1
|
Moreno-Alcántar G, Drexler M, Casini A. Assembling a new generation of radiopharmaceuticals with supramolecular theranostics. Nat Rev Chem 2024:10.1038/s41570-024-00657-4. [PMID: 39468298 DOI: 10.1038/s41570-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Supramolecular chemistry has been used to tackle some of the major challenges in modern science, including cancer therapy and diagnosis. Supramolecular platforms provide synthetic flexibility, rapid generation through self-assembly, facile labelling, unique topologies, tunable reversibility of the enabling noncovalent interactions, and opportunities for host-guest chemistry and mechanical bonding. In this Review, we summarize recent advances in the design and radiopharmaceutical application of discrete self-assembled coordination complexes and mechanically interlocked molecules - namely, metallacages and rotaxanes, respectively - as well as in situ-forming supramolecular aggregates, specifically pinpointing their potential as next-generation radiotheranostic agents. The outlook of such supramolecular constructs for potential applications in the clinic is discussed.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Marike Drexler
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching bei München, Germany.
| |
Collapse
|
2
|
Chang JP, Zhang YW, Sun LY, Zhang L, Hahn FE, Han YF. Synthesis of a Metalla[2]catenane, Metallarectangles and Polynuclear Assemblies from Di(N-Heterocyclic Carbene) Ligands. Angew Chem Int Ed Engl 2024; 63:e202409664. [PMID: 38949121 DOI: 10.1002/anie.202409664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
The 2,7-fluorenone-linked bis(6-imidazo[1,5-a]pyridinium) salt H2-1(PF6)2 reacts with Ag2O in CH3CN to yield the [2]catenane [Ag4(1)4](PF6)4. The [2]catenane rearranges in DMF to yield two metallamacrocycles [Ag2(1)2](PF6)2. 2,7-Fluorenone-bridged bis-(imidazolium) salts H2-L(PF6)2 (L=2 a, 2 b) react with Ag2O in CH3CN to yield metallamacrocycles [Ag2(L)2](PF6)2 with interplanar distances between the fluorenone rings too small for [2]catenane formation. Intra- and intermolecular π⋅⋅⋅π interactions between the fluorenone groups were observed by X-ray crystallography. The strongly kinked 2,7-fluorenone bridged bis(5-imidazo[1,5-a]pyridinium) salt H2-4(PF6)2 reacts with Ag2O to yield [Ag2(4)(CN)](PF6), while the tetranuclear assembly [Ag4(4)2(CO3)](PF6)2 was obtained in the presence of K2CO3.
Collapse
Affiliation(s)
- Jin-Ping Chang
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ya-Wen Zhang
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Li-Ying Sun
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Le Zhang
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Ying-Feng Han
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
3
|
Hu J, Launay JP, Chaumont A, Heitz V, Jacquot de Rouville HP. Self-Assembled Bis-Acridinium Tweezer Equilibria Controlled by Multi-Responsive Properties. Chemistry 2024; 30:e202401866. [PMID: 38780863 DOI: 10.1002/chem.202401866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Protonated and methylated bis-acridinium tweezers built around a 2,6-diphenylpyridyl and an electron enriched 2,6-di(p-anisyl)pyridyl spacer have been synthesized. These tweezers can self-assemble in their corresponding homodimers and the associated thermodynamic parameters have been probed in organic solvents. The switching properties of the tweezers have been exploited in biphasic transfer experiments showing the shift of the equilibria towards the homodimers. Moreover, the thermodynamic parameters of the formation of the reduced methylated homodimers investigated by electrochemical experiments revealed the dissociation of the dimers. Thus, in addition to solvent and temperature, the pH and redox responsiveness of the acridinium units of the tweezers make it possible to modulate to a larger extent the monomer-dimer equilibria.
