1
|
Davies LJ, Ghosh P, Siryer S, Ullrich S, Nitsche C. Peptide-Bismuth Tricycles: Maximizing Stability by Constraint. Chemistry 2025; 31:e202500064. [PMID: 39803821 DOI: 10.1002/chem.202500064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Indexed: 01/23/2025]
Abstract
Constrained peptides possess excellent properties for identifying lead compounds in drug discovery. While it has become increasingly straightforward to discover selective high-affinity peptide ligands, especially through genetically encoded libraries, their stability and bioavailability remain significant challenges. By integrating macrocyclization chemistry with bismuth binding, we generated series of linear, cyclic, bicyclic, and tricyclic peptides with identical sequences. Utilizing bismuth to rigidify the peptide structure allows for a better comparison of different constraint levels, reducing confounding effects of interactions often seen with hydrophobic stapling reagents. Our study facilitated the identification of a peptide-bismuth tricycle that fully withstands cellular levels of glutathione, acts as a nanomolar protease inhibitor without being proteolytically digested by its target, and is fully stable in human plasma. Importantly, this multicyclic peptide does not possess any non-canonical amino acid modifications. Using oxime ligation, we conjugated an analogue of this tricycle to the N-terminus of two nanobodies to demonstrate potential applications in targeted therapy.
Collapse
Affiliation(s)
- Lani J Davies
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Pritha Ghosh
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Sauhta Siryer
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
2
|
Ghosh P, Davies LJ, Nitsche C. Engineered Nanobodies Bind Bismuth, Indium and Gallium for Applications in Theranostics. Angew Chem Int Ed Engl 2025; 64:e202419455. [PMID: 39481115 DOI: 10.1002/anie.202419455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
Targeted theranostics heavily rely on metal isotopes conjugated to antibodies. Single-domain antibodies, known as nanobodies, are much smaller in size without compromising specificity and affinity. The conventional way of conjugating metals to nanobodies involves non-specific modification of amino acid residues with bifunctional chelating agents. We demonstrate that mutagenesis of a single residue in a nanobody creates a triple cysteine motif that selectively binds bismuth which is, for example, used in targeted alpha therapy. Two mutations create a quadruple cysteine mutant specific for gallium and indium used in positron emission tomography and single-photon emission computed tomography, respectively. Labelling is quantitative within a few minutes. The metal nanobodies maintain structural integrity and stability over weeks, resist competition from endogenous metal binders like glutathione, and retain functionality.
Collapse
Affiliation(s)
- Pritha Ghosh
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Lani J Davies
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Fang P, Pang WK, Xuan S, Chan WL, Leung KCF. Recent advances in peptide macrocyclization strategies. Chem Soc Rev 2024; 53:11725-11771. [PMID: 39560122 DOI: 10.1039/d3cs01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Recently, owing to their special spatial structures, peptide-based macrocycles have shown tremendous promise and aroused great interest in multidisciplinary research ranging from potent antibiotics against resistant strains to functional biomaterials with novel properties. Besides traditional monocyclic peptides, many fascinating polycyclic and remarkable higher-order cyclic, spherical and cylindric peptidic systems have come into the limelight owing to breakthroughs in various chemical (e.g., native chemical ligation and transition metal catalysis), biological (e.g., post-translational enzymatic modification and genetic code reprogramming), and supramolecular (e.g., mechanically interlocked, metal-directed folding and self-assembly via noncovalent interactions) macrocyclization strategies developed in recent decades. In this tutorial review, diverse state-of-the-art macrocyclization methodologies and techniques for peptides and peptidomimetics are surveyed and discussed, with insights into their practical advantages and intrinsic limitations. Finally, the synthetic-technical aspects, current unresolved challenges, and outlook of this field are discussed.
