1
|
Lu W, Lou S, Yang B, Guo Z, Tian Z. Light-activated oxidative capacity of isoquinoline alkaloids for universal, homogeneous, reliable, colorimetric assays with DNA aptamers. Talanta 2024; 279:126667. [PMID: 39111217 DOI: 10.1016/j.talanta.2024.126667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024]
Abstract
Aptamers are good affinity receptors for bio-assays, while colorimetric method is suitable for point-of-care sensing via direct visualization. But previously aptamers often need complex re-engineering for colorimetric measurement at the cost of affinity and performance. Here isoquinoline alkaloids are found to own unique light-activated oxidative capacity, which can be specifically triggered by unmodified aptamers. This feature is universal for two alkaloids to efficiently oxidize four chromogenic substrates with obvious color changes. Based on a dye-displacement process, we have developed a novel light-activated aptamer system for the colorimetric assay of estradiol. It shows a good sensitivity with a detection limit of 326 nM, and this homogeneous assay is reliable to avoid artifacts in previous heterogeneous scheme. Besides, it is proven to be a universal design to assay other two targets. Significantly, they do not employ any aptamers re-engineering but only simply use their parental aptamers. Therefore, this light-activated oxidative capacity of isoquinoline alkaloid can serve as an ideal tool for colorimetric assay of various targets based on aptamer's specific recognition.
Collapse
Affiliation(s)
- Weiyi Lu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 410005, PR China
| | - Shuyan Lou
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 410005, PR China
| | - Bin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 410005, PR China.
| | - Zihua Guo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 410005, PR China
| | - Zhen Tian
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 410005, PR China
| |
Collapse
|
2
|
Borg KN, Jaffiol R, Ho YP, Zeng S. Enhanced biosensing of tumor necrosis factor-alpha based on aptamer-functionalized surface plasmon resonance substrate and Goos-Hänchen shift. Analyst 2024; 149:3017-3025. [PMID: 38606503 DOI: 10.1039/d4an00194j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Tumor necrosis factor-alpha (TNF-α) serves as a crucial biomarker in various diseases, necessitating sensitive detection methodologies. This study introduces an innovative approach utilizing an aptamer-functionalized surface plasmon resonance (SPR) substrate together with an ultrasensitive measure, the Goos-Hänchen (GH) shift, to achieve sensitive detection of TNF-α. The developed GH-aptasensing platform has shown a commendable figure-of-merit of 1.5 × 104 μm per RIU, showcasing a maximum detectable lateral position shift of 184.7 ± 1.2 μm, as characterized by the glycerol measurement. Employing aptamers as the recognition unit, the system exhibits remarkable biomolecule detection capabilities, including the experimentally obtained detection limit of 1 aM for the model protein bovine serum albumin (BSA), spanning wide dynamic ranges. Furthermore, the system successfully detects TNF-α, a small cytokine, with an experimental detection limit of 1 fM, comparable to conventional SPR immunoassays. This achievement represents one of the lowest experimentally derived detection limits for cytokines in aptamer-based SPR sensing. Additionally, the application of the GH shift marks a ground breaking advancement in aptamer-based biosensing, holding significant promise for pushing detection limits further, especially for small cytokine targets.
Collapse
Affiliation(s)
- Kathrine Nygaard Borg
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-UMR 7076, University of Technology of Troyes, 10000, Troyes, France.
| | - Rodolphe Jaffiol
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-UMR 7076, University of Technology of Troyes, 10000, Troyes, France.
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Centre for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-UMR 7076, University of Technology of Troyes, 10000, Troyes, France.
| |
Collapse
|
3
|
Wei Y, Yang L, Ye Y, Liao L, Dai H, Wei Z, Lin Y, Zheng C. A simple aptamer-dye fluorescence sensor for detecting Δ9-tetrahydrocannabinol and its metabolite in urban sewage. Chem Commun (Camb) 2024; 60:5205-5208. [PMID: 38652014 DOI: 10.1039/d4cc00824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This work developed an aptamer-dye complex as a label-free ratiometric fluorescence sensor for rapid analysis of THC and its metabolite in sewage samples. Integrated with a portable fluorescence capture device, this sensor exhibited excellent sensitivity with visualization of as low as 0.6 μM THC via naked-eye observation, and THC analysis can be accomplished within 4 min, which would be a complementary tool for quantifying THC in sewage samples to estimate cannabis consumption.