Collapse
Affiliation(s)
- Johnny Hu
- LSAMM, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Jean-Pierre Launay
- CEMES-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, 31055, Toulouse, France
| | - Alain Chaumont
- Chimie de la Matière Complexe, CNRS UMR 7140, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Valérie Heitz
- LSAMM, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Henri-Pierre Jacquot de Rouville
- LSAMM, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
4
|
Wang SY, Lin LT, Rani A, Lee GS, Chan YT. Stepwise construction of a metallocatenane based on non-labile bis(terpyridine)-Cd II complexes. Chem Commun (Camb) 2024; 60:7914-7917. [PMID: 38980122 DOI: 10.1039/d4cc02919d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A series of metalloligands bearing homoleptic 2,2':6',2''-terpyridine (tpy)-CdII complexes has been successfully synthesized. The formation of ML1 was accomplished through a sequence of Suzuki-Miyaura coupling and complexation reactions, offering an alternative method to produce tpy-based metalloligands under relatively mild conditions. Moreover, the metallomacrocycle C1 and metallocatenane C2 were self-assembled from heteroleptic complexation reactions involving ML1 and suitable counterparts.
Collapse
Affiliation(s)
- Shih-Yu Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Lin-Ting Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Alisha Rani
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Guan-Sian Lee
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
5
|
Luan Z, Wang F, Tian Y. Enhanced Near-infrared Phosphorescent Emission Modulated by Clipping of Metallotweezers in Aqueous Media. Chemistry 2024; 30:e202401022. [PMID: 38747055 DOI: 10.1002/chem.202401022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 06/28/2024]
Abstract
Near-infrared phosphorescent materials have received significant attention due to their potential applications in bioimaging and diagnostics. Although, many types of organic phosphors with near-infrared emission have been developed, the low phosphorescence efficiency in aqueous solution hampers their practical applications in biological systems. Hence, there is an urgent need to develop near-infrared phosphorescent materials with high emission efficiency in aqueous media. Metallotweezers, based on d8 transition metal complexes, emerge as the potential candidates for realizing this objective. Specifically, metallotweezers, featuring two positively charged platinum(II) terpyridine and neutral gold(III) diphenylpyridine pincers on diphenylpyridine spacer, have been designed and synthesized, respectively. The pre-organization effect, rendered by the rigid spacer, enables the resulting metallotweezers to complex with each other, resulting in the formation of clipping complex. The synergistic rigidifying and shielding effects of clipping structure results in enhanced phosphorescent emission intensity. Concurrently, due to phase segregation between the clipping units and the polyethylene glycol tail, the clipping complex undergoes self-assembly in aqueous solution, resulting in phosphorescent emission in the near-infrared region. Overall, non-covalent clipping of metallotweezers illustrated in this study presents a new and effective approach toward near-infrared phosphorescent materials.
Collapse
Affiliation(s)
- Zilei Luan
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, Anhui, China
| | - Feng Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei City, Anhui Province
| | - Yukui Tian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, Anhui, China
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, Anhui, China
| |
Collapse
|
6
|
Han T, Ren J, Jiang S, Wang F, Tian Y. Achieving Circularly Polarized Phosphorescence through Noncovalent Clipping of Metallotweezers. Inorg Chem 2024; 63:11523-11530. [PMID: 38860921 DOI: 10.1021/acs.inorgchem.3c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Circularly polarized phosphorescent materials, based on host-guest complexation, have received significant attention due to their outstanding emission performance in solutions. Recent studies have primarily focused on macrocyclic host-guest complexes. To broaden the scope of this research, there is a keen pursuit of developing novel chiral phosphorescent host-guest systems. Metallotweezers with square-planar d8 transition metal complexes emerge as promising candidates for achieving this objective. Specifically, metallotweezers, comprising platinum(II) terpyridine and gold(III) diphenylpyridine pincers on a diphenylpyridine scaffold, have been designed and synthesized. Due to the preorganization effect rendered by the diphenylpyridine scaffold, the resulting metallotweezers are capable of complexing with each other and forming quadruple stacking structures. The phosphorescent emission is enhanced owing to the synergistic rigidifying and shielding effects. Meanwhile, the steric effect of chiral (1R) pinene units on the platinum(II) terpyridine pincers results in a stereospecific twist for the quadruple stacking structures. Thus, the chirality transfers from the molecular to the supramolecular level. By a combination of phosphorescent enhancement and supramolecular chirality for the clipping complex, circularly polarized phosphorescent emission is achieved. Overall, noncovalent clipping of metallotweezers exemplified in the current study presents a novel and effective approach toward solution-processable circularly polarized phosphorescent materials.