Collapse
Affiliation(s)
- Pengyuan Fang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
| | - Wing-Ka Pang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Wai-Lun Chan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ken Cham-Fai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
4
|
Colas K, Bindl D, Suga H. Selection of Nucleotide-Encoded Mass Libraries of Macrocyclic Peptides for Inaccessible Drug Targets. Chem Rev 2024; 124:12213-12241. [PMID: 39451037 PMCID: PMC11565579 DOI: 10.1021/acs.chemrev.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Technological advances and breakthrough developments in the pharmaceutical field are knocking at the door of the "undruggable" fortress with increasing insistence. Notably, the 21st century has seen the emergence of macrocyclic compounds, among which cyclic peptides are of particular interest. This new class of potential drug candidates occupies the vast chemical space between classic small-molecule drugs and larger protein-based therapeutics, such as antibodies. As research advances toward clinical targets that have long been considered inaccessible, macrocyclic peptides are well-suited to tackle these challenges in a post-rule of 5 pharmaceutical landscape. Facilitating their discovery is an arsenal of high-throughput screening methods that exploit massive randomized libraries of genetically encoded compounds. These techniques benefit from the incorporation of non-natural moieties, such as non- proteinogenic amino acids or stabilizing hydrocarbon staples. Exploiting these features for the strategic architectural design of macrocyclic peptides has the potential to tackle challenging targets such as protein-protein interactions, which have long resisted research efforts. This Review summarizes the basic principles and recent developments of the main high-throughput techniques for the discovery of macrocyclic peptides and focuses on their specific deployment for targeting undruggable space. A particular focus is placed on the development of new design guidelines and principles for the cyclization and structural stabilization of cyclic peptides and the resulting success stories achieved against well-known inaccessible drug targets.
Collapse
Affiliation(s)
- Kilian Colas
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel Bindl
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Ritchey JL, Filippi L, Ballard D, Pei D. Bismuth-Cyclized Cell-Penetrating Peptides. Mol Pharm 2024; 21:5255-5260. [PMID: 39223839 DOI: 10.1021/acs.molpharmaceut.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Intracellular delivery of biological cargos, which would yield new research tools and novel therapeutics, remains an active area of research. A convenient and potentially general approach involves the conjugation of a cell-penetrating peptide to a cargo of interest. However, linear CPPs lack sufficient cytosolic entry efficiency and metabolic stability, while previous backbone cyclized CPPs have several drawbacks including the necessity for chemical synthesis and posttranslational conjugation to peptide/protein cargos and epimerization during cyclization. We report here a new class of bismuth cyclized CPPs with excellent cytosolic entry efficiencies, proteolytic stability, and potential compatibility with genetic encoding and recombinant production.
Collapse
Affiliation(s)
- Jeremy L Ritchey
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Lindsi Filippi
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Davis Ballard
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Krishna Sudhakar H, Yau JTK, Alcock LJ, Lau YH. Accessing diverse bicyclic peptide conformations using 1,2,3-TBMB as a linker. Org Biomol Chem 2024. [PMID: 39007293 DOI: 10.1039/d4ob00901k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Bicyclic peptides are a powerful modality for engaging challenging drug targets such as protein-protein interactions. Here, we use 1,2,3-tris(bromomethyl)benzene (1,2,3-TBMB) to access bicyclic peptides with diverse conformations that differ from conventional bicyclisation products formed with 1,3,5-TBMB. Bicyclisation at cysteine residues under aqueous buffer conditions proceeds efficiently, with broad substrate scope, compatibility with high-throughput screening, and clean conversion (>90%) for 96 of the 115 peptides tested. We envisage that the 1,2,3-TBMB linker will be applicable to a variety of peptide screening techniques in drug discovery.
