silylboronate. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Naho Takemura
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuto Sumida
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
41
|
Yang HB, Wan DH. Research Progress on N-Heterocyclic Carbene Catalyzed Reactions for Synthesizing Ketones through Radical Mechanism. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1822-4690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractNHC-catalyzed radical cross-coupling reactions have been recently developed; they provide an efficient method to access ketones from aldehydes or carboxylic acid derivatives with sp3-hybridized carbon radical precursors. This reaction has indirectly solved the limitations in the scope of coupling partners in NHC umpolung catalyzed reactions of aldehydes. In this short review, we present some recent advances in NHC-catalyzed radical reactions, with a focus on the construction of the C–C(CO) bond.1 Introduction2 Oxidative Generation of NHC-Derived Ketyl Radical2.1 NHPI Redox-Active Esters2.2 Katritzky Pyridinium Salts2.3 Alkyl Halides2.4 Aryl Halides2.5 Compounds Containing N–O Bond2.6 Diazo Esters2.7 Others3 Reductive Generation of NHC-Derived Ketyl Radical3.1 Hantzsch Esters3.2 Sulfinates3.3 Electron-Rich Arenes3.4 Amines3.5 Organoborane Reagents4 Conclusion
Collapse
|
42
|
Machín Rivera R, Burton NR, Call LD, Tomat MA, Lindsay VNG. Synthesis of Highly Congested Tertiary Alcohols via the [3,3] Radical Deconstruction of Breslow Intermediates. Org Lett 2022; 24:4275-4280. [PMID: 35657720 DOI: 10.1021/acs.orglett.2c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pericyclic processes such as [3,3]-sigmatropic rearrangements leading to the rapid generation of molecular complexity constitute highly valuable tools in organic synthesis. Herein, we report the formation of particularly hindered tertiary alcohols via rearrangement of Breslow intermediates formed in situ from readily available N-allyl thiazolium salts and benzaldehyde derivatives. Experimental mechanistic studies performed suggest that the reaction proceeds via a close radical pair which recombine in a regio- and diastereoselective manner, formally leading to [3,3]-rearranged products.
Collapse
Affiliation(s)
- Roger Machín Rivera
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Nikolas R Burton
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Luke D Call
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Marshall A Tomat
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Vincent N G Lindsay
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
43
|
Ren SC, Yang X, Mondal B, Mou C, Tian W, Jin Z, Chi YR. Carbene and photocatalyst-catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles to form ketones. Nat Commun 2022; 13:2846. [PMID: 35606378 PMCID: PMC9126905 DOI: 10.1038/s41467-022-30583-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
The carbene and photocatalyst co-catalyzed radical coupling of acyl electrophile and a radical precursor is emerging as attractive method for ketone synthesis. However, previous reports mainly limited to prefunctionalized radical precursors and two-component coupling. Herein, an N-heterocyclic carbene and photocatalyst catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles is disclosed, in which the carboxylic acids are directly used as radical precursors. The acyl imidazoles could also be generated in situ by reaction of a carboxylic acid with CDI thus furnishing a formally decarboxylative coupling of two carboxylic acids. In addition, the reaction is successfully extended to three-component coupling by using alkene as a third coupling partner via a radical relay process. The mild conditions, operational simplicity, and use of carboxylic acids as the reacting partners make our method a powerful strategy for construction of complex ketones from readily available starting materials, and late-stage modification of natural products and medicines. The combination of carbene- and photocatalysis has enabled unorthodox routes to ketone syntheses, but usually requires engineered or activated substrates. Herein the authors present a carbene- and photocatalytic decarboxylative radical coupling of carboxylic acids and acyl imidazoles, in which the carboxylic acids are directly used as radical precursors.
Collapse
Affiliation(s)
- Shi-Chao Ren
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bivas Mondal
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Chengli Mou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Weiyi Tian
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China. .,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
44
|
Li QZ, Zeng R, Fan Y, Liu YQ, Qi T, Zhang X, Li JL. Remote C(sp 3 )-H Acylation of Amides and Cascade Cyclization via N-Heterocyclic Carbene Organocatalysis. Angew Chem Int Ed Engl 2022; 61:e202116629. [PMID: 35112461 DOI: 10.1002/anie.202116629] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/08/2022]
Abstract
The direct functionalization of inert C(sp3 )-H bonds under environmentally benign catalytic conditions remains a challenging task in synthetic chemistry. Here, we report an organocatalytic remote C(sp3 )-H acylation of amides and cascade cyclization through a radical-mediated 1,5-hydrogen atom transfer mechanism using N-heterocyclic carbene as the catalyst. Notably, a diversity of nitrogen-containing substrates, including simple linear aliphatic carbamates and ortho-alkyl benzamides, can be successfully applied to this organocatalytic system. With the established protocol, over 120 examples of functionalized δ-amino ketones and isoquinolinones with diverse substituents were easily synthesized in up to 99 % yield under mild conditions. The robustness and generality of the organocatalytic strategy were further highlighted by the successful acylation of unactivated C(sp3 )-H bonds and late-stage modification of pharmaceutical molecules. Then, the asymmetric control of the radical reaction was attempted and proven feasible by using a newly designed chiral thiazolium catalyst, and moderate enantioselectivity was obtained at the current stage. Preliminary mechanistic investigations including several control reactions, KIE experiments, and computational studies shed light on the organocatalytic radical reaction mechanism.
