1
|
Zong Z, Zhang X, Liu N, Jung SM, Oh J, Ke XS. Iso-dibenzo[ g, p]chrysene-Fused Bis-dicarbaporphyrin: Pd Coordination-Induced Global Aromaticity and Stabilization of Double In-Plane Pd(IV) Cations. J Am Chem Soc 2025; 147:12777-12785. [PMID: 40193696 DOI: 10.1021/jacs.5c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
An iso-dibenzo[g,p]chrysene (DBC)-fused bis-dicarbaporphyrin (4) with two adj-CCNN cores was synthesized. This bis-dicarbaporphyrin can be regarded as an isomer of the previously reported DBC-fused bis-dicarbacorrole obtained by tuning the orientation of the DBC bridge. This subtle change has significant impacts on structure and properties. As prepared, 4 has a highly twisted figure-eight conformation, whereas DBC-fused bis-dicarbacorrole adopts roughly a planar conformation with slight distortion. The incorporation of two Pd(II) cations can induce a transformation in the molecular framework, resulting in a curved, arch-shaped π-system. Utilizing crystallographic data, along with the electron density of delocalized bonds (EDDB), electron localization function-π (ELF-π), harmonic oscillator model of aromaticity (HOMA), the anisotropy of the induced current density (ACID), and nucleus-independent chemical shift (NICS) calculations, a 34π-electron global aromatic pathway was elucidated for the bis-Pd(II) complex (5). The Pd coordination-induced global aromaticity is a distinctive feature that has not been observed in the previously reported bis-Pd complexes of DBC-fused bis-dicarbacorrole. Moreover, the treatment of 5 with CuCl2 leads to the formation of a rare in-plane bis-Pd(IV) complex 6 with two axial coordinated Cl anions. The bis-Pd(IV) complex retains the global aromatic feature and arch-shaped conformation. To our knowledge, this is the first well-defined in-plane bis-Pd(IV) organometallic complex using a porphyrinoid-type macrocyclic ligand.
Collapse
Affiliation(s)
- Zhaohui Zong
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaotong Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ningchao Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Sang Mok Jung
- Research Institute for Basic Science, Soonchunhyang University, Asan 31538, Korea
| | - Juwon Oh
- Research Institute for Basic Science, Soonchunhyang University, Asan 31538, Korea
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
| | - Xian-Sheng Ke
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Borstelmann J, Zank S, Krug M, Berger G, Fröhlich N, Glotz G, Gnannt F, Schneider L, Rominger F, Deschler F, Clark T, Gescheidt G, Guldi DM, Kivala M. Helically Chiral Mixed-Valence Systems Comprising N-Heterotriangulenes: Stabilization of the Cationic Species by π-Expansion. Angew Chem Int Ed Engl 2025; 64:e202423516. [PMID: 39928900 DOI: 10.1002/anie.202423516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/12/2025]
Abstract
We report the efficient stabilization of nitrogen-centered radical cations in a dimeric N-heterotriangulene bridged by a rigid π-conjugated [5]helicene backbone (NTH). The rigid scaffold exhibits helical chirality, allowing the enantiomers to be separated and their chiroptical properties studied, including circular dichroism (CD) and circularly polarized luminescence (CPL). Successive oxidation towards the radical cation NTH⋅+ and dication NTH2+ reveals strong electronic communication between the two nitrogen-centers, as demonstrated by X-ray crystallography, electrochemistry, UV/Vis/nIR spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. CD measurements of the enantiomerically pure cations reveal strong Cotton effects in the nIR region extending up to 2000 nm. Density functional theory confirms the observed enhanced electronic communication, classifying NTH⋅+ as a Robin-Day Class III mixed-valence charge-transfer (MV-CT) system. NTH2+ exhibits a quinoidal structure with partial diradical character and open-shell singlet ground state, as shown by variable temperature EPR measurements. Time-resolved transient absorption spectroscopy shows the photo-induced generation of NTH⋅+ in the presence of a suitable electron acceptor.
Collapse
Affiliation(s)
- Jan Borstelmann
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Simon Zank
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Marcel Krug
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Georg Berger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Nina Fröhlich
- Department of Chemistry and Pharmacy, Chair of Organic Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Gabriel Glotz
- Institute of Physical and Theoretical Chemistry, Technical University Graz, Stremayrgasse 9/II, 8010, Graz, Austria
| | - Frederik Gnannt
- Department of Chemistry and Pharmacy, Chair of Organic Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Lars Schneider
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Felix Deschler
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstr. 25, 91052, Erlangen, Germany
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Technical University Graz, Stremayrgasse 9/II, 8010, Graz, Austria
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Milan Kivala
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Dalberto K, Dzieszkowski K, Orzeł Ł, Chmielewski PJ, Pawlicki M. Conjugation Paths in Oxatriphyrin(2.1.1) - C2 Bridge Modifications. Chempluschem 2025; 90:e202400636. [PMID: 39367790 DOI: 10.1002/cplu.202400636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/07/2024]
Abstract
An efficiency of delocalization in strongly conjugated systems remains an important factor crucial for modulation of the optical properties directly correlated with its range. An ortho-substituted phenylene derivative bearing electron donating/accepting functionality was built-in a fully unsaturated macrocyclic system with a global delocalization of a diatropic and/or a paratropic current. A precisely located structural modification influence observed behaviour in spectroscopic parameters that are only slightly recognizable in 4n+2 systems but showing a significant influence on the reduced derivatives with a contribution of 4n π-electrons delocalization path.