Collapse
Affiliation(s)
| | - Jackie Tsz Ki Yau
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Lisa J Alcock
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
7
|
He J, Nitsche C. Biocompatible Synthesis of Macrocyclic Thiazol(in)e Peptides. Chemistry 2024; 30:e202401716. [PMID: 38708622 DOI: 10.1002/chem.202401716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
Macrocyclic peptides containing a thiazole or thiazoline in the backbone are considered privileged structures in both natural compounds and drug discovery, owing to their enhanced bioactivity, stability, and permeability. Here, we present the biocompatible synthesis of macrocyclic peptides from N-terminal cysteine and C-terminal nitrile. While the N-terminal cysteine is incorporated during solid-phase peptide synthesis, the C-terminal nitrile is introduced during cleavage with aminoacetonitrile, utilizing a cleavable benzotriazole linker. This method directly yields the fully functionalized linear peptide precursor. The biocompatible cyclization reaction occurs in buffer at physiological pH and room temperature. The resulting thiazoline heterocycle remains stable in buffer but hydrolyzes under acidic conditions. While such hydrolysis enables access to macrocyclic peptides with a complete amide backbone, mild oxidation of the thiazoline leads to the stable thiazole macrocyclic peptide. While conventional oxidation strategies involve metals, we developed a protocol simply relying on alkaline salt and air. Therefore, we offer a rapid and metal-free pathway to macrocyclic thiazole peptides, featuring a biocompatible key cyclization step.
Collapse
Affiliation(s)
- Junming He
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Ullrich S, Somathilake U, Shang M, Nitsche C. Phage-encoded bismuth bicycles enable instant access to targeted bioactive peptides. Commun Chem 2024; 7:143. [PMID: 38937646 PMCID: PMC11211329 DOI: 10.1038/s42004-024-01232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Genetically encoded libraries play a crucial role in discovering structurally rigid, high-affinity macrocyclic peptide ligands for therapeutic applications. Bicyclic peptides with metal centres like bismuth were recently developed as a new type of constrained peptide with notable affinity, stability and membrane permeability. This study represents the genetic encoding of peptide-bismuth and peptide-arsenic bicycles in phage display. We introduce bismuth tripotassium dicitrate (gastrodenol) as a water-soluble bismuth(III) reagent for phage library modification and in situ bicyclic peptide preparation, eliminating the need for organic co-solvents. Additionally, we explore arsenic(III) as an alternative thiophilic element that is used analogously to our previously introduced bicyclic peptides with a bismuth core. The modification of phage libraries and peptides with these elements is instantaneous and entirely biocompatible, offering an advantage over conventional alkylation-based methods. In a pilot display screening campaign aimed at identifying ligands for the biotin-binding protein streptavidin, we demonstrate the enrichment of bicyclic peptides with dissociation constants two orders of magnitude lower than those of their linear counterparts, underscoring the impact of structural constraint on binding affinity.
Collapse
Affiliation(s)
- Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Upamali Somathilake
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Minghao Shang
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
9
|
Smith FR, Meehan D, Griffiths RC, Knowles HJ, Zhang P, Williams HEL, Wilson AJ, Mitchell NJ. Peptide macrocyclisation via intramolecular interception of visible-light-mediated desulfurisation. Chem Sci 2024; 15:9612-9619. [PMID: 38939126 PMCID: PMC11206203 DOI: 10.1039/d3sc05865d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/30/2024] [Indexed: 06/29/2024] Open
Abstract
Synthetic methods that enable the macrocyclisation of peptides facilitate the development of effective therapeutic and diagnostic tools. Herein we report a peptide cyclisation strategy based on intramolecular interception of visible-light-mediated cysteine desulfurisation. This method allows cyclisation of unprotected peptides in an aqueous solution via the installation of a hydrocarbon linkage. We explore the limits of this chemistry using a range of model peptides of increasing length and complexity, including peptides of biological/therapeutic relevance. The method is applied to replace the native disulfide of the peptide hormone, oxytocin, with a proteolytically/redox-stable hydrocarbon, and internal macrocyclisation of an MCL-1-binding peptide.