Collapse
Affiliation(s)
- Yingnan Wei
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Lin Yang
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yi Ye
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Linchuan Liao
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hao Dai
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zeliang Wei
- Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yao Lin
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
4
|
Dong M, Jiang D, Wang W, Shiigi H, Chen X, Chen Z. A dual-mode biosensor based on silica inverse opal photonic crystals modulated electrochemiluminescence and dye displacement colorimetry for the sensitive detection of synthetic cathinone in water environment. CHEMOSPHERE 2024; 354:141671. [PMID: 38479682 DOI: 10.1016/j.chemosphere.2024.141671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
To address the challenges posed by signal capacity limitations and the reliance of sensing methods on single analytical information, this study developed an electrochemiluminescence (ECL) and colorimetric dual-mode sensing platform for the precise detection of 4-chloroethcathinone (4-CEC) in water environments. Firstly, the accurate alignment of the reflection wavelength of appropriately sized silica inverse opal photonic crystals (SIOPCs) with the ECL emission wavelength of luminescent metal-organic frameworks (PCN-224) has been achieved via diameter modulation. This innovative design, which cleverly utilized the band-edge effect, improved the luminous intensity of the ECL sensor, leading to a significant boost in analytical performance. Secondly, the establishment of a colorimetric detection method for confirming the presence of 4-CEC in samples through visual observation of color changes was achieved by employing an aptamer-based dye displacement reaction, utilizing differential binding affinities between the aptamer and both the sulforhodamine B (SRB) and 4-CEC. Under the optimal experimental conditions, the dual-mode sensor demonstrated ECL detection of limits (LOD) of 2.6 × 10-13 g/L and colorimetric LOD of 6.5 ng/L for 4-CEC. These findings highlighted the tremendous potential of developing streamlined and efficient dual-signal readout platforms using ECL aptamer sensors for the precise determination of other Synthetic cathinones (SCs) in water environments.
Collapse
Affiliation(s)
- Meihua Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University, Changzhou 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University, Changzhou 213164, China; Analysis and Testing Center, NERC Biomass of Changzhou University, China
| | - Hiroshi Shiigi
- Osaka Metropolitan University, Department of Applied Chemistry, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Canoura J, Alkhamis O, Venzke M, Ly PT, Xiao Y. Developing Aptamer-Based Colorimetric Opioid Tests. JACS AU 2024; 4:1059-1072. [PMID: 38559723 PMCID: PMC10976566 DOI: 10.1021/jacsau.3c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Opioids collectively cause over 80,000 deaths in the United States annually. The ability to rapidly identify these compounds in seized drug samples on-site will be essential for curtailing trafficking and distribution. Chemical reagent-based tests are fast and simple but also notorious for giving false results due to poor specificity, whereas portable Raman spectrometers have excellent selectivity but often face interference challenges with impure drug samples. In this work, we develop on-site sensors for morphine and structurally related opioid compounds based on in vitro-selected oligonucleotide affinity reagents known as aptamers. We employ a parallel-and-serial selection strategy to isolate aptamers that recognize heroin, morphine, codeine, hydrocodone, and hydromorphone, along with a toggle-selection approach to isolate aptamers that bind oxycodone and oxymorphone. We then utilize a new high-throughput sequencing-based approach to examine aptamer growth patterns over the course of selection and a high-throughput exonuclease-based screening assay to identify optimal aptamer candidates. Finally, we use two high-performance aptamers with KD of ∼1 μM to develop colorimetric dye-displacement assays that can specifically detect opioids like heroin and oxycodone at concentrations as low as 0.5 μM with a linear range of 0-16 μM. Importantly, our assays can detect opioids in complex chemical matrices, including pharmaceutical tablets and drug mixtures; in contrast, the conventional Marquis test completely fails in this context. These aptamer-based colorimetric assays enable the naked-eye identification of specific opioids within seconds and will play an important role in combatting opioid abuse.
