1
|
Zhu W, Yu M, Wang M, Zhang M, Hai Z. Sequential self-assembly and release of a camptothecin prodrug for tumor-targeting therapy. NANOSCALE 2024. [PMID: 39648922 DOI: 10.1039/d4nr03519d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Chemotherapy is the most commonly used method to treat malignant tumors with a wide range of drugs. However, chemotherapeutic drugs are characterized by poor solubility, low stability and specificity, as well as drug resistance, which led to their limited bioavailability and severe adverse effects. Therefore, most researches focus on one or two strategies while a few researches focus on three strategies to improve the efficacy of drugs. Herein, we combined three strategies (targeted therapy, prodrug design and drug delivery) to exploit a self-assembled camptothecin (CPT) prodrug (CPT-SS-FFEYp-Biotin) for enhancing therapeutic efficacy and reducing side effects of CPT. CPT-SS-FFEYp-Biotin enters into tumor cells following the recognition between biotin and biotin receptors. Moreover, the over-expressed alkaline phosphatase (ALP) on cell membranes specifically dephosphorylates CPT-SS-FFEYp-Biotin to CPT-SS-FFEY-Biotin, which self-assembles into a CPT hydrogel with the local enrichment of CPT. Subsequently, excess glutathione (GSH) in tumor cells can reduce the disulfide bond of CPT-SS-FFEY-Biotin to slowly release CPT for sustained tumor therapy. Cell experiments demonstrated that CPT-SS-FFEYp-Biotin enhances therapeutic efficacy of CPT on tumor cells while being safer to normal cells than CPT. Moreover, CPT-SS-FFEYp-Biotin effectively improved anti-tumor treatment of CPT in vivo. We envision that the integration of these three strategies is helpful to exploit a variety of prodrugs for effective anti-tumor treatment in the future.
Collapse
Affiliation(s)
- Wujuan Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Minghui Yu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Minghui Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Miaomiao Zhang
- College of Chemistry and Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China.
| | - Zijuan Hai
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
2
|
Bharathidasan D, Maity C. Organelle-Specific Smart Supramolecular Materials for Bioimaging and Theranostics Application. Top Curr Chem (Cham) 2024; 383:1. [PMID: 39607460 DOI: 10.1007/s41061-024-00483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
In cellular environments, certain synthetic molecules can form nanostructures via self-assembly, impacting molecular imaging, and biomedical applications. Control over the formation of these self-assembled nanostructures in subcellular organelle is challenging. By the action of stimuli, either present in the cellular environment or applied externally, in situ generation of molecular precursors can lead to accumulation and supramolecular nanostructure formation, resulting in efficient bioimaging. Here, we summarize smart fluorophore-based ordered nanostructure preparation at specific organelles for efficient bioimaging and therapeutic application towards cancer theranostics. We also present challenges and an outlook regarding intercellular self-assembly for theranostics application. Altogether, smart nanostructured materials with fluorescence read-outs at specific subcellular compartments would be beneficial in synthetic biology and precision therapeutics.
Collapse
Affiliation(s)
- Dineshkumar Bharathidasan
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India
| | - Chandan Maity
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
3
|
Huo K, Liu W, Shou Z, Wang H, Liu H, Chen Y, Zan X, Wang Q, Li N. Modulating the Interactions of Peptide-Polyphenol for Supramolecular Assembly Coatings with Controllable Kinetics and Multifunctionalities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412194. [PMID: 39587774 DOI: 10.1002/advs.202412194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Indexed: 11/27/2024]
Abstract
Polyphenols and peptides represent two fundamental building blocks in the kingdom of supramolecular assembly (SA) coatings, which have recently attracted considerable interest. Regulating the assembly kinetics of SA coatings is critical to controlling the performance of SA coatings, but this area is still in its infancy, especially in the SA coating of peptide-polyphenol. Herein, a library of oligopeptides with rich diversity, numerous polyphenols, and modulators are explored to reveal their roles in the formation and regulation of SA coating. Citric acid (CA) is an effective regulator of interaction between the polyphenols and peptides to produce peptide-polyphenol coatings, TCP. The electrostatic interaction between tannic acid (TA) and cationic peptide drives the formation of TCP, while the multiple hydrogen bonds between CA and TA and peptide dominate the assembly kinetics. With optimized assembly pH and the mass ratio of TA, CA, and peptide, the thickness of TCP coating deposits onto diverse substrates (glass, silica, titanium, polystyrene) is ≈400 nm with controllable kinetics. The multifunctional TCP coatings are endowed via peptide-coupled functional units, including enhanced cellular adhesion, elevated osteogenic capacity, anti-protein adsorption, and antimicrobial. This work contributes to the understanding of the assembly kinetics and functionalization of peptide-polyphenol coatings.
Collapse
Affiliation(s)
- Kaiyuan Huo
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, Zhejiang, 325001, China
| | - Wenjie Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, Zhejiang, 325001, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zeyu Shou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, Zhejiang, 325001, China
- Department of Orthopedics, The People's Hospital of Zhuji, Affiliated Zhuji Hospital, Wenzhou Medical University, Shaoxing, Zhejiang, 311800, China
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Hongxiang Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yang Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, Zhejiang, 325001, China
| | - Qing Wang
- Yongkang First People's Hospital of Wenzhou Medical University, Yongkang, Zhejiang, 321300, China
| | - Na Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, Zhejiang, 325001, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| |
Collapse
|
4
|
Tevet S, Amir RJ. Hydrophobicity as a tool for programming sequential mesophase transitions of enzyme-responsive polymeric amphiphiles. J Mater Chem B 2024; 12:11685-11695. [PMID: 39385664 DOI: 10.1039/d4tb01587h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The ability of polymeric assemblies to undergo programmable cascades of mesophase transitions is prevalent in many systems in nature, where structural and functional features are tightly bound to maximize activity. In this study, we have examined the ability to program the mesophase transition rates of co-assembled enzyme-responsive polymeric micelles, through fine adjustments of the hydrophobicity of their amphiphilic components. We have utilized the different reactivities of di- and tri-block amphiphiles toward enzymatic degradation as a tool for programming formulations to undergo sequential enzymatically induced transitions from micelles to hydrogels and finally to dissolved polymers. By varying the aliphatic end-groups of PEG-dendron di-block and tri-block amphiphiles, we could demonstrate the remarkable impact of minor modifications to the di-block amphiphiles' structure and hydrophobicity on the transition rates between the different mesophases, ranging from a few hours to a week. Additionally, the study reveals how altering the relative hydrophobicity of its amphiphilic components influences the formulation ratio and enzymatic selectivity, as well as the stability and degradation rate of the resulting hydrogels. The findings underscore the importance of molecular architecture and hydrophobicity as key parameters in the design of programmable enzyme-responsive polymeric assemblies, offering insights into the ability to precisely control multi-step mesophase transitions for tailored functionality.