Collapse
Affiliation(s)
- Tingting Han
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Jie Ren
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Sixun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feng Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yukui Tian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
7
|
Shan WL, Hou HH, Si N, Wang CX, Yuan G, Gao X, Jin GX. Selective Construction and Structural Transformation of Homogeneous Linear Metalla[4]catenane and Metalla[2]catenane Assemblies. Angew Chem Int Ed Engl 2024; 63:e202402198. [PMID: 38319045 DOI: 10.1002/anie.202402198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/07/2024]
Abstract
Although the synthesis of mechanically interlocked molecules has been extensively researched, selectively constructing homogeneous linear [4]catenanes remains a formidable challenge. Here, we selectively constructed a homogeneous linear metalla[4]catenane in a one-step process through the coordination-driven self-assembly of a bidentate benzothiadiazole derivative ligand and a binuclear half-sandwich rhodium precursor. The formation of metalla[4]catenanes was facilitated by cooperative interactions between strong sandwich-type π-π stacking and non-classical hydrogen bonds between the components. Moreover, by modulating the aromatic substituents on the binuclear precursor, two homogeneous metalla[2]catenanes were obtained. The molecular structures of these metallacatenanes were unambiguously characterized by single-crystal X-ray diffraction analysis. Additionally, reversible structural transformation between metal-catenanes and the corresponding metallarectangles could be achieved by altering their concentration, as confirmed by mass spectrometry and NMR spectroscopy studies.
Collapse
Affiliation(s)
- Wei-Long Shan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Huan-Huan Hou
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Nian Si
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Cai-Xia Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| |
Collapse
|
8
|
Zhang ZE, An YY, Wang F, Li HL, Jiang WL, Han YF. Construction and Hierarchical Self-Assembly of a Supramolecular Metal-Carbene Complex with Multifunctional Units. Chemistry 2023; 29:e202303043. [PMID: 37749755 DOI: 10.1002/chem.202303043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Hierarchical combinations involving metal-ligand interactions and host-guest interactions can consolidate building blocks with unique functions into material properties. This study reports the construction and hierarchical self-assembly of multifunctional trinuclear AuI tricarbene complex containing three crown ether units and three ferrocene units. Host-guest interactions between the multifunctional trinuclear AuI tricarbene complex and organic ammonium salts were investigated, revealing that crown ether-based host-guest interactions can effectively regulate the electrochemical properties of the complex. Utilizing bisammonium salt as the cross-linker and multifunctional trinuclear AuI tricarbene complex as the core, a stimuli-responsive and self-healing supramolecular gel with different functional units was obtained.
Collapse
Affiliation(s)
- Zi-En Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Yuan-Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Fang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Hui-Ling Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Wei-Ling Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P.R. China
| |
Collapse
|
9
|
Stares DL, Szumna A, Schalley CA. Encapsulation in Charged Droplets Generates Distorted Host-Guest Complexes. Chemistry 2023; 29:e202302112. [PMID: 37724745 DOI: 10.1002/chem.202302112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The ability of various hydrogen-bonded resorcinarene-based capsules to bind α,ω-alkylbisDABCOnium (DnD) guests of different lengths was investigated in solution and in the gas-phase. While no host-guest interactions were detected in solution, encapsulation could be achieved in the charged droplets formed during electrospray ionisation (ESI). This included guests, which are far too long in their most stable conformation to fit inside the cavity of the capsules. A combination of three mass spectrometric techniques, namely, collision-induced dissociation, hydrogen/deuterium exchange, and ion-mobility mass spectrometry, together with computational modelling allow us to determine the binding mode of the DnD guests inside the cavity of the capsules. Significant distortions of the guest into horseshoe-like arrangements are required to optimise cation-π interactions with the host, which also adopt distorted geometries with partially open hydrogen-bonding seams when binding longer guests. Such quasi "spring-loaded" capsules can form in the charged droplets during the ESI process as there is no competition between guest encapsulation and ion pair formation with the counterions that preclude encapsulation in solution. The encapsulation complexes are sufficiently stable in the gas-phase - even when strained - because non-covalent interactions significantly strengthen in the absence of solvent.