Collapse
Affiliation(s)
- Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Matthew Venzke
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Phuong T. Ly
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Chen Z, Sun Q, Yang Y, Nie X, Xiang W, Ren Y, Le T. Aptamer-based diagnostic and therapeutic approaches for animal viruses: A review. Int J Biol Macromol 2024; 257:128677. [PMID: 38072350 DOI: 10.1016/j.ijbiomac.2023.128677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
Animal diseases often have significant consequences due to the unclear and time-consuming diagnosis process. Furthermore, the emergence of new viral infections and drug-resistant pathogens has further complicated the diagnosis and treatment of viral diseases. Aptamers, which are obtained through systematic evolution of ligands by exponential enrichment (SELEX) technology, provide a promising solution as they enable specific identification and binding to targets, facilitating pathogen detection and the development of novel therapeutics. This review presented an overview of aptasensors for animal virus detection, discussed the antiviral activity and mechanisms of aptamers, and highlighted advancements in aptamer-based antiviral research following the COVID-19 pandemic. Additionally, the challenges and prospects of aptamer-based virus diagnosis and treatment research were explored. Although this review was not exhaustive, it offered valuable insights into the progress of aptamer-based antiviral drug research, target mechanisms, as well as the development of novel antiviral drugs and biosensors.
Collapse
Affiliation(s)
- Zhuoer Chen
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Ying Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xunqing Nie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Wenyu Xiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yueyang Ren
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
7
|
Li J, Li S, Li Z, Zhou Y, Jin P, Zhang F, Sun Q, Le T, Jirimutu. Chromium hydroxide nanoparticles-based fluorescent aptameric sensing for sensitive patulin detection: The significance of nanocrystal and morphology modulation. Talanta 2023; 257:124296. [PMID: 36758442 DOI: 10.1016/j.talanta.2023.124296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
The widespread of patulin (PAT) and its potential hazards to human health call for alternative rapid assays to monitor it in food and the environment. Herein, we prepared chromium hydroxide [Cr(OH)3] nanoparticles via a one-pot chemical precipitation strategy and used them to fabricate a turn-on fluorescent aptasensor employing a morphological effect for sensitive PAT detection. Three Cr(OH)3 nanoparticle structures were synthesized by changing the solvent, and their structures and physicochemical properties were investigated. Then, we evaluated the effects of morphological structures on the fluorescence quenching-recovery capability of Cr(OH)3 nanoparticles before and after incubation with PAT. We found that the Cr(OH)3-3 nanoparticles efficiently absorbed the fluorescence dye 6-carboxyfluorescein labeled aptamer (FAM-Apt) and quenched the fluorophore through photoinduced electron transfer. Under optimal experimental conditions, the turn-on fluorescent aptasensor for PAT determination displayed two linear ranges (0.01-10 ng/mL and 1-200 ng/mL) with a low detection limit of 7.3 pg/mL. Moreover, the proposed aptasensor had no cross-reactivity with interferents that usually coexist with PAT and can be used to detect PAT in apple juices accurately. The results of the as-fabricated method were not significantly different from the high-performance liquid chromatography. Hence, we demonstrated that different Cr(OH)3 nanoparticles can be prepared by changing reaction conditions, and provided a novel strategy to improve the detection performance of fluorescent aptasensor by changing the morphological structure and crystalline properties of nano-quenchers.