Collapse
Affiliation(s)
- Shahar Tevet
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- The Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, Israel
- ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv, Israel
| | - Roey J Amir
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- The Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, Israel
- ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
5
|
Zhang L, Wang X, Zhao J, Qi Y, Han K, Yu Y, Ma B, Ke Y, Niu G, Wang W. Harnessing Cross-strand π-π Interlocking for Synergistic Enhancement of Immune Checkpoint Blocking and Ferroptosis. NANO LETTERS 2024. [PMID: 39539148 DOI: 10.1021/acs.nanolett.4c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The dynamic nature of noncovalent bonds in peptide self-assembly allows for selective accommodation of guest molecules. However, it remains unclear how to harness coassembly to reinforce the host peptides and simultaneously improve the application defects of guest molecules. This study aims to achieve supramolecular synergy between the host and guest, further expanding the functional space of the hybrid nanostructures. Herein, we utilized the aromatic regions present in β-sheet peptides to accommodate aromatic molecules, forming long-range nanotubes (NQ40@AIF) through a unique 'cross-strand π-π interlocking'. This strategy not only stabilizes the coassembly effectively but also synergizes the biological functions of the host and guest molecules. Moreover, due to the chemical diversity of the coassembled NQ40@AIF, it exhibits advantages in tumor combination therapy, achieving effective synergy between ferroptosis and immune checkpoint blocking. This work provides a minimalistic strategy for constructing peptide nanostructures with complex functionalities.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xin Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ying Qi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Kai Han
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yao Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bokai Ma
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, PR China
| | - Yubin Ke
- China Spallation Neutron Source, Dongguan 523803, PR China
| | - Guangle Niu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
6
|
Guo Y, Li P, Guo X, Yao C, Yang D. Synthetic Nanoassemblies for Regulating Organelles: From Molecular Design to Precision Therapeutics. ACS NANO 2024; 18:30224-30246. [PMID: 39441007 DOI: 10.1021/acsnano.4c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Each organelle referring to a complex multiorder architecture executes respective biological processes via its distinct spatial organization and internal microenvironment. As the assembly of biomolecules is the structural basis of living cells, creating synthetic nanoassemblies with specific physicochemical and morphological properties in living cells to interfere or couple with the natural organelle architectures has attracted great attention in precision therapeutics of cancers. In this review, we give an overview of the latest advances in the synthetic nanoassemblies for precise organelle regulation, including the formation mechanisms, triggering strategies, and biomedical applications in precision therapeutics. We summarize the emerging material systems, including polymers, peptides, and deoxyribonucleic acids (DNAs), and their respective intermolecular interactions for intercellular synthetic nanoassemblies, and highlight their design principles in constructing precursors that assemble into synthetic nanoassemblies targeting specific organelles in the complex cellular environment. We further showcase the developed intracellular synthetic nanoassemblies targeting specific organelles including mitochondria, the endoplasmic reticulum, lysosome, Golgi apparatus, and nucleus and describe their underlying mechanisms for organelle regulation and precision therapeutics for cancer. Last, the essential challenges in this field and prospects for future precision therapeutics of synthetic nanoassemblies are discussed. This review should facilitate the rational design of organelle-targeting synthetic nanoassemblies and the comprehensive recognition of organelles by materials and contribute to the deep understanding and application of the synthetic nanoassemblies for precision therapeutics.
Collapse
Affiliation(s)
- Yanfei Guo
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Peiran Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Xiaocui Guo
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Dayong Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
7
|
Wen Y, Di X, Chen Z, Zhang X, Pei Z, Pei Y. Supramolecular palladium complexes based on guanidinium pillar[5]arene for cancer therapy. Chem Commun (Camb) 2024; 60:12694-12697. [PMID: 39382516 DOI: 10.1039/d4cc04312j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The supramolecular palladium complex G-Pd, formed via self-assembly of the Pd-complex of guanidinium pillar[5]arene with Pd2+, was used to encapsulate doxorubicin to form G-Pd@DOX. The nanoparticles exhibit responsiveness to glutathione, controlled drug release, the ability to damage mitochondria, and potent anticancer activity while maintaining low toxicity towards normal cells. This work provides a good example for the application of pillararene-based palladium complexes in cancer therapy and is significant for the discovery of new medicines from supramolecular coordination complexes.
Collapse
Affiliation(s)
- Yafei Wen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Xiaojiao Di
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zelong Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Xuxu Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| |
Collapse
|
8
|
Wu C, Jiang P, Su W, Yan Y. Alkaline Phosphatase-Instructed Peptide Assemblies for Imaging and Therapeutic Applications. Biomacromolecules 2024; 25:5609-5629. [PMID: 39185628 DOI: 10.1021/acs.biomac.4c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Self-assembly, a powerful strategy for constructing highly stable and well-ordered supramolecular structures, widely exists in nature and in living systems. Peptides are frequently used as building blocks in the self-assembly process due to their advantageous characteristics, such as ease of synthesis, tunable mechanical stability, good biosafety, and biodegradability. Among the initiators for peptide self-assembly, enzymes are excellent candidates for guiding this process under mild reaction conditions. As a crucial and commonly used biomarker, alkaline phosphatase (ALP) cleaves phosphate groups, triggering a hydrophilicity-to-hydrophobicity transformation that induces peptide self-assembly. In recent years, ALP-instructed peptide self-assembly has made breakthroughs in biological imaging and therapy, inspiring the development of self-assembly biomaterials for diagnosis and therapeutics. In this review, we highlight the most recent advancements in ALP-instructed peptide assemblies and provide perspectives on their potential impact. Finally, we briefly discuss the ongoing challenges for future research in this field.
Collapse
Affiliation(s)
- Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pingge Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wen Su
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
9
|
Li Q, Gao W, Wang Z, Liu W, Fu Y, Wang X, Tan LL, Shang L, Yang YW. Guest-Induced Helical Superstructure from a Gold Nanocluster-Based Supramolecular Organic Framework Enables Efficient Catalysis. ACS NANO 2024; 18:22548-22559. [PMID: 39110641 DOI: 10.1021/acsnano.4c08337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mimicking hierarchical assembly in nature to exploit atomically precise artificial systems with complex structures and versatile functions remains a long-standing challenge. Herein, we report two single-crystal supramolecular organic frameworks (MSOF-4 and MSOF-5) based on custom-designed atomically precise gold nanoclusters Au11(4-Mpy)3(PPh3)7, showing distinct and intriguing host-guest adaptation behaviors toward 1-/2-bromopropane (BPR) isomers. MSOF-4 exhibits sev topology and cylindrical channels with 4-mercaptopyridine (4-Mpy) ligands matching well with guest 1-BPR. Due to the confinement effect, solid MSOF-4 undergoes significant structural change upon selective adsorption of 1-BPR vapor over 2-BPR, resulting in strong near-infrared fluorescence. Single-crystal X-ray diffraction reveals that Au11(4-Mpy)3(PPh3)7 in MSOF-4 transforms into Au11Br3(PPh3)7 upon ligand exchange with 1-BPR, resulting in 1-BPR@MSOF-6 single crystals with a rarely reported helical assembly structure. Significantly, the double-helical structure of MSOF-6 facilitates efficient catalysis of the electron transfer (ET) reaction, resulting in a nearly 6 times increase of catalytic rates compared with MSOF-4. In sharp contrast, solid MSOF-5 possesses chb topology and cage-type channels with narrow windows, showing excellent selective physical adsorption toward 1-BPR vapor but a nonfluorescent feature upon guest adsorption. Our results demonstrate a powerful strategy for developing advanced assemblies with high-order complexity and engineering their functions in atomic precision.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenxing Gao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zijian Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yu Fu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xin Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| | - Li-Li Tan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| |
Collapse
|
10
|
Abdelrahim M, Gao Q, Zhang Y, Li W, Xing Q, Bradley M, Geng J. Light-mediated intracellular polymerization. Nat Protoc 2024; 19:1984-2025. [PMID: 38514838 DOI: 10.1038/s41596-024-00970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/24/2023] [Indexed: 03/23/2024]
Abstract
The synthesis of synthetic intracellular polymers offers groundbreaking possibilities in cellular biology and medical research, allowing for novel experiments in drug delivery, bioimaging and targeted cancer therapies. These macromolecules, composed of biocompatible monomers, are pivotal in manipulating cellular functions and pathways due to their bioavailability, cytocompatibility and distinct chemical properties. This protocol details two innovative methods for intracellular polymerization. The first one uses 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) as a photoinitiator for free radical polymerization under UV light (365 nm, 5 mW/cm2). The second method employs photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization with visible light (470 nm, 100 mW/cm2). We further elaborate on isolating these intracellular polymers by streptavidin/biotin interaction or immobilized metal ion affinity chromatography for polymers tagged with biotin or histidine. The entire process, from polymerization to isolation, takes ~48 h. Moreover, the intracellular polymers thus generated demonstrate significant potential in enhancing actin polymerization, in bioimaging applications and as a novel avenue in cancer treatment strategies. The protocol extends to animal models, providing a comprehensive approach from cellular to systemic applications. Users are advised to have a basic understanding of organic synthesis and cell biology techniques.