Collapse
Affiliation(s)
- Daniel L Stares
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| |
Collapse
|
10
|
Zhang YW, Lu Y, Sun LY, Dutschke PD, Gan MM, Zhang L, Hepp A, Han YF, Hahn FE. Unravelling the Roles of Solvophobic Effects and π⋅⋅⋅π Stacking Interactions in the Formation of [2]Catenanes Featuring Di-(N-Heterocyclic Carbene) Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202312323. [PMID: 37819869 DOI: 10.1002/anie.202312323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
A series of [2]catenanes has been prepared from di-NHC building blocks by utilizing solvophobic effects and/or π⋅⋅⋅π stacking interactions. The dinickel naphthobiscarbene complex syn-[1] and the kinked biphenyl-bridged bipyridyl ligand L2 yield the [2]catenane [2-IL](OTf)4 by self-assembly. Solvophobic effects are pivotal for the formation of the interlocked species. Substitution of the biphenyl-linker in L2 for a pyromellitic diimide group gave ligand L3 , which yielded in combination with syn-[1] the [2]catenane [3-IL](OTf)4 . This assembly exhibits enhanced stability in diluted solution, aided by additional π⋅⋅⋅π stacking interactions. The π⋅⋅⋅π stacking was augmented by the introduction of a pyrene bridge between two NHC donors in ligand L4 . Di-NHC precursor H2 -L4 (PF6 )2 reacts with Ag2 O to give the [Ag2 L4 2 ]2 [2]catenane [4-IL](PF6 )4 , which shows strong π⋅⋅⋅π stacking interactions between the pyrene groups. This assembly was readily converted into the [Au2 L4 2 ]2 gold species [5-IL](PF6 )4 , which exhibits exceptional stability based on the strong π⋅⋅⋅π stacking interactions and the enhanced stability of the Au-CNHC bonds.
Collapse
Affiliation(s)
- Ya-Wen Zhang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ye Lu
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
- College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai, China, 200234
| | - Li-Ying Sun
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Patrick D Dutschke
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Ming-Ming Gan
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Le Zhang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Ying-Feng Han
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| |
Collapse
|
11
|
Stares DL, Mozaceanu C, Ward MD, Schalley CA. Binding modes of high stoichiometry guest complexes with a Co 8L 12 cage uncovered by mass spectrometry. Chem Commun (Camb) 2023; 59:11811-11814. [PMID: 37721711 DOI: 10.1039/d3cc04291j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
We demonstrate how different modes of guest binding with a Co8L12 cubic cage can be determined using ESI-MS. High stoichiometry guest binding was observed, with the guests preferentially binding externally, but internal guest inclusion was also seen at higher guest loading.
Collapse
Affiliation(s)
- Daniel L Stares
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, Berlin, 14195, Germany.
| | | | - Michael D Ward
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, Berlin, 14195, Germany.
| |
Collapse
|
12
|
Lu Y, Dutschke PD, Kinas J, Hepp A, Jin GX, Hahn FE. Organometallic Borromean Rings and [2]Catenanes Featuring Di-NHC Ligands. Angew Chem Int Ed Engl 2023; 62:e202217681. [PMID: 36629746 DOI: 10.1002/anie.202217681] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
We report herein a series of organometallic Borromean rings (BRs) and [2]catenanes prepared from benzobiscarbene ligands. The reaction of dinickel complexes of the benzobiscarbenes 1 a-1 c with a thiazolothiazole bridged bipyridyl ligand L2 led by self-assembly to a series of organometallic BRs. Solvophobic effects played a crucial role in the formation and stability of the interlocked species. The stability of BRs is related to the N-alkyl substituents at the precursors 1 a-1 c, where longer alkyl substitutes improve stability and inter-ring interactions. Solvophobic effects are also important for the stability of [2]catenanes prepared from 1 a-1 c and a flexible bipyridyl ligand L3 . In solution, an equilibrium between the [2]catenanes and their macrocyclic building blocks was observed. High proportions of [2]catenanes were obtained in concentrated solutions or polar solvents. The proportion of [2]catenanes in solution could be further enhanced by lengthening of the N-alkyl substitutes.