Collapse
Affiliation(s)
- Jianmei Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Shuang Li
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Zhijuan Li
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Yuting Zhou
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Peng Jin
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Fuyan Zhang
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Jirimutu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China; Camel Research Institute of Inner Mongolia, Alashan 737300, China.
| |
Collapse
|
8
|
Canoura J, Liu Y, Perry J, Willis C, Xiao Y. Suite of Aptamer-Based Sensors for the Detection of Fentanyl and Its Analogues. ACS Sens 2023; 8:1901-1911. [PMID: 37095642 DOI: 10.1021/acssensors.2c02463] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Fentanyl and its analogues are potent synthetic opioids that are commonly abused and are currently the number one cause of drug overdose death in the United States. The ability to detect fentanyl with simple, rapid, and low-cost tools is crucial for forensics, medical care, and public safety. Conventional on-site testing options for fentanyl detection─including chemical spot tests, lateral-flow immunoassays, and portable Raman spectrometers─each have their own unique flaws that limit their analytical utility. Here, we have developed a series of new aptamer-based assays and sensors that can detect fentanyl as well as several of its analogues in a reliable, accurate, rapid, and economic manner. These include colorimetric, fluorescent, and electrochemical sensors, which can detect and quantify minute quantities of fentanyl and many of its analogues with no response to other illicit drugs, cutting agents, or adulterants─even in interferent-ridden binary mixtures containing as little as 1% fentanyl. Given the high performance of these novel analytical tools, we foresee the potential for routine use by medical and law enforcement personnel as well as the general public to aid in rapid and accurate fentanyl identification.
Collapse
Affiliation(s)
- Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27607, United States
| | - Yingzhu Liu
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27607, United States
| | - Jacob Perry
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27607, United States
| | - Connor Willis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27607, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27607, United States
| |
Collapse
|
9
|
Huang PJJ, Liu J. Simultaneous Detection of L-Lactate and D-Glucose Using DNA Aptamers in Human Blood Serum. Angew Chem Int Ed Engl 2023; 62:e202212879. [PMID: 36693796 DOI: 10.1002/anie.202212879] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
L-lactate is a key metabolite indicative of physiological states, glycolysis pathways, and various diseases such as sepsis, heart attack, lactate acidosis, and cancer. Detection of lactate has been relying on a few enzymes that need additional oxidants. In this work, DNA aptamers for L-lactate were obtained using a library-immobilization selection method and the highest affinity aptamer reached a Kd of 0.43 mM as determined using isothermal titration calorimetry. The aptamers showed up to 50-fold selectivity for L-lactate over D-lactate and had little responses to other closely related analogs such as pyruvate or 3-hydroxybutyrate. A fluorescent biosensor based on the strand displacement method showed a limit of detection of 0.55 mM L-lactate, and the sensor worked in 90 % serum. Simultaneous detection of L-lactate and D-glucose in the same solution was achieved. This work has broadened the scope of aptamers to simple metabolites and provided a useful probe for continuous and multiplexed monitoring.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
10
|
Chovelon B, Peyrin E, Ragot M, Salem N, Nguyen TG, Auvray B, Henry M, Petrillo MA, Fiore E, Bessy Q, Faure P, Ravelet C. Nile blue as reporter dye in salt aggregation based-colorimetric aptasensors for peptide, small molecule and metal ion detection. Anal Chim Acta 2023; 1243:340840. [PMID: 36697182 DOI: 10.1016/j.aca.2023.340840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Herein, we report a novel approach for the design of a colorimetric aptasensor, relying on a Dye Salt Aggregation-based Colorimetric Oligonucleotide assay (DYSACO assay). This method is based on the use of an intercalating agent, Nile Blue (NB), whose aggregation capacities (and thus modification of its absorption spectrum) are drastically amplified by adding salts to the working solution. The presence of an aptamer could protect NB from such aggregation process due to its intercalation into double-stranded DNA and/or interaction with nucleobases. In response to the addition of the specific ligand, the competition between NB and the target for binding to the aptamer occurs, resulting in an increase in the dye salt aggregation and then in the blue-to-blank color change of the solution. The proof-of-principle was demonstrated by employing the anti-l-tyrosinamide aptamer and the assay was successfully applied to the trace enantiomer detection, allowing the detection of an enantiomeric impurity down to approximately 2% in a non-racemic sample. Through a reversed mechanism based on the increased capture of NB by DNA upon analyte binding, the sensing platform was further demonstrated for the Hg(II) detection. Water samples of different origin were spiked with Hg(II) analyte at final range concentrations comprised between (0.5-15 μM). An excellent overall recovery of 122 ± 14%; 105 ± 14%; 99 ± 9%; was respectively obtained from river, tap and mineral water, suggesting that the sensor can be used under real sample conditions. The assay was also shown to work for sensing the ochratoxin A and d-arginine vasopressin compounds, revealing its simplicity and generalizability potentialities.