Collapse
Affiliation(s)
- Mohamed Abdelrahim
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Quan Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yichuan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Weishuo Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qi Xing
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mark Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
| | - Jin Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
11
|
Rathee P, Edelstein-Pardo N, Koren G, Beck R, Amir RJ. Cascade Mesophase Transitions of Multi-enzyme Responsive Polymeric Formulations. Biomacromolecules 2024; 25:3607-3619. [PMID: 38776179 PMCID: PMC11170936 DOI: 10.1021/acs.biomac.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Studying how synthetic polymer assemblies respond to sequential enzymatic stimuli can uncover intricate interactions in biological systems. Using amidase- and esterase-responsive PEG-based diblock (DBA) and triblock amphiphiles (TBAs), we created two distinct formulations: amidase-responsive DBA with esterase-responsive TBA and vice versa. We studied their cascade responses to the two enzymes and the sequence of their introduction. These formulations underwent cascade mesophase transitions upon the addition of the DBA-degrading enzyme, transitioning from (i) coassembled micelles to (ii) triblock-based hydrogel, and ultimately to (iii) dissolved polymers when exposed to the TBA hydrolyzing enzyme. The specific pathway of the two mesophase transitions depended on the compositions of the formulations and the enzyme introduction sequence. The results highlight the potential for designing polymeric formulations with programmable multistep enzymatic responses, mimicking the complex behavior of biological macromolecules.
Collapse
Affiliation(s)
- Parul Rathee
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
| | - Nicole Edelstein-Pardo
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
| | - Gil Koren
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- School
of Physics and Astronomy, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roy Beck
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- School
of Physics and Astronomy, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roey J. Amir
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- ADAMA
Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Liu B, Radiom M, Zhou J, Yan H, Zhang J, Wu D, Sun Q, Xuan Q, Li Y, Mezzenga R. Cation Triggered Self-Assembly of α-Lactalbumin Nanotubes. NANO LETTERS 2024. [PMID: 38598498 DOI: 10.1021/acs.nanolett.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Metal ions play a dual role in biological systems. Although they actively participate in vital life processes, they may contribute to protein aggregation and misfolding and thus contribute to development of diseases and other pathologies. In nanofabrication, metal ions mediate the formation of nanostructures with diverse properties. Here, we investigated the self-assembly of α-lactalbumin into nanotubes induced by coordination with metal ions, screened among the series Mn2+, Co2+, Ni2+, Zn2+, Cd2+, and Au3+. Our results revealed that the affinity of metal ions toward hydrolyzed α-lactalbumin peptides not only impacts the kinetics of nanotube formation but also influences their length and rigidity. These findings expand our understanding of supramolecular assembly processes in protein-based materials and pave the way for designing novel materials such as metallogels in biochip and biosensor applications.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, P. R. China
| | - Milad Radiom
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Jiangtao Zhou
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Huiling Yan
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Jipeng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Di Wu
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Qiyao Sun
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Qize Xuan
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
- Department of Materials, ETH Zurich, 8092 Zürich, Switzerland
| |
Collapse
|
13
|
Guo Y, Tong Z, Huang Y, Tang J, Xue X, Yang D, Yao C. Dynamic Assembly of DNA Nanostructures in Cancer Cells Enables the Coupling of Autophagy Activating and Real-Time Tracking. NANO LETTERS 2024; 24:3532-3540. [PMID: 38457281 DOI: 10.1021/acs.nanolett.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Developing dynamic nanostructures for in situ regulation of biological processes inside living cells is of great importance in biomedical research. Herein we report the cascaded assembly of Y-shaped branched DNA nanostructure (YDN) during intracellular autophagy. YDN contains one arm with semi-i-motif sequence and Cy3-BHQ2, and another arm with an apurinic/apyrimidinic (AP) site and Cy5-BHQ3. Upon uptake by cancer cells, intermolecular i-motif structures are formed in response to lysosomal H+, causing the formation of YDN-dimer and the recovery of Cy3 fluorescence; when escapes occur from the lysosome to the cytoplasm, the YDN-dimer responds to the overexpressed APE1, leading to the assembly of YDN into the DNA network and the fluorescence recovery of Cy5. Simultaneously, the cascaded assembly activates autophagy, and thus the process of assembly of YDN and autophagy flux can be spatiotemporally coupled. This work illustrates the potential of DNA nanostructures for the in situ regulation of intracellular dynamic events with spatiotemporal control.
Collapse
Affiliation(s)
- Yanfei Guo
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Zhaobin Tong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Yan Huang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, P.R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
14
|
Xu D, Li Y, Yin S, Huang F. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications. Chem Soc Rev 2024; 53:3167-3204. [PMID: 38385584 DOI: 10.1039/d3cs00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
15
|
Qu W, Yang X, Huang X, Guo W, Dai Z. Electrochemiluminescence of iridium(III)/ruthenium(II) complexes with naphthyl tags in solutions and host-guest thin films. Dalton Trans 2024; 53:5284-5290. [PMID: 38410928 DOI: 10.1039/d3dt03922f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Herein we report electrochemiluminescence (ECL) generation from three new iridium(III)/ruthenium(II) (Ir(III)/Ru(II)) complexes with naphthyl (nap) tags in solutions and host-guest thin films. In comparison with its parent structure, the addition of a nap tag to [4-(2-naphthalenyl)-1,10-phenanthroline]bis(2,2'-bipyridine)ruthenium(II) results in a 6.1-fold enhancement in the ECL efficiency. Moreover, the nap tag enables the non-covalent immobilization of Ir(III)/Ru(II) complexes via host-guest interactions. Therefore, a molecular thin film was constructed by hydrophobic effects between the cavity of β-cyclodextrin and the nap tags, which emits stable and strong ECL emission in the presence of tri-n-propylamine (TPrA). These results give a mechanistic insight into ECL generation from (Ir(III)/Ru(II)) complexes with host-guest recognition tags and may help in the development of host-guest thin film-based ECL sensors.
Collapse
Affiliation(s)
- Weiyu Qu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xinrui Yang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaojin Huang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
16
|
Yu M, Ye Z, Liu S, Zhu Y, Niu X, Wang J, Ao R, Huang H, Cai H, Liu Y, Chen X, Lin L. Redox-Active Ferrocene Quencher-Based Supramolecular Nanomedicine for NIR-II Fluorescence-Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202318155. [PMID: 38109458 DOI: 10.1002/anie.202318155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/20/2023]
Abstract
Real-time monitoring of hydroxyl radical (⋅OH) generation is crucial for both the efficacy and safety of chemodynamic therapy (CDT). Although ⋅OH probe-integrated CDT agents can track ⋅OH production by themselves, they often require complicated synthetic procedures and suffer from self-consumption of ⋅OH. Here, we report the facile fabrication of a self-monitored chemodynamic agent (denoted as Fc-CD-AuNCs) by incorporating ferrocene (Fc) into β-cyclodextrin (CD)-functionalized gold nanoclusters (AuNCs) via host-guest molecular recognition. The water-soluble CD served not only as a capping agent to protect AuNCs but also as a macrocyclic host to encapsulate and solubilize hydrophobic Fc guest with high Fenton reactivity for in vivo CDT applications. Importantly, the encapsulated Fc inside CD possessed strong electron-donating ability to effectively quench the second near-infrared (NIR-II) fluorescence of AuNCs through photoinduced electron transfer. After internalization of Fc-CD-AuNCs by cancer cells, Fenton reaction between redox-active Fc quencher and endogenous hydrogen peroxide (H2 O2 ) caused Fc oxidation and subsequent NIR-II fluorescence recovery, which was accompanied by the formation of cytotoxic ⋅OH and therefore allowed Fc-CD-AuNCs to in situ self-report ⋅OH generation without undesired ⋅OH consumption. Such a NIR-II fluorescence-monitored CDT enabled the use of renal-clearable Fc-CD-AuNCs for efficient tumor growth inhibition with minimal side effects in vivo.