Collapse
Affiliation(s)
- Ye Lu
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Patrick D Dutschke
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Jenny Kinas
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| |
Collapse
|
13
|
Ibáñez S, Peris E. "Lock and Key" and "Induced-Fit" Host-Guest Models in Two Digold(I)-Based Metallotweezers. Inorg Chem 2023; 62:1820-1826. [PMID: 35360901 PMCID: PMC9974064 DOI: 10.1021/acs.inorgchem.2c00677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two different metallotweezers, each with two pyrene-imidazolylidene-gold(I) arms, were used as hosts for a series of planar aromatic guests. The metallotweezer with a dibenzoacridinebis(alkynyl) spacer (1) orients the two pyrene-imidazolylidene-gold(I) arms in a parallel disposition, with an interpanel distance of about 7 Å. The second metallotweezer (2) contains a carbazolylbis(alkynyl) spacer that directs the two pyrene panels in a diverging orientation. Determination of the association constants via 1H NMR titrations demonstrates that the binding strength shown by 1 is significantly larger than that found by 2, with binding affinities as large as 104 M-1 (in CDCl3), for the encapsulation of N,N'-dimethylnaphthalenetetracarboxydiimide with 1. The differences in the binding affinities are due to binding models associated with formation of the related host-guest complexes. While 1 operates via a "lock and key" model, in which the host does not suffer distortions upon formation of the inclusion complex, 2 operates via a guest-induced fit model. The large association constants shown by 1 with two planar guests were used for promotion of the template-directed synthesis of 1, which in the absence of an external template is produced in an equimolecular mixture with its self-aggregated congener, clippane [12]. This observation strongly suggests that the mechanically interlocked clippane is formed through a self-template-directed mechanism, while bonds are broken/formed during the synthetic protocol.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute
of Advanced Materials, Centro de Innovación en Química
Avanzada, Universitat Jaume I, Avenida Vicente Sos Baynat s/n, Castellón E-12071, Spain
| | - Eduardo Peris
- Institute
of Advanced Materials, Centro de Innovación en Química
Avanzada, Universitat Jaume I, Avenida Vicente Sos Baynat s/n, Castellón E-12071, Spain
| |
Collapse
|
14
|
Wu PX, Guo ZW, Lai RD, Li XX, Sun C, Zheng ST. Giant Polyoxoniobate-Based Inorganic Molecular Tweezers: Metal Recognitions, Ion-Exchange Interactions and Mechanism Studies. Angew Chem Int Ed Engl 2023; 62:e202217926. [PMID: 36484495 DOI: 10.1002/anie.202217926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
This work reports the interesting and unique cation-exchange behaviors of the first indium-bridged purely inorganic 3D framework based on high-nuclearity polyoxoniobates as building units. Each nanoscale polyoxoniobate features a fascinating near-icosahedral core-shell structure with six pairs of unique inorganic "molecular tweezers" that have changeable openings for binding different metal cations via ion-exchanges and exhibit unusual selective metal-uptake behaviors. Further, the material has high chemical stability so that can undergo single-crystal-to-single-crystal metal-exchange processes to produce a dozen new crystals with high crystallinity. Based on these crystals and time-dependent metal-exchange experiments, we can visually reveal the detailed metal-exchange interactions and mechanisms of the material at the atomic precision level. This work demonstrates a rare systematic and atomic-level study on the ion-exchange properties of nanoclusters, which is of significance for the exploration of cluster-based ion-exchange materials that are still to be developed.