Collapse
Affiliation(s)
- Benoît Chovelon
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France; Département de Biochimie, Toxicologie et Pharmacologie, CHU de Grenoble Site Nord - Institut de Biologie et de Pathologie, F-38041, Grenoble, France
| | - Eric Peyrin
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France.
| | - Mailys Ragot
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Nassim Salem
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Truong Giang Nguyen
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Benjamin Auvray
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Mickael Henry
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Mel-Alexandre Petrillo
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Emmanuelle Fiore
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Quentin Bessy
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Patrice Faure
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France; Département de Biochimie, Toxicologie et Pharmacologie, CHU de Grenoble Site Nord - Institut de Biologie et de Pathologie, F-38041, Grenoble, France
| | - Corinne Ravelet
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France.
| |
Collapse
|
11
|
A trimethine cyanine dye for copper (II) detection based on the transformation between monomers and J-aggregates via G-quadruplex regulation. J CHEM SCI 2023. [DOI: 10.1007/s12039-023-02135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
12
|
Wang W, Wu J, Zhao Z, Li Q, Huo B, Sun X, Han D, Liu M, Cai LC, Peng Y, Bai J, Gao Z. Ultrasensitive Automatic Detection of Small Molecules by Membrane Imaging of Single Molecule Assays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54914-54923. [PMID: 36459426 DOI: 10.1021/acsami.2c15373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Determination of trace amounts of targets or even a single molecule target has always been a challenge in the detection field. Digital measurement methods established for single molecule counting of proteins, such as single molecule arrays (Simoa) or dropcast single molecule assays (dSimoa), are not suitable for detecting small molecule, because of the limited category of small molecule antibodies and the weak signal that can be captured. To address this issue, we have developed a strategy for single molecule detection of small molecules, called small molecule detection with single molecule assays (smSimoa). In this strategy, an aptamer is used as a recognition element, and an addressable DNA Nanoflower (DNF) attached on the magnetic beads surface, which exhibit fluorescence imaging, is employed as the output signal. Accompanied by digital imaging and automated counting analysis, E2 at the attomolar level can be measured. The smSimoa breaks the barrier of small molecule detection concentration and provides a basis for high throughput detection of multiple substances with fluorescence encoded magnetic beads.
Collapse
Affiliation(s)
- Weiya Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jin Wu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Zunquan Zhao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Qiaofeng Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Bingyang Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Xuan Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Mingzhu Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Ling Chao Cai
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| |
Collapse
|
13
|
Elaguech MA, Bahri M, Djebbi K, Zhou D, Shi B, Liang L, Komarova N, Kuznetsov A, Tlili C, Wang D. Nanopore-based aptasensor for label-free and sensitive vanillin determination in food samples. Food Chem 2022; 389:133051. [PMID: 35490517 DOI: 10.1016/j.foodchem.2022.133051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
Abstract
Dielectric breakdown technique was utlised to fabricate 5-6 nm nanopores for vanillin detection in various food samples. A highly selective aptamer (Van_74) with high binding affinity towards vanillin was used as capture probe. Under optimal conditions, aptamer/vanillin complex translocation induced deeper events than the bare aptamer. As a result, the proposed nanopore aptasensor exhibits a linear range from 0.5 to 5 nM (R2 = 0.972) and a low detection limit of 500 pM, which is significantly better than conventional platforms. Furthermore, our aptasensor showed excellent immunity against different interferons and was used to detect vanillin in different food samples. The food sample measurements were confirmed with an additional UV-Vis assay, the results of the two techniques were statistically evaluated and showed no statistically significant difference. Hence, this work represents a proof-of-concept involving the design and testing of aptamer/nanopore sensors for small molecules detection, which plays a critical role in food safety.