Collapse
Affiliation(s)
- Meili Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhuangjie Ye
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Siqin Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yang Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hongwei Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yina Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
17
|
Yan H, Liu X, Ding C, Liang G. Enzyme-Instructed Host-Guest Assembly/Disassembly for Biomedical Applications. Chembiochem 2024; 25:e202300648. [PMID: 37984845 DOI: 10.1002/cbic.202300648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Compared with the normal assembly/disassembly approaches, enzyme-instructed host-guest assembly/disassembly strategies due to their superior biocompatibility and specificity for specific substrates, can more effectively and precisely release molecules at lesions for reflecting in vivo biological events. Specifically, due to the over-expression of enzymes in specific tissues, the assembly/disassembly processes can directly occur on the pathological sites (or regions of interest), thus these enzyme-instructed processes are widely and effectively used for disease treatment or precise bioimaging. Based on it, we introduce the concept and major strategies of enzyme-instructed host-guest assembly/disassembly, illustrate their importance in the diagnosis and treatment of diseases, and review their advances in biomedical applications. Further, the challenges of these strategies in the clinic and future tendencies are also prospected.
Collapse
Affiliation(s)
- Hongzhe Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| |
Collapse
|
18
|
Cheng Q, Hao A, Xing P. Engineering π-Conjugation of Phenylalanine Derivatives for Controllable Chiral Folding and Self-Assemblies. ACS NANO 2024. [PMID: 38315078 DOI: 10.1021/acsnano.3c12063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
π-π stacking interaction is an attractive interaction that involves aromatic groups containing π-conjugated domains. It is a promising strategy for stabilizing folded structures with interesting chiroptical properties and manipulating the supramolecular chiral self-assembly process. In this study, we report the engineering of π-conjugated amino acids that utilize π-π stacking interactions to manipulate chiral folding as well as self-assembly evolution. Stepwise conjugation of phenyl, naphthyl, and pyrenyl to N-terminal phenylalanine derivatives witnessed the folding through intramolecular π-interactions in solution phase, which facilitated the formation of chiral geometry and the emergence of chiral optics. Introduction of aromatic domains efficiently lowers the critical aggregation concentration in the aqueous media. Molecular folding enables a special concentration-dependent self-assembly, whereby the supramolecular chirality accomplished inversion with the evolution of helical nanoarchitectures. This work develops a strategy to engineer π-conjugated amino acids with controllable folding behaviors, which also offers implications for the rational design of functional chiral materials.
Collapse
Affiliation(s)
- Qiuhong Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
19
|
Hu JJ, Lin N, Zhang Y, Xia F, Lou X. Nanofibers in Organelles: From Structure Design to Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202313139. [PMID: 37889872 DOI: 10.1002/anie.202313139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
Nanofibers are one of the most important morphologies of molecular self-assemblies, the formation of which relies on the diverse intermolecular interactions of fibrous-forming units. In the past decade, rapid advances have been made in the biomedical application of nanofibers, such as bioimaging and tumor treatment. An important topic to be focused on is not only the nanofiber formation mechanism but also where it forms, because different destinations could have different influences on cells and its formation could be triggered by unique stimuli in organelles. It is therefore necessary and timely to summarize the nanofibers assembled in organelles. This minireview discusses the formation mechanism, triggering strategies, and biomedical applications of nanofibers, which may facilitate the rational design of nanofibers, improve our understanding of the relationship between nanofiber properties and organelle characteristics, allow a comprehensive recognition of organelles affected by materials, and enhance the therapeutic efficiency of nanofibers.
Collapse
Affiliation(s)
- Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Niya Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yunfan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
20
|
Cheng Q, Hao A, Xing P. Selective chiral dimerization and folding driven by arene-perfluoroarene force. Chem Sci 2024; 15:618-628. [PMID: 38179513 PMCID: PMC10762935 DOI: 10.1039/d3sc05212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Oligomerization and folding of chiral compounds afford diversified chiral molecular architectures with interesting chiroptical properties, but their rational and precise control remain poorly understood. In this work, we employed arene-perfluoroarene (AP) interaction to manipulate the folding and dimerization of alanine derivatives bearing pyrene and a perfluoronaphthalene derivative. Based on X-ray crystallography and nuclear magnetic resonance, the compound with a smaller tether and high skeleton rigidity self-assembled into double helical dimers by duplex hydrogen bonding and AP forces in a less polar solvent. Reversible disassociation occurred upon switching to a dipolar solvent or applying heating-cooling cycles. In comparison, the compound with increased skeleton flexibility folds into chiral molecular clamps in a less polar solvent, and is transformed into planar dimers upon switching to a polar solvent. The dynamic geometrical transformation between dimerization and folding was accompanied by chiroptical switching. Beyond the molecular and supramolecular level, we showed hierarchy control in the self-assembled nanoarchitectures and columnar and lamellar arrangements of their molecular packing. This work utilized AP forces to prepare and manipulate the chiral architectures at different hierarchical levels, enriching methodologies in precise chiral synthetic chemistry.
Collapse
Affiliation(s)
- Qiuhong Cheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| |
Collapse
|
21
|
Jin L, Mao Z. Living virus-based nanohybrids for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1923. [PMID: 37619605 DOI: 10.1002/wnan.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Caoili SEC. B-Cell Epitope Prediction for Antipeptide Paratopes with the HAPTIC2/HEPTAD User Toolkit (HUT). Methods Mol Biol 2024; 2821:9-32. [PMID: 38997477 DOI: 10.1007/978-1-0716-3914-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
B-cell epitope prediction is key to developing peptide-based vaccines and immunodiagnostics along with antibodies for prophylactic, therapeutic and/or diagnostic use. This entails estimating paratope binding affinity for variable-length peptidic sequences subject to constraints on both paratope accessibility and antigen conformational flexibility, as described herein for the HAPTIC2/HEPTAD User Toolkit (HUT). HUT comprises the Heuristic Affinity Prediction Tool for Immune Complexes 2 (HAPTIC2), the HAPTIC2-like Epitope Prediction Tool for Antigen with Disulfide (HEPTAD) and the HAPTIC2/HEPTAD Input Preprocessor (HIP). HIP enables tagging of residues (e.g., in hydrophobic blobs, ordered regions and glycosylation motifs) for exclusion from downstream analyses by HAPTIC2 and HEPTAD. HAPTIC2 estimates paratope binding affinity for disulfide-free disordered peptidic antigens (by analogy between flexible-ligand docking and protein folding), from terms attributed to compaction (in view of sequence length, charge and temperature-dependent polyproline-II helical propensity), collapse (disfavored by residue bulkiness) and contact (with glycine and proline regarded as polar residues that hydrogen bond with paratopes). HEPTAD analyzes antigen sequences that each contain two cysteine residues for which the impact of disulfide pairing is estimated as a correction to the free-energy penalty of compaction. All of HUT is freely accessible online ( https://freeshell.de/~badong/hut.htm ).
Collapse
Affiliation(s)
- Salvador Eugenio C Caoili
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila, Philippines.
| |
Collapse
|
23
|
Zheng H, Tong X, Zhang Y, Yin P, Yi J, Chen Z, Lai H, Zhou W, Zhong L, Zhuo H, Peng X. Controllable and Reversible Assembly of Nanofiber from Natural Macromolecules via Protonation and Deprotonation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304196. [PMID: 37665232 DOI: 10.1002/smll.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Indexed: 09/05/2023]
Abstract
Nanofiber is the critical building block for many biological systems to perform various functions. Artificial assembly of molecules into nanofibers in a controllable and reversible manner will create "smart" functions to mimic those of their natural analogues and fabricate new functional materials, but remains an open challenge especially for nature macromolecules. Herein, the controllable and reversible assembly of nanofiber (CSNF) from natural macromolecules with oppositely charged groups are successfully realized by protonation and deprotonation of charged groups. By controlling the electrostatic interaction via protonation and deprotonation, the size and morphology of the assembled nanostructures can be precisely controlled. A strong electrostatic interaction contributes to large nanofiber with high strength, while poor electrostatic interaction produces finer nanofiber or nanoparticle. And especially, the assembly, disassembly, and reassembly of the nanofiber occurs reversibly through protonation and deprotonation, thereby paving a new way for precisely controlling the assembly process and structure of nanofiber. The reversible assembly allows the nanostructure to dynamically reorganize in response to subtle perturbation of environment. The as-prepared CSNF is mechanical strong and can be used as a nano building block to fabricate high-strength film, wire, and straw. This study offers many opportunities for the biomimetic synthesis of new functional materials.