Collapse
Affiliation(s)
- Ping-Xin Wu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zheng-Wei Guo
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Rong-Da Lai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
15
|
Algar JL, Findlay JA, Evans JD, Preston D. A Switchable Palladium(II) Trefoil Entangled Tetrahedron with Temperature Dependence and Concentration Independence. Angew Chem Int Ed Engl 2022; 61:e202210476. [PMID: 35922393 PMCID: PMC9805230 DOI: 10.1002/anie.202210476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/09/2023]
Abstract
Self-assembly makes metallo-interlocked architectures attractive targets, but being in equilibrium with smaller species means that they can suffer from dilution effects. We show that a junctioned system gives rise to a [Pd4 (L)2 ]8+ trefoil entangled tetrahedron irrespective of concentration. Heating the sample reversibly shifts the equilibrium from the knot to an isomeric non-interlocked dual metallo-cycle, demonstrating that thermodynamic equilibria can still be exploited for switching even in the absence of concentration effects.
Collapse
Affiliation(s)
- Jess L. Algar
- Research School of ChemistryAustralian National UniversityCanberraACT 2600Australia
| | - James A. Findlay
- Research School of ChemistryAustralian National UniversityCanberraACT 2600Australia
| | - Jack D. Evans
- Centre for Advanced Nanomaterials and Department of ChemistryThe University of AdelaideAdelaideSA 5000Australia
| | - Dan Preston
- Research School of ChemistryAustralian National UniversityCanberraACT 2600Australia
| |
Collapse
|
16
|
Ma L, Li Y, Li X, Zhang L, Sun L, Han Y. A Molecular “
A
‐Type” Tangled Metallocube. Angew Chem Int Ed Engl 2022; 61:e202208376. [DOI: 10.1002/anie.202208376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Li‐Li Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Le Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
17
|
Ruiz‐Zambrana C, Dubey RK, Poyatos M, Mateo‐Alonso A, Peris E. Redox-Switchable Complexes Based on Nanographene-NHCs. Chemistry 2022; 28:e202201384. [PMID: 35638131 PMCID: PMC9400984 DOI: 10.1002/chem.202201384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 12/22/2022]
Abstract
A series of rhodium and iridium complexes with a N-heterocyclic carbene (NHC) ligand decorated with a perylene-diimide-pyrene moiety are described. Electrochemical studies reveal that the complexes can undergo two successive one-electron reduction events, associated to the reduction of the PDI moiety attached to the NHC ligand. The reduction of the ligand produces a significant increase on its electron-donating character, as observed from the infrared spectroelectrochemical studies. The rhodium complex was tested in the [3+2] cycloaddition of diphenylcyclopropenone and methylphenylacetylene, where it displayed a redox-switchable behavior. The neutral complex showed moderate activity, which was suppressed when the catalyst was reduced.
Collapse
Affiliation(s)
- César Ruiz‐Zambrana
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| | - Rajeev K. Dubey
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
- Ikerbasque, Basque Foundation for Science48009BilbaoSpain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| |
Collapse
|
18
|
Algar JL, Findlay JA, Evans JD, Preston D. A Switchable Palladium(II) Trefoil Entangled Tetrahedron with Temperature Dependence and Concentration Independence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jess L. Algar
- Australian National University Research School of Chemistry AUSTRALIA
| | - James A. Findlay
- Australian National University Research School of Chemistry AUSTRALIA
| | - Jack D. Evans
- University of Adelaide Department of Chemistry AUSTRALIA
| | - Dan Preston
- Australian National University Research School of Chemistry Building 137Sullivan Creek Road26010Australia 9200 Canberra AUSTRALIA
| |
Collapse
|
19
|
Ma LL, Li Y, Li X, Zhang L, Sun LY, Han YF. A Molecular “A‐Type” Tangled Metallocube. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Li-Li Ma
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Yang Li
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Xin Li
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Le Zhang
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Li-Ying Sun
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Ying-Feng Han
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 Xi'an CHINA
| |
Collapse
|
20
|
Ibáñez S. The New Di-Gold Metallotweezer Based on an Alkynylpyridine System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123699. [PMID: 35744825 PMCID: PMC9227567 DOI: 10.3390/molecules27123699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