Collapse
Affiliation(s)
- Mohamed Amin Elaguech
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Mohamed Bahri
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Khouloud Djebbi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Daming Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China
| | - Biao Shi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China
| | | | - Alexander Kuznetsov
- SMC Technological Centre, Moscow 124498, Russia; Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Chaker Tlili
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China.
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| |
Collapse
|
14
|
Jin X, Liu Y, Alkhamis O, Canoura J, Bacon A, Xu R, Fu F, Xiao Y. Near-Infrared Dye-Aptamer Assay for Small Molecule Detection in Complex Specimens. Anal Chem 2022; 94:10082-10090. [PMID: 35797425 DOI: 10.1021/acs.analchem.2c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aptamers are single-stranded oligonucleotides isolated in vitro that bind specific targets with high affinity and are commonly used as receptors in biosensors. Aptamer-based dye-displacement assays are a promising sensing platform because they are label-free, sensitive, simple, and rapid. However, these assays can exhibit impaired sensitivity in biospecimens, which contain numerous interferents that cause unwanted absorbance, scattering, and fluorescence in the UV-vis region. Here, this problem is overcome by utilizing near-infrared (NIR) signatures of the dye 3,3'-diethylthiadicarbocyanine iodide (Cy5). Cy5 initially complexes with aptamers as monomers and dimers; aptamer-target binding displaces the dye into solution, resulting in the formation of J-aggregates that provide a detectable NIR signal. The generality of our assay is demonstrated by detecting three different small-molecule analytes with their respective DNA aptamers at clinically relevant concentrations in serum and urine. These successful demonstrations show the utility of dye-aptamer NIR biosensors for high-throughput detection of analytes in clinical specimens.
Collapse
Affiliation(s)
- Xin Jin
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yingzhu Liu
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh 27607, North Carolina, United States
| | - Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh 27607, North Carolina, United States
| | - Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh 27607, North Carolina, United States
| | - Adara Bacon
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh 27607, North Carolina, United States
| | - Ruyi Xu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Fengfu Fu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh 27607, North Carolina, United States
| |
Collapse
|
15
|
Yap SHK, Pan J, Linh DV, Zhang X, Wang X, Teo WZ, Zamburg E, Tham CK, Yew WS, Poh CL, Thean AVY. Engineered Nucleotide Chemicapacitive Microsensor Array Augmented with Physics-Guided Machine Learning for High-Throughput Screening of Cannabidiol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107659. [PMID: 35521934 DOI: 10.1002/smll.202107659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The recent legalization of cannabidiol (CBD) to treat neurological conditions such as epilepsy has sparked rising interest across global pharmaceuticals and synthetic biology industries to engineer microbes for sustainable synthetic production of medicinal CBD. Since the process involves screening large amounts of samples, the main challenge is often associated with the conventional screening platform that is time consuming, and laborious with high operating costs. Here, a portable, high-throughput Aptamer-based BioSenSing System (ABS3 ) is introduced for label-free, low-cost, fully automated, and highly accurate CBD concentrations' classification in a complex biological environment. The ABS3 comprises an array of interdigitated microelectrode sensors, each functionalized with different engineered aptamers. To further empower the functionality of the ABS3 , unique electrochemical features from each sensor are synergized using physics-guided multidimensional analysis. The capabilities of this ABS3 are demonstrated by achieving excellent CBD concentrations' classification with a high prediction accuracy of 99.98% and a fast testing time of 22 µs per testing sample using the optimized random forest (RF) model. It is foreseen that this approach will be the key to the realistic transformation from fundamental research to system miniaturization for diagnostics of disease biomarkers and drug development in the field of chemical/bioanalytics.
Collapse
Affiliation(s)
- Stephanie Hui Kit Yap
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Dao Viet Linh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Xinghua Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Wei Zhe Teo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Chen-Khong Tham
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Wen Shan Yew
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|