Collapse
Affiliation(s)
- Hongzhi Zheng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xing Tong
- Department of Chemistry, UBC Faculty of Science, Vancouver Campus, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Yuping Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510641, China
| | - Jiwang Yi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zehong Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Haihong Lai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Wei Zhou
- Department of Mechanical Engineering, National University of Singapore, 3 Engineering Drive 2, Singapore, 117576, Singapore
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hao Zhuo
- Department of Mechanical Engineering, National University of Singapore, 3 Engineering Drive 2, Singapore, 117576, Singapore
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
24
|
Yang P, Peng Y, Dai X, Jie J, Kong D, Gu X, Yang Y. Bionic peptide scaffold in situ polarization and recruitment of M2 macrophages to promote peripheral nerve regeneration. Bioact Mater 2023; 30:85-97. [PMID: 37575879 PMCID: PMC10412994 DOI: 10.1016/j.bioactmat.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Tissue regeneration requires exogenous and endogenous signals, and there is increasing evidence that the exogenous microenvironment may play an even more dominant role in the complex process of coordinated multiple cells. The short-distance peripheral nerve showed a spontaneous regenerative phenomenon, which was initiated by the guiding role of macrophages. However, it cannot sufficiently restore long-distance nerve injury by itself. Based on this principle, we firstly constructed a proinflammatory model to prove that abnormal M2 expression reduce the guidance and repair effect of long-distance nerves. Furthermore, a bionic peptide hydrogel scaffold based on self-assembly was developed to envelop M2-derived regenerative cytokines and extracellular vesicles (EVs). The cytokines and EVs were quantified to mimic the guidance and regenerative microenvironment in a direct and mild manner. The bionic scaffold promoted M2 transformation in situ and led to proliferation and migration of Schwann cells, neuron growth and motor function recovery. Meanwhile, the peptide scaffold combined with CX3CL1 recruited more blood-derived M2 macrophages to promote long-distance nerve reconstruction. Overall, we systematically confirmed the important role of M2 in regulating and restoring the injury peripheral nerve. This bionic peptide hydrogel scaffold mimicked and remodeled the local environment for M2 transformation and recruitment, favoring long-distance peripheral nerve regeneration. It can help to explicate regulative effect of M2 may be a cause not just a consequence in nerve repair and tissue integration, which facilitating the development of pro-regenerative biomaterials.
Collapse
Affiliation(s)
- Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, PR China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, 150081, Harbin, PR China
| | - Yong Peng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, PR China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, PR China
| | - Jing Jie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University, 226001, Nantong, PR China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, PR China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, PR China
| |
Collapse
|
25
|
Guo Y, Li S, Tong Z, Tang J, Zhang R, Lv Z, Song N, Yang D, Yao C. Telomerase-Mediated Self-Assembly of DNA Network in Cancer Cells Enabling Mitochondrial Interference. J Am Chem Soc 2023; 145:23859-23873. [PMID: 37857277 DOI: 10.1021/jacs.3c09529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The precise control of the artificially induced reactions inside living cells is emerging as an effective strategy for the regulation of cell functions. Nevertheless, the manipulation of the assembly of exogenous molecules into artificial architectures in response to intracellular-specific signals remains a grand challenge. Herein, we achieve the precise self-assembly of deoxyribonucleic acid (DNA) network inside cancer cells, specifically responding to telomerase, and realize effective mitochondrial interference and the consequent regulation of cellular behaviors. Two functional DNA modules were designed: a mitochondria-targeting branched DNA and a telomerase-responsive linear DNA. Upon uptake by cancer cells, the telomerase primer in linear DNA responded to telomerase, and a strand displacement reaction was triggered by the reverse transcription of telomerase, thus releasing a linker DNA from the linear DNA. The linker DNA afterward hybridized with the branched DNA to form a DNA network on mitochondria. The DNA network interfered with the function of mitochondria, realizing the apoptosis of cancer cells. This system was further administered in a nude mouse tumor model, showing remarkable suppression of tumor growth. We envision that the telomerase-mediated intracellular self-assembly of the DNA network provides a promising route for cancer therapy.
Collapse
Affiliation(s)
- Yanfei Guo
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Siqi Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Zhaobin Tong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Rui Zhang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Zhaoyue Lv
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Nachuan Song
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
26
|
Liu YC, Liu GJ, Zhou W, Feng GL, Ma QY, Zhang Y, Xing GW. In Situ Self-Assembled J-Aggregate Nanofibers of Glycosylated Aza-BODIPY for Synergetic Cell Membrane Disruption and Type I Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202309786. [PMID: 37581954 DOI: 10.1002/anie.202309786] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
The in situ self-assembly of exogenous molecules is a powerful strategy for manipulating cellular behavior. However, the direct self-assembly of photochemically inert constituents into supramolecular nano-photosensitizers (PSs) within cancer cells for precise photodynamic therapy (PDT) remains a challenge. Herein, we developed a glycosylated Aza-BODIPY compound (LMBP) capable of self-assembling into J-aggregate nanofibers in situ for cell membrane destruction and type I PDT. LMBP selectively entered human hepatocellular carcinoma HepG2 cells and subsequently self-assembled into intracellular J-aggregate nanovesicles and nanofibers through supramolecular interactions. Detailed studies revealed that these J-aggregate nanostructures generated superoxide radicals (O2 - ⋅) exclusively through photoinduced electron transfer, thus enabling effective PDT. Furthermore, the intracellular nanofibers exhibited an aggregation-induced retention effect, which resulted in selective toxicity to HepG2 cells by disrupting their cellular membranes and synergizing with PDT for powerful tumor suppression efficacy in vivo.
Collapse
Affiliation(s)
- Yi-Chen Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guang-Jian Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Gai-Li Feng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qing-Yu Ma
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuan Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
27
|
Liu H, Yao Y, Samorì P. Taming Multiscale Structural Complexity in Porous Skeletons: From Open Framework Materials to Micro/Nanoscaffold Architectures. SMALL METHODS 2023; 7:e2300468. [PMID: 37431215 DOI: 10.1002/smtd.202300468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Recent developments in the design and synthesis of more and more sophisticated organic building blocks with controlled structures and physical properties, combined with the emergence of novel assembly modes and nanofabrication methods, make it possible to tailor unprecedented structurally complex porous systems with precise multiscale control over their architectures and functions. By tuning their porosity from the nanoscale to microscale, a wide range of functional materials can be assembled, including open frameworks and micro/nanoscaffold architectures. During the last two decades, significant progress is made on the generation and optimization of advanced porous systems, resulting in high-performance multifunctional scaffold materials and novel device configurations. In this perspective, a critical analysis is provided of the most effective methods for imparting controlled physical and chemical properties to multifunctional porous skeletons. The future research directions that underscore the role of skeleton structures with varying physical dimensions, from molecular-level open frameworks (<10 nm) to supramolecular scaffolds (10-100 nm) and micro/nano scaffolds (>100 nm), are discussed. The limitations, challenges, and opportunities for potential applications of these multifunctional and multidimensional material systems are also evaluated in particular by addressing the greatest challenges that the society has to face.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Yifan Yao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
28
|
Aloisio L, Moschetta M, Boschi A, Fleitas AG, Zangoli M, Venturino I, Vurro V, Magni A, Mazzaro R, Morandi V, Candini A, D'Andrea C, Paternò GM, Gazzano M, Lanzani G, Di Maria F. Insight on the Intracellular Supramolecular Assembly of DTTO: A Peculiar Example of Cell-Driven Polymorphism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302756. [PMID: 37364565 DOI: 10.1002/adma.202302756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Indexed: 06/28/2023]
Abstract
The assembly of supramolecular structures within living systems is an innovative approach for introducing artificial constructs and developing biomaterials capable of influencing and/or regulating the biological responses of living organisms. By integrating chemical, photophysical, morphological, and structural characterizations, it is shown that the cell-driven assembly of 2,6-diphenyl-3,5-dimethyl-dithieno[3,2-b:2',3'-d]thiophene-4,4-dioxide (DTTO) molecules into fibers results in the formation of a "biologically assisted" polymorphic form, hence the term bio-polymorph. Indeed, X-ray diffraction reveals that cell-grown DTTO fibers present a unique molecular packing leading to specific morphological, optical, and electrical properties. Monitoring the process of fiber formation in cells with time-resolved photoluminescence, it is established that cellular machinery is necessary for fiber production and a non-classical nucleation mechanism for their growth is postulated. These biomaterials may have disruptive applications in the stimulation and sense of living cells, but more crucially, the study of their genesis and properties broadens the understanding of life beyond the native components of cells.