Collapse
Affiliation(s)
- Frances R Smith
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Declan Meehan
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Rhys C Griffiths
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Harriet J Knowles
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Peiyu Zhang
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Huw E L Williams
- Biodiscovery Institute, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Nicholas J Mitchell
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| |
Collapse
|
10
|
Voss S, Rademann J, Nitsche C. Characterisation of ten NS2B-NS3 proteases: Paving the way for pan-flavivirus drugs. Antiviral Res 2024; 226:105878. [PMID: 38582134 DOI: 10.1016/j.antiviral.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/29/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Flaviviruses can cause severe illness in humans. Effective and safe vaccines are available for some species; however, for many flaviviruses disease prevention or specific treatments remain unavailable. The viral replication cycle depends on the proteolytic activity of the NS2B-NS3 protease, which releases functional viral proteins from a non-functional polyprotein precursor, rendering the protease a promising drug target. In this study, we characterised recombinant NS2B-NS3 proteases from ten flaviviruses including three unreported proteases from the Usutu, Kyasanur forest disease and Powassan viruses. All protease constructs comprise a covalent Gly4-Ser-Gly4 linker connecting the NS3 serine protease domain with its cofactor NS2B. We conducted a comprehensive cleavage site analysis revealing areas of high conversion. While all proteases were active in enzymatic assays, we noted a 1000-fold difference in catalytic efficiency across proteases from different flaviviruses. Two bicyclic peptide inhibitors displayed anti-pan-flaviviral protease activity with inhibition constants ranging from 10 to 1000 nM.
Collapse
Affiliation(s)
- Saan Voss
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Jörg Rademann
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
11
|
He RN, Zhang MJ, Dai B, Kong XD. Selection of Peptide-Bismuth Bicycles Using Phage Display. ACS Chem Biol 2024; 19:1040-1044. [PMID: 38620022 DOI: 10.1021/acschembio.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Cysteine conjugation is widely used to constrain phage displayed peptides for the selection of cyclic peptides against specific targets. In this study, the nontoxic Bi3+ ion was used as a cysteine conjugation reagent to cross-link peptide libraries without compromising phage infectivity. We constructed a randomized 3-cysteine peptide library and cyclized it with Bi3+, followed by a selection against the maltose-binding protein as a model target. Next-generation sequencing of selection samples revealed the enrichment of peptides containing clear consensus sequences. Chemically synthesized linear and Bi3+ cyclized peptides were used for affinity validation. The cyclized peptide showed a hundred-fold better affinity (0.31 ± 0.04 μM) than the linear form (39 ± 6 μM). Overall, our study proved the feasibility of developing Bi3+ constrained bicyclic peptides against a specific target using phage display, which would potentially accelerate the development of new peptide-bismuth bicycles for therapeutic or diagnostic applications.
Collapse
Affiliation(s)
- Ruo-Nan He
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Meng-Jie Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Bin Dai
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xu-Dong Kong
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
12
|
Xu K, Gao H, Li Y, Jin Y, Zhao R, Huang Y. Synthetic Peptides with Genetic-Codon-Tailored Affinity for Assembling Tetraspanin CD81 at Cell Interfaces and Inhibiting Cancer Metastasis. Angew Chem Int Ed Engl 2024; 63:e202400129. [PMID: 38409630 DOI: 10.1002/anie.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Probing biomolecular interactions at cellular interfaces is crucial for understanding and interfering with life processes. Although affinity binders with site specificity for membrane proteins are unparalleled molecular tools, a high demand remains for novel multi-functional ligands. In this study, a synthetic peptide (APQQ) with tight and specific binding to the untargeted extracellular loop of CD81 evolved from a genetically encoded peptide pool. With tailored affinity, APQQ flexibly accesses, site-specifically binds, and forms a complex with CD81, enabling in-situ tracking of the dynamics and activity of this protein in living cells, which has rarely been explored because of the lack of ligands. Furthermore, APQQ triggers the relocalization of CD81 from diffuse to densely clustered at cell junctions and modulates the interplay of membrane proteins at cellular interfaces. Motivated by these, efficient suppression of cancer cell migration, and inhibition of breast cancer metastasis were achieved in vivo.