Collapse
Affiliation(s)
- Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yang Fan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yan-Qing Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.,College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
45
|
Choi H, Mathi GR, Hong S, Hong S. Enantioselective functionalization at the C4 position of pyridinium salts through NHC catalysis. Nat Commun 2022; 13:1776. [PMID: 35365667 PMCID: PMC8975994 DOI: 10.1038/s41467-022-29462-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
A catalytic method for the enantioselective and C4-selective functionalization of pyridine derivatives is yet to be developed. Herein, we report an efficient method for the asymmetric β-pyridylations of enals that involve N-heterocyclic carbene (NHC) catalysis with excellent control over enantioselectivity and pyridyl C4-selectivity. The key strategy for precise stereocontrol involves enhancing interactions between the chiral NHC-bound homoenolate and pyridinium salt in the presence of hexafluorobenzene, which effectively differentiates the two faces of the homoenolate radical. Room temperature is sufficient for this transformation, and reaction efficiency is further accelerated by photo-mediation. This methodology exhibits broad functional group tolerance and enables facile access to a diverse range of enantioenriched β-pyridyl carbonyl compounds under mild and metal-free conditions.
Collapse
Affiliation(s)
- Hangyeol Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Gangadhar Rao Mathi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seonghyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
46
|
Li Q, Zeng R, Fan Y, Liu Y, Qi T, Zhang X, Li J. Remote C(sp
3
)−H Acylation of Amides and Cascade Cyclization via N‐Heterocyclic Carbene Organocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qing‐Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Yang Fan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Yan‐Qing Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
- College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Jun‐Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| |
Collapse
|
47
|
Abstract
Inspired by the role of N-heterocyclic carbenes (NHCs) in natural enzymatic processes, chemists have harnessed the umpolung (polarity reversal) reactivity of these reactive, Lewis basic species over the past few decades to construct key chemical bonds. While NHCs continue to play a role in two-electron transformations, their unique redox properties enable a variety of useful, stabilized radical species to be accessed via single-electron oxidation or reduction. As a result, their utility in synthesis has grown rapidly concurrent with the revival of radical chemistry, highlighted by their extensive use as reactive single-electron species in recent years.
Collapse
|
48
|
Wang P, Fitzpatrick KP, Scheidt KA. Combined Photoredox and Carbene Catalysis for the Synthesis of γ-Aryloxy Ketones. Adv Synth Catal 2022; 364:518-524. [PMID: 35431717 PMCID: PMC9012476 DOI: 10.1002/adsc.202101354] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 02/03/2023]
Abstract
N-heterocyclic carbenes (NHCs) have emerged as catalysts for the construction of C-C bonds in the synthesis of substituted ketones under single-electron processes. Despite these recent reports, there still remains a need to increase the utility and practicality of these reactions by exploring new radical coupling partners. Herein, we report the synthesis of γ-aryloxyketones via combined NHC/photoredox catalysis. In this reaction, an α-aryloxymethyl radical is generated via oxidation of an aryloxymethyl potassium trifluoroborate salt, which is then added into styrene derivatives to provide a stabilized benzylic radical. Subsequent radical-radical coupling reaction with an azolium radical affords the γ-aryloxy ketone products.
Collapse
Affiliation(s)
- Pengzhi Wang
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, Silverman Hall, Evanston, Illinois 60208
| | - Keegan P Fitzpatrick
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, Silverman Hall, Evanston, Illinois 60208
| | - Karl A Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, Silverman Hall, Evanston, Illinois 60208
| |
Collapse
|
49
|
Jin S, Sui X, Haug GC, Nguyen VD, Dang HT, Arman HD, Larionov OV. N-Heterocyclic Carbene-Photocatalyzed Tricomponent Regioselective 1,2-Diacylation of Alkenes Illuminates the Mechanistic Details of the Electron Donor–Acceptor Complex-Mediated Radical Relay Processes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shengfei Jin
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Xianwei Sui
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Graham C. Haug
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Viet D. Nguyen
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hang T. Dang
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg V. Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|