Collapse
Affiliation(s)
- Ludovico Aloisio
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Matteo Moschetta
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Alex Boschi
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza S. Silvestro 12, Pisa, 56127, Italy
| | - Ariel García Fleitas
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Mattia Zangoli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Ilaria Venturino
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Vito Vurro
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Arianna Magni
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Raffaello Mazzaro
- Dipartimento di Fisica e Astronomia "Augusto Righi", Università di Bologna, Via C. Berti Pichat 6/2, Bologna, 40127, Italy
| | - Vittorio Morandi
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, 40129, Italy
| | - Andrea Candini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Cosimo D'Andrea
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Giuseppe Maria Paternò
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Massimo Gazzano
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Guglielmo Lanzani
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Francesca Di Maria
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| |
Collapse
|
29
|
Wu X, Zhang D, Pan T, Li J, Xie Y, Zhang C, Pan C, Zhang Z, Lin J, Wu A, Shao G. Stimuli-Responsive Codelivery System Self-Assembled from in Situ Dynamic Covalent Reaction of Macrocyclic Disulfides for Cancer Magnetic Resonance Imaging and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44773-44785. [PMID: 37721368 DOI: 10.1021/acsami.3c10245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Supramolecular self-assembly has gained increasing attention to construct multicomponent drug delivery systems for cancer diagnosis and therapy. Despite that these self-assembled nanosystems present surprising properties beyond that of each subcomponent, the spontaneous nature of co-self-assembly causes significant difficulties in control of the synthesis process and consequently leads to unsatisfactory influences in downstream applications. Hence, we utlized an in situ dynamic covalent reaction based on thiol-disulfide exchange to slowly produce disulfide macrocycles, which subsequently triggered the co-self-assembly of an anticancer drug (doxorubicin, DOX) and a magnetic resonance imaging (MRI) contrast agent of ultrasmall iron oxide nanoparticles (IO NPs). It showed concentration regulation of macrocyclic disulfides, DOX, and IO NPs by a dynamic covalent self-assembly (DCS) strategy, resulting in a stable codelivery nanosystem with high drug loading efficiency of 37.36%. More importantly, disulfide macrocycles in the codelivery system could be reduced and broken by glutathione (GSH) in tumor cells, thus leading to disassembly of nanostructures and intellgent release of drugs. These stimuli-responsive performances have been investigated via morphologies and molecular structures, revealing greatly enhanced dual-modal MRI abilities and smart drug release under the trigger of GSH. Moreover, the codelivery system conjugated with a targeting molecule of cyclic Arg-Gly-Asp (cRGD) exhibited significant biocompatibility, MR imaging, and chemotherapeutic anticancer effect in vitro and in vivo. These results indicated that in situ dynamic covalent chemistry enhanced the control over co-self-assembly and paved the way to develop more potential drug delivery systems.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials, Chinese Academy of Sciences, Ningbo 315201, China
| | - Dinghu Zhang
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| | - Ting Pan
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, FI-20520 Turku, Finland
| | - Yujiao Xie
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chenguang Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chunshu Pan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhewei Zhang
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials, Chinese Academy of Sciences, Ningbo 315201, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials, Chinese Academy of Sciences, Ningbo 315201, China
| | - Guoliang Shao
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| |
Collapse
|
30
|
Dam P, Celik M, Ustun M, Saha S, Saha C, Kacar EA, Kugu S, Karagulle EN, Tasoglu S, Buyukserin F, Mondal R, Roy P, Macedo MLR, Franco OL, Cardoso MH, Altuntas S, Mandal AK. Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv 2023; 13:21345-21364. [PMID: 37465579 PMCID: PMC10350660 DOI: 10.1039/d3ra03477a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
The intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.
Collapse
Affiliation(s)
- Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Merve Celik
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koç University Istanbul 34450 Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Sayantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Chirantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Elif Ayse Kacar
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Senanur Kugu
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Elif Naz Karagulle
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Savaş Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University Istanbul Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University Istanbul Turkey
| | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Priya Roy
- Department of Law, Raiganj University North Dinajpur West Bengal India
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Marlon H Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
- Centre for Nanotechnology Sciences (CeNS), Raiganj University North Dinajpur West Bengal India
| |
Collapse
|
31
|
Yang X, Gao S, Yang B, Yang Z, Lou F, Huang P, Zhao P, Guo J, Fang H, Chu B, He M, Wang N, Chan AHL, Chan RHF, Wang Z, Bian L, Zhang K. Bioinspired Tumor-Targeting and Biomarker-Activatable Cell-Material Interfacing System Enhances Osteosarcoma Treatment via Biomineralization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2302272. [PMID: 37211693 PMCID: PMC10401161 DOI: 10.1002/advs.202302272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Indexed: 05/23/2023]
Abstract
Osteosarcoma is an aggressive malignant tumor that primarily develops in children and adolescents. The conventional treatments for osteosarcoma often exert negative effects on normal cells, and chemotherapeutic drugs, such as platinum, can lead to multidrug resistance in tumor cells. Herein, this work reports a new bioinspired tumor-targeting and enzyme-activatable cell-material interface system based on DDDEEK-pY-phenylboronic acid (SAP-pY-PBA) conjugates. Using this tandem-activation system, this work selectively regulates the alkaline phosphatase (ALP) triggered anchoring and aggregation of SAP-pY-PBA conjugates on the cancer cell surface and the subsequent formation of the supramolecular hydrogel. This hydrogel layer can efficiently kill osteosarcoma cells by enriching calcium ions from tumor cells and forming a dense hydroxyapatite layer. Owing to the novel antitumor mechanism, this strategy neither hurts normal cells nor causes multidrug resistance in tumor cells, thereby showing an enhanced tumor treatment effect than the classical antitumor drug, doxorubicin (DOX). The outcome of this research demonstrates a new antitumor strategy based on a bioinspired enzyme-responsive biointerface combining supramolecular hydrogels with biomineralization.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Simin Gao
- Department of Otorhinolaryngology and Sleep Medicine Center, West China School of Public Health and West China Forth Hospital, Sichuan University, Chengdu, 610065, China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Zhinan Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Feng Lou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Pei Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengchao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Jiaxin Guo
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Huapan Fang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bingyang Chu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610065, China
| | - Miaomiao He
- Analytical and Testing Center, Sichuan University, Chengdu, 610065, China
| | - Ning Wang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Anthony Hei Long Chan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, Hong Kong, 999077, China
| | - Raymond Hon Fu Chan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, Hong Kong, 999077, China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Nature-Inspired Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
32
|
Abstract
Self-assembly processes exist widely in life systems and play essential roles in maintaining life activities. It is promising to explore the molecular fundamentals and mechanisms of life systems through artificially constructing self-assembly systems in living cells. As an excellent self-assembly construction material, deoxyribonucleic acid (DNA) has been widely used to achieve the precise construction of self-assembly systems in living cells. This review focuses on the recent progress of DNA-guided intracellular self-assembly. First, the methods of intracellular DNA self-assembly based on the conformational transition of DNA are summarized, including complementary base pairing, the formation of G-quadruplex/i-motif, and the specific recognition of DNA aptamer. Next, The applications of DNA-guided intracellular self-assembly on the detection of intracellular biomolecules and the regulation of cell behaviors are introduced, and the molecular design of DNA in the self-assembly systems is discussed in detail. Ultimately, the challenges and opportunities of DNA-guided intracellular self-assembly are commented.