Collapse
Affiliation(s)
- Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Guo P, Chu X, Wu C, Qiao T, Guan W, Zhou C, Wang T, Tian C, He G, Chen G. Peptide Stapling by Crosslinking Two Amines with α-Ketoaldehydes through Diverse Modified Glyoxal-Lysine Dimer Linkers. Angew Chem Int Ed Engl 2024; 63:e202318893. [PMID: 38376389 DOI: 10.1002/anie.202318893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
α-Ketoaldehydes play versatile roles in the ubiquitous natural processes of protein glycation. However, leveraging the reactivity of α-ketoaldehydes for biomedical applications has been challenging. Previously, the reactivity of α-ketoaldehydes with guanidine has been harnessed to design probes for labeling Arg residues on proteins in an aqueous medium. Herein, a highly effective, broadly applicable, and operationally simple protocol for stapling native peptides by crosslinking two amino groups through diverse imidazolium linkers with various α-ketoaldehyde reagents is described. The use of hexafluoroisopropanol as a solvent facilitates rapid and clean reactions under mild conditions and enables unique selectivity for Lys over Arg. The naturally occurring GOLD/MOLD linkers have been expanded to encompass a wide range of modified glyoxal-lysine dimer (OLD) linkers. In a proof-of-concept trial, these modular stapling reactions enabled a convenient two-round strategy to streamline the structure-activity relationship (SAR) study of the wasp venom peptide anoplin, leading to enhanced biological activities.
Collapse
Affiliation(s)
- Pan Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin Chu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chengjin Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tianjiao Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenli Guan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
14
|
Voss S, Adair LD, Achazi K, Kim H, Bergemann S, Bartenschlager R, New EJ, Rademann J, Nitsche C. Cell-Penetrating Peptide-Bismuth Bicycles. Angew Chem Int Ed Engl 2024; 63:e202318615. [PMID: 38126926 DOI: 10.1002/anie.202318615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Cell-penetrating peptides (CPPs) play a significant role in the delivery of cargos into human cells. We report the first CPPs based on peptide-bismuth bicycles, which can be readily obtained from commercially available peptide precursors, making them accessible for a wide range of applications. These CPPs enter human cells as demonstrated by live-cell confocal microscopy using fluorescently labelled peptides. We report efficient sequences that demonstrate increased cellular uptake compared to conventional CPPs like the TAT peptide (derived from the transactivating transcriptional activator of human immunodeficiency virus 1) or octaarginine (R8 ), despite requiring only three positive charges. Bicyclization triggered by the presence of bismuth(III) increases cellular uptake by more than one order of magnitude. Through the analysis of cell lysates using inductive coupled plasma mass spectrometry (ICP-MS), we have introduced an alternative approach to examine the cellular uptake of CPPs. This has allowed us to confirm the presence of bismuth in cells after exposure to our CPPs. Mechanistic studies indicated an energy-dependent endocytic cellular uptake sensitive to inhibition by rottlerin, most likely involving macropinocytosis.
Collapse
Affiliation(s)
- Saan Voss
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Liam D Adair
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| | - Heeyoung Kim
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research (CIID), 69120, Heidelberg, Germany
- German Center for Infection Research, Heidelberg partner site, 69120, Heidelberg, Germany
| | - Silke Bergemann
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research (CIID), 69120, Heidelberg, Germany
- German Center for Infection Research, Heidelberg partner site, 69120, Heidelberg, Germany
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jörg Rademann
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Gonçalves Â, Matias M, Salvador JAR, Silvestre S. Bioactive Bismuth Compounds: Is Their Toxicity a Barrier to Therapeutic Use? Int J Mol Sci 2024; 25:1600. [PMID: 38338879 PMCID: PMC10855265 DOI: 10.3390/ijms25031600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Bismuth compounds are considered relatively non-toxic, with their low solubility in aqueous solutions (e.g., biological fluids) being the major contributing factor to this property. Bismuth derivatives are widely used for the treatment of peptic ulcers, functional dyspepsia, and chronic gastritis. Moreover, the properties of bismuth compounds have also been extensively explored in two main fields of action: antimicrobial and anticancer. Despite the clinical interest of bismuth-based drugs, several side effects have also been reported. In fact, excessive acute ingestion of bismuth, or abuse for an extended period of time, can lead to toxicity. However, evidence has demonstrated that the discontinuation of these compounds usually reverses their toxic effects. Notwithstanding, the continuously growing use of bismuth products suggests that it is indeed part of our environment and our daily lives, which urges a more in-depth review and investigation into its possible undesired activities. Therefore, this review aims to update the pharmaco-toxicological properties of bismuth compounds. A special focus will be given to in vitro, in vivo, and clinical studies exploring their toxicity.