We developed a simple method to prepare one gold-based metallotweezer with two planar Au-pyrene-NHC arms bound by a 2,6-bis(3-ethynyl-5-tert-butylphenyl)pyridine unit. This metallotweezer is able to bind a series of polycyclic aromatic hydrocarbons through the π-stacking interactions between the polyaromatic guests and the pyrene moieties of the NHC ligands. The metallotweezer was also used as a host for the encapsulation of planar metal complexes, such as the Au(III) complex [Au(C^N^C)(C≡CC6H4-OCH3-p)], for which there is a large binding constant of 946 M−1.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón, Spain
| |
Collapse
|
21
|
Zhong H, Jiang S, Ao L, Wang F, Wang F. Phosphorescent Host-Guest Complexes on the Basis of Polyhedral Oligomeric Silsesquioxane-Functionalized Metallotweezers. Inorg Chem 2022; 61:7111-7119. [PMID: 35482062 DOI: 10.1021/acs.inorgchem.2c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorescent host-guest systems have attracted considerable attention because of their intriguing properties and diverse applications. In this study, a polyhedral oligomeric silsesquioxane-functionalized gold(III) tweezer receptor has been designed and synthesized. It is capable of sandwiching platinum(II) terpyridine compounds into its cavity with a high noncovalent binding affinity (association constants: ∼105 M-1 in chloroform). The resulting heterometallic host-guest complexes exhibit enhanced phosphorescent emission compared with those of the individual species in chloroform, thanks to the prevention of vibration and rotation upon noncovalent complexation. They can further assemble into nanospheres in chloroform/diethyl ether (1:9, v/v) owing to phase segregation between the metallotweezer/guest motif and the peripheral polyhedral oligomeric silsesquioxane unit. When terpyridine platinum(II) chloride serves as the complementary guest, the resulting noncovalent system displays an intraligand emission at the individual host-guest complexed state yet excimeric emission at the supramolecular assembled state, yielding the phosphorescent solvatochromic behaviors. Overall, the polyhedral oligomeric silsesquioxane-functionalized metallotweezer combines guest encapsulation and supramolecular assembly capabilities, which provides new avenues for color-tunable phosphorescent materials.
Collapse
Affiliation(s)
- Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sixun Jiang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lei Ao
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Fan Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
22
|
Jozeliu Naitė A, Javorskis T, Vaitkevičius V, Klimavičius V, Orentas E. Fully Supramolecular Chiral Hydrogen-Bonded Molecular Tweezer. J Am Chem Soc 2022; 144:8231-8241. [PMID: 35500199 DOI: 10.1021/jacs.2c01455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular tweezers are open-ended, cavity-possessing U-shaped molecular architectures with high potential for various applications in supramolecular chemistry. Their covalent synthesis, however, is often tedious and the structures obtained lack structural responsiveness beyond the limited conformational flexibility of the scaffold. Herein we present a proof-of-concept study on the design, synthesis, assembly, and transformations of a novel supramolecular construct─a fully noncovalent molecular tweezer. The supramolecular tweezer was assembled from a set of four building blocks, composed of two identical molecular angle bars and two flat aromatic extension wings, using hydrogen bonding only. The chirality-assisted aggregation process was utilized to ensure scaffold bending directionality using enantiomerically pure bicyclic angle bars. To address the challenges associated with shifting of the equilibrium from strong cooperative narcissistic self-sorting of self-complementary angle bars in cyclic aggregates toward integrative self-sorting in molecular tweezers, a rational desymmetrization strategy was applied. The dynamic supramolecular tweezer has been shown to display rich supramolecular chemistry, allowing for stimuli-responsive change in aggregate topology and solvent-responsive supramolecular polymerization.
Collapse
Affiliation(s)
- Augustina Jozeliu Naitė
- Department of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Tomas Javorskis
- Department of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Vytenis Vaitkevičius
- Department of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | | | - Edvinas Orentas
- Department of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
23
|
Jia D, Zhong H, Jiang S, Yao R, Wang F. Simultaneous enhancement of phosphorescence and chirality by host–guest recognition of molecular tweezers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|