Collapse
Affiliation(s)
- Jinqiao Liu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Zhaobin Tong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Guangshuai Teng
- Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315200, P.R. China
| |
Collapse
|
33
|
Shen Q, Song Q, Mai Z, Lee KR, Yoshioka T, Guan K, Gonzales RR, Matsuyama H. When self-assembly meets interfacial polymerization. SCIENCE ADVANCES 2023; 9:eadf6122. [PMID: 37134177 PMCID: PMC10156122 DOI: 10.1126/sciadv.adf6122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Interfacial polymerization (IP) and self-assembly are two thermodynamically different processes involving an interface in their systems. When the two systems are incorporated, the interface will exhibit extraordinary characteristics and generate structural and morphological transformation. In this work, an ultrapermeable polyamide (PA) reverse osmosis (RO) membrane with crumpled surface morphology and enlarged free volume was fabricated via IP reaction with the introduction of self-assembled surfactant micellar system. The mechanisms of the formation of crumpled nanostructures were elucidated via multiscale simulations. The electrostatic interactions among m-phenylenediamine (MPD) molecules, surfactant monolayer and micelles, lead to disruption of the monolayer at the interface, which in turn shapes the initial pattern formation of the PA layer. The interfacial instability brought about by these molecular interactions promotes the formation of crumpled PA layer with larger effective surface area, facilitating the enhanced water transport. This work provides valuable insights into the mechanisms of the IP process and is fundamental for exploring high-performance desalination membranes.
Collapse
Affiliation(s)
- Qin Shen
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Qiangqiang Song
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Ralph Rolly Gonzales
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
34
|
Wang W, Zhang L, Liu Z, Zhang Y, Zhu J, Liu M, Ren J, Qu X. Selective Methionine Pool Exhaustion Mediated by a Sequential Positioned MOF Nanotransformer for Intense Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211866. [PMID: 37097776 DOI: 10.1002/adma.202211866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Cancer cells are addictive to exogenous methionine to gear toward tumor proliferation. Meanwhile, they can replenish methionine pool from polyamine metabolism through a methionine salvage pathway. However, the current developed therapeutic tactics for methionine depletion are still facing great challenges in terms of the selectivity, safety, and efficiency. Herein, a sequential positioned metal-organic framework (MOF) nanotransformer is designed to selectively exhaust the methionine pool via inhibiting the uptake of methionine and throttling its salvage pathway for enhanced cancer immunotherapy. The MOF nanotransformer can restrain the open source and reduce the reflux of methionine to exhaust the methionine pool of cancer cells. Moreover, the intracellular traffic routes of the sequential positioned MOF nanotransformer match well with the distribution of polyamines, which is conducive to the oxidation of polyamines via its responsive deformability and nanozyme-augmented Fenton-like reaction for the final exhaustion of intracellular methionine. These results verify that the well-designed platform cannot only kill cancer cells efficiently but also promote the infiltration of CD8 and CD4 T cells for intensive cancer immunotherapy. Overall, it is believed that this work will inspire the construction of novel MOF-based antineoplastic platforms and provide new insights into the development of metabolic-related immunotherapy.
Collapse
Affiliation(s)
- Wenjie Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanjie Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiawei Zhu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mengmeng Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|
35
|
Chemical gas sensor, surface enhanced Raman scattering and photoelectrics of composite Langmuir-Blodgett films consisting of polypeptide and dye molecules. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
36
|
Yang X, Xu Y, Huang X, Hang J, Guo W, Dai Z. Multicolor Iridium(III) Complexes with Host-Guest Recognition Motifs for Enhanced Electrochemiluminescence and Modular Labeling. Anal Chem 2023; 95:4543-4549. [PMID: 36820622 DOI: 10.1021/acs.analchem.2c05698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Cyclometalated Ir(III) complexes with high electrochemiluminescence (ECL) efficiency and appropriate bioconjugation sites are urgently needed in ECL immunoassays (ECLIA). Herein, we report the synthesis, photophysics, electrochemistry, and ECL of six new Ir(III) complexes bearing naphthyl (nap) or adamantane phenyl (adap) substitutions, four of which emit cyan, green, or red light and display 1.7- to 7.5-fold increases in ECL intensity. In combination with DFT/TDDFT calculations, this enhancement is rationalized to the augmented radiative rate that arises from both the strengthened spin-orbit coupling (SOC) and the increased transition dipole moment. In addition, the adap-based Ir(III) complex shows high binding affinity with β-cyclodextrin (β-CD) due to the strong hydrophobic interaction, which enables us to develop a modular strategy for the labeling of Ir(III) complexes with biomolecules and to use hydrophobic luminophores in the aqueous-phase detection. As demonstrated, a novel ECLIA is built up and exhibits a wide linear range from 1 ng/mL to 10 μg/mL and a detection limit of 72 pg/mL for the determination of C-reactive protein (CRP). These findings provide new insights into the design, synthesis, and bio-labeling of highly emissive Ir(III) complexes and pave the way for the development of novel ECLIA based on host-guest recognition motifs.
Collapse
Affiliation(s)
- Xinrui Yang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yingying Xu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiaojin Huang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Junmeng Hang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
37
|
He L, Zhang T, Zhu C, Yan T, Liu J. Crown Ether-Based Ion Transporters in Bilayer Membranes. Chemistry 2023; 29:e202300044. [PMID: 36723493 DOI: 10.1002/chem.202300044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
Bilayer membranes that enhance the stability of the cell are essential for cell survival, separating and protecting the interior of the cell from its external environment. Membrane-based channel proteins are crucial for sustaining cellular activities. However, dysfunction of these proteins would induce serial channelopathies, which could be substituted by artificial ion channel analogs. Crown ethers (CEs) are widely studied in the area of artificial ion channels owing to their intrinsic host-guest interaction with different kinds of organic and inorganic ions. Other advantages such as lower price, chemical stability, and easier modification also make CE a research hotspot in the field of synthetic transmembrane nanopores. And numerous CEs-based membrane-active synthetic ion channels were designed and fabricated in the past decades. Herein, the recent progress of CEs-based synthetic ion transporters has been comprehensively summarized in this review, including their design principles, functional mechanisms, controllable properties, and biomedical applications. Furthermore, this review has been concluded by discussing the future opportunities and challenges facing this research field. It is anticipated that this review could offer some inspiration for the future fabrication of novel CEs-derived ion transporters with more advanced structures, properties, and practical applications.
Collapse
Affiliation(s)
- Lei He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Tianlong Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Canhong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| |
Collapse
|
38
|
Xie C, Chen Z, Chen K, Hu Y, Pan L. Regulating the Polymerization of DNA Structures via Allosteric Control of Monomers. ACS NANO 2023; 17:1505-1510. [PMID: 36633930 DOI: 10.1021/acsnano.2c10456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Regulation of self-assembly is crucial in constructing structural biomaterials, such as tunable DNA nanostructures. Traditional tuning of self-assembled DNA nanostructures was mainly conducted by introducing external stimuli after the assembly process. Here, we explored the allosteric assembly of DNA structures via introducing external stimuli during the assembly process to produce structurally heterogeneous polymerization products. We demonstrated that ethidium bromide (EB), a DNA intercalator, could increase the left-handed out-of-plane chirality of curved DNA structures. Then, EB and double strands were introduced as competing stimuli to transform monomers into allosteric conformations, leading to three different polymerization products. The steric trap between different polymerization products promoted the polymerized structures to keep their geometric properties, like chirality, under varying intensity of external stimuli. Our strategy harnesses allosteric effects for assembly of DNA-based materials and is expected to expand the design space for advanced control in synthetic materials.