Collapse
Affiliation(s)
- Ângela Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (Â.G.); (M.M.)
| | - Mariana Matias
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (Â.G.); (M.M.)
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC—Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Samuel Silvestre
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (Â.G.); (M.M.)
- CNC—Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
16
|
Davies LJ, Shuttleworth LM, Zhang X, Peng S, Nitsche C. Bioorthogonal Peptide Macrocyclization Using Oxime Ligation. Org Lett 2023; 25:2806-2809. [PMID: 37053571 DOI: 10.1021/acs.orglett.3c00695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The biocompatible synthesis of constrained peptides is challenging. Oxime ligation is a bioorthogonal technique frequently used for protein bioconjugation. We report a straightforward method to install N-terminal ketones and aminooxy side chains during standard solid-phase peptide synthesis. Cyclization occurs spontaneously after acidic cleavage or in aqueous buffer. We demonstrate the facile synthesis of protease inhibitors with varying conformational constraint. The most constrained peptide displayed an activity 2 orders of magnitude higher than its linear analog.
Collapse
Affiliation(s)
- Lani J Davies
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Laura M Shuttleworth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Xiaobai Zhang
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Sherry Peng
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
17
|
Ullrich S, George J, Coram AE, Morewood R, Nitsche C. Biocompatible and Selective Generation of Bicyclic Peptides. Angew Chem Int Ed Engl 2022; 61:e202208400. [PMID: 35852030 DOI: 10.1002/anie.202208400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 01/07/2023]
Abstract
Bicyclic peptides possess superior properties for drug discovery; however, their chemical synthesis is not straightforward and often neither biocompatible nor fully orthogonal to all canonical amino acids. The selective reaction between 1,2-aminothiols and 2,6-dicyanopyridine allows direct access to complex bicyclic peptides in high yield. The process can be fully automated using standard solid-phase peptide synthesis. Bicyclization occurs in water at physiological pH within minutes and without the need for a catalyst. The use of various linkers allows tailored bicyclic peptides with qualities such as plasma stability, conformational preorganization, and high target affinity. We demonstrate this for a bicyclic inhibitor of the Zika virus protease NS2B-NS3 as well as for bicyclic versions of the α-helical antimicrobial peptide aurein 1.2.
Collapse
Affiliation(s)
- Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Josemon George
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Alexandra E Coram
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Richard Morewood
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
18
|
Koyanagi A, Murata Y, Hayakawa S, Matsumura M, Yasuike S. One-pot synthesis of 2-arylated and 2-alkylated benzoxazoles and benzimidazoles based on triphenylbismuth dichloride-promoted desulfurization of thioamides. Beilstein J Org Chem 2022; 18:1479-1487. [PMID: 36320343 PMCID: PMC9592962 DOI: 10.3762/bjoc.18.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/29/2022] [Indexed: 09/07/2024] Open
Abstract
The development of novel and efficient synthesis methods for 2-substituted benzazole derivatives is of interest as they are biologically active substances. Herein, a simple method for the synthesis of 2-aryl- and 2-alkyl-substituted benzazoles is described. The reaction of 2-aminophenols with thioamides at 60 °C in the presence of triphenylbismuth dichloride in 1,2-dichloroethane as a promoter afforded various 2-aryl- and 2-alkylbenzoxazoles in moderate to excellent yields under mild reaction conditions. This method could also be applied to the synthesis of benzimidazoles and benzothiazoles. This study presents the first use of triphenylbismuth dichloride to produce benzimidoyl chloride from thioamides by desulfurization and chlorination, as well as its application to the synthesis of 2-substituted benzazoles.