Collapse
Affiliation(s)
- Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, 050043 Hebei, China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| |
Collapse
|
39
|
Chen J, Hooley RJ, Zhong W. Applications of Synthetic Receptors in Bioanalysis and Drug Transport. Bioconjug Chem 2022; 33:2245-2253. [PMID: 35362963 DOI: 10.1021/acs.bioconjchem.2c00096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Synthetic receptors are powerful tools for molecular recognition. They can bind to guests with high selectivity and affinity, and their structures are tunable and diversified. These features, plus the relatively low cost and high simplicity in synthesis and modification, support the feasibility of array-based molecular analysis with synthetic receptors for improved selectivity in the recognition of a wide range of targets. More attractively, host-guest interaction is reversible and guest displacement allows biocompatible and gentle release of the host-bound molecules, simplifying the stimulation designs needed to control analyte sensing, enrichment, and transportation. Here, we highlight a few recent advancements in using synthetic receptors for molecular analysis and manipulation, with the focus on macrocyclic receptors and their applications in displacement sensing, separation, imaging, and drug transport.
Collapse
|
40
|
Liang X, Zhang Y, Zhou J, Bu Z, Liu J, Zhang K. Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
41
|
Hao L, Wang A, Fu J, Sen Liang, Han Q, Jing Y, Li J, Li Q, Bai S, Seeberger PH, Yin J. Biomineralized Dipeptide Self-Assembled Hydrogel with Ultrahigh Mechanical Strength and Osteoinductivity for Bone Regeneration. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Kaup R, Velders AH. Controlling Trapping, Release, and Exchange Dynamics of Micellar Core Components. ACS NANO 2022; 16:14611-14621. [PMID: 36107137 PMCID: PMC9527800 DOI: 10.1021/acsnano.2c05144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Whereas the formation and overall stability of hierarchically organized self-assembled supramolecular structures have been extensively investigated, the mechanistic aspects of subcomponent dynamics are often poorly understood or controlled. Here we show that the dynamics of polyamidoamine (PAMAM) dendrimer based micelles can be manipulated by changes in dendrimer generation, pH, and stoichiometry, as proven by NMR and FRET. For this, dendrimers were functionalized with either fluorescein (donor) or rhodamine (acceptor) and encapsulated into separate micelles. Upon mixing, exchange of dendrimers is revealed by an increase in FRET. While dendrimicelles based on dendrimer generations 4 and 5 show a clear increase in FRET in time, revealing the dynamic exchange of dendrimers between micellar cores, generation 6 based micelles appear to be kinetically trapped systems. Interestingly, generation 6 based dendrimicelles prepared at a pH of 7.8 rather than 7.0 do show exchange dynamics, which can be attributed to about 25% less charge of the dendrimer, corresponding to the charge of a virtual generation 5.5 dendrimer at neutral pH. Changing the pH of dendrimicelle solutions prepared at a pH of 7.8 to 7.0 shows the activated release of dendrimers. High-resolution NMR spectra of the micellar core are obtained from a 1.2 GHz spectrometer with sub-micromolar sensitivity, with DOSY discriminating released dendrimers from dendrimers still present in the micellar core. This study shows that dendrimer generation, charge density, and stoichiometry are important mechanistic factors for controlling the dynamics of complex coacervate core micelles. This knowledge can be used to tune micelles between kinetically trapped and dynamic systems, with tuning of exchange and/or release speeds, to be tailored for applications in, e.g., material science, sensors, or drug delivery.
Collapse
Affiliation(s)
- Rebecca Kaup
- Laboratory
of BioNanoTechnology, Wageningen University. Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Aldrik H. Velders
- Laboratory
of BioNanoTechnology, Wageningen University. Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Instituto
Regional de Investigacion Cientifica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| |
Collapse
|
43
|
Chudasama SJ, Shah BJ, Patel KM, Dhameliya TM. The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Wang J, Wang X, Yang K, Hu S, Wang W. Self-Assembly of Small Organic Molecules into Luminophores for Cancer Theranostic Applications. BIOSENSORS 2022; 12:683. [PMID: 36140068 PMCID: PMC9496225 DOI: 10.3390/bios12090683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Self-assembled biomaterials have been widely explored for real-time fluorescence imaging, imaging-guided surgery, and targeted therapy for tumors, etc. In particular, small molecule-based self-assembly has been established as a reliable strategy for cancer theranostics due to the merits of small-sized molecules, multiple functions, and ease of synthesis and modification. In this review, we first briefly introduce the supramolecular chemistry of small organic molecules in cancer theranostics. Then, we summarize and discuss advanced small molecule-based self-assembly for cancer theranostics based on three types, including peptides, amphiphilic molecules, and aggregation-induced emission luminogens. Finally, we conclude with a perspective on future developments of small molecule-based self-assembled biomaterials integrating diagnosis and therapy for biomedical applications. These applications highlight the opportunities arising from the rational design of small organic molecules with self-assembly properties for precision medicine.
Collapse
Affiliation(s)
- Jing Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Xueliang Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Sijun Hu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Wanhe Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| |
Collapse
|
45
|
Guo Y, Huang S, Sun H, Wang Z, Shao Y, Li L, Li Z, Song F. Tuning the aqueous self-assembly of porphyrins by varying the number of cationic side chains. J Mater Chem B 2022; 10:5968-5975. [PMID: 35876007 DOI: 10.1039/d2tb00720g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to their excellent electronic and optical properties, porphyrins are extensively studied conjugated macrocycles in supramolecular chemistry for assembling functional nanomaterials. Although the aggregation of monomers plays a significant role in driving the self-assembly process into ordered nanostructures, it remains a challenge for tuning the self-assembling behavior of porphyrins through molecular structure modifications, especially in aqueous solutions. In the present work, two novel water-soluble porphyrin derivatives were synthesized by introducing cationic linear side chains into the π-conjugated core for phosphate-templated assembly through electrostatic interactions. It was found that the stacking patterns (H- or J-type aggregation) of porphyrins could be tuned by varying the number of side chains, which are associated with dramatic morphological change. The cytotoxicity and photodynamic properties of the J-aggregation-driven nano-assemblies were also investigated for the purpose of anti-cancer treatment. This study demonstrates a facile and effective strategy to regulate the aqueous self-assembling behavior of porphyrins that can impact the structure and properties of assembly, which will be of great benefit to the design and synthesis of functional nanomaterials for specific applications.
Collapse
Affiliation(s)
- Yanhui Guo
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China.
| | - Shuheng Huang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Han Sun
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China.
| | - Zhe Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yutong Shao
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China.
| | - Lukun Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China.
| | - Zhiliang Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China.
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
46
|
Ohtake T, Ito H, Toyoda N. Amphiphilic Polymers for Color Dispersion: Toward Stable and Low-Viscosity Inkjet Ink. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7618-7627. [PMID: 35679371 DOI: 10.1021/acs.langmuir.2c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amphiphilic random and block copolymers were synthesized as potential inkjet inks. This study evaluated the potential of these polymers for color dispersion by examining the following factors: surface tension, zeta potential, viscosity, and particle size. Acrylic acid and (ethoxyethoxy)ethyl acrylate were used as the hydrophilic molecular units. Styrene, butyl acrylate, and phenoxyethyl acrylate were used as hydrophobic units. Color dispersions were prepared by using organic dye and these amphiphilic polymers. The color dispersions containing random copolymers exhibited low viscosity, which is preferable for jetting, but the dye particles tended to sediment after the thermal aging test. In contrast, those containing block copolymers showed high viscosity, which was unsuitable for jetting. However, they retained their initial dispersion state after the aging test. The advantages and disadvantages of each monomer arrangement (random or block) were demonstrated, providing a future outlook on the molecular design of polymer dispersants for color dispersions.
Collapse
Affiliation(s)
- Toshihiro Ohtake
- Environment and Materials Development Department, Corporate Research and Development Division, Seiko Epson Corporation, 80 Harashinden, Hirooka, Shiojiri, Nagano 399-0785, Japan
| | - Hiroshi Ito
- Environment and Materials Development Department, Corporate Research and Development Division, Seiko Epson Corporation, 80 Harashinden, Hirooka, Shiojiri, Nagano 399-0785, Japan
| | - Naoyuki Toyoda
- Environment and Materials Development Department, Corporate Research and Development Division, Seiko Epson Corporation, 80 Harashinden, Hirooka, Shiojiri, Nagano 399-0785, Japan
| |
Collapse
|