Collapse
Affiliation(s)
- Arisu Koyanagi
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Yuki Murata
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Shiori Hayakawa
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Mio Matsumura
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Shuji Yasuike
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
19
|
Morewood R, Nitsche C. Bioinspired peptide stapling generates stable enzyme inhibitors. Chem Commun (Camb) 2022; 58:10817-10820. [PMID: 36069401 DOI: 10.1039/d2cc03510c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stapling of peptides renders them better drug candidates. We report a new peptide staple resembling the natural metabolite lanthionine ketenamine. The strategy is orthogonal to canonical amino acids, proceeds in water and allows for tailored linkers. We applied the approach to the identification of cyclic peptide inhibitiors of the Zika virus protease. The right linker length of the peptide staple proved crucial for maximising activity. The best stapled peptide showed one order of magnitude stronger enzyme inhibition than its linear analogue.
Collapse
Affiliation(s)
- Richard Morewood
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
20
|
Ullrich S, George J, Coram A, Morewood R, Nitsche C. Biocompatible and Selective Generation of Bicyclic Peptides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sven Ullrich
- Australian National University Research School of Chemistry AUSTRALIA
| | - Josemon George
- Australian National University Research School of Chemistry AUSTRALIA
| | - Alexandra Coram
- Australian National University Research School of Chemistry AUSTRALIA
| | - Richard Morewood
- Australian National University Research School of Chemistry AUSTRALIA
| | - Christoph Nitsche
- Australian National University Research School of Chemistry Sullivans Creek Road ACT 2601 Canberra AUSTRALIA
| |
Collapse
|
21
|
Lim B, Kato T, Besnard C, Poblador Bahamonde AI, Sakai N, Matile S. Pnictogen-Centered Cascade Exchangers for Thiol-Mediated Uptake: As(III)-, Sb(III)-, and Bi(III)-Expanded Cyclic Disulfides as Inhibitors of Cytosolic Delivery and Viral Entry. JACS AU 2022; 2:1105-1114. [PMID: 35615714 PMCID: PMC9063988 DOI: 10.1021/jacsau.2c00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 05/19/2023]
Abstract
Dynamic covalent exchange cascades with cellular thiols are of interest to deliver substrates to the cytosol and to inhibit the entry of viruses. The best transporters and inhibitors known today are cyclic cascade exchangers (CAXs), producing a new exchanger with every exchange, mostly cyclic oligochalcogenides, particularly disulfides. The objective of this study was to expand the dynamic covalent chalcogen exchange cascades in thiol-mediated uptake by inserting pnictogen relays. A family of pnictogen-expanded cyclic disulfides covering As(III), Sb(III), and Bi(III) is introduced. Their ability to inhibit thiol-mediated cytosolic delivery is explored with fluorescently labeled CAXs as transporters. The promise of inhibiting viral entry is assessed with SARS-CoV-2 lentiviral vectors. Oxygen-bridged seven-membered 1,3,2-dithiabismepane rings are identified as privileged scaffolds. The same holds for six-membered 1,3,2-dithiarsinane rings made from asparagusic acid and para-aminophenylarsine oxide, which are inactive or toxic when used alone. These chemically complementary Bi(III) and As(III) cascade exchangers inhibit both thiol-mediated cytosolic delivery and SARS-CoV-2 lentivector uptake at concentrations of 10 μM or lower. Crystal structures, computational models, and exchange kinetics support that lentivector entry inhibition of the contracted dithiarsinane and the expanded dithiabismepane rings coincides with exchange cascades that occur without the release of the pnictogen relay and benefit from noncovalent pnictogen bonds. The identified leads open perspectives regarding drug delivery as well as unorthodox approaches toward dynamic covalent inhibition of cellular entry.
Collapse
Affiliation(s)
- Bumhee Lim
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Celine Besnard
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|