Collapse
Affiliation(s)
- Kevin Dalberto
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. St. Łojasiewicza 11, 30-348, Kraków, Poland
| | | | - Łukasz Orzeł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Piotr J Chmielewski
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Miłosz Pawlicki
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
4
|
Shainyan BA. Aromaticity and Chirality: New Facets of Old Concepts. Molecules 2024; 29:5394. [PMID: 39598783 PMCID: PMC11596870 DOI: 10.3390/molecules29225394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The review summarizes the results of previous and the latest studies on aromaticity and related concepts. The electron counting rule for 3D-aromatic systems 2(n + 1)2 is shown to be a generalization of the 4n + 2 rule for planar molecules, and, vice versa, the latter can be derived from the former. The relative stability of the push-pull and captodative aromatic systems is shown to depend on the nature of the groups separated by the C=C bond in geminal or vicinal positions. The fully symmetrical molecules of hexamethylbenzene and hexacyanobenzene were studied using structural, energetic, and NMR criteria, and the donor substituents were shown to increase the aromaticity. Taking into account the coincidence of the number of π-electrons in aromatic systems with the number of electrons on the filled electron subshells (s, p, d, and f) and considering electrons as objects in a space of states allowed to conclude that no g-elements can exist and that the extension of the Periodic Table is possible only by filling 6f, 7d, or 8s subshells. The dimensionality of space also affects the chirality of molecules, making planar or even linear molecules chiral on oriented surfaces, which can be used for the preparation of enantiomerically pure drugs, resolution of prochiral compounds, etc.
Collapse
Affiliation(s)
- Bagrat A Shainyan
- Institute of Chemistry, Siberian Division of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|
5
|
Ma Y, Han Y, Hou X, Wu S, Chi C. Facile Synthesis and Global Aromaticity of Aza-Superbenzene and Aza-Supernaphthalene at Different Oxidation States. Angew Chem Int Ed Engl 2024; 63:e202407990. [PMID: 38958027 DOI: 10.1002/anie.202407990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
All-benzenoid polycyclic aromatic hydrocarbons or macrocycles usually display localized aromaticity. On the other hand, incorporation of quinoidal units into the skeleton could lead to effective electron delocalization and global (anti)aromaticity. In this work, fully π-conjugated macrocycle 1 and bismacrocycle 2 containing both para-quinodimethane and triphenylamine units are efficiently synthesized mainly through intermolecular Friedel-Crafts alkylation reaction. They can be considered as a tetraazasuperbenzene and a hexaazasupernaphthalene, respectively, due to their similar geometry and electronic structures to the benzene and naphthalene. X-ray crystallographic analyses reveal a largely planar geometry for both 1 and 2 and variable-temperature NMR measurements disclose slow dynamic processes owing to restricted ring flipping of the phenyl rings. 1 and 2 can be easily oxidized into higher-oxidation-state species. NMR and theoretical calculations indicate that 12+ and 14+ show global anti-aromaticity and aromaticity, respectively, with a dominant 32π and 30π conjugation pathway, while for the bismacrocycle 2, its dication 22+, tetracation 24+ and hexacation 26+ exhibit global aromaticity, antiaromaticity, and aromaticity with a 54π, 52π and 50π conjugation pathway along the outermost backbone, respectively.
Collapse
Affiliation(s)
- Yunhan Ma
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xudong Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
6
|
Shi Y, Li C, Di J, Xue Y, Jia Y, Duan J, Hu X, Tian Y, Li Y, Sun C, Zhang N, Xiong Y, Jin T, Chen P. Polycationic Open-Shell Cyclophanes: Synthesis of Electron-Rich Chiral Macrocycles, and Redox-Dependent Electronic States. Angew Chem Int Ed Engl 2024; 63:e202402800. [PMID: 38411404 DOI: 10.1002/anie.202402800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
π-Conjugated chiral nanorings with intriguing electronic structures and chiroptical properties have attracted considerable interests in synthetic chemistry and materials science. We present the design principles to access new chiral macrocycles (1 and 2) that are essentially built on the key components of main-group electron-donating carbazolyl moieties or the π-expanded aza[7]helicenes. Both macrocycles show the unique molecular conformations with a (quasi) figure-of-eight topology as a result of the conjugation patterns of 2,2',7,7'-spirobifluorenyl in 1 and triarylamine-coupled aza[7]helicene-based building blocks in 2. This electronic nature of redox-active, carbazole-rich backbones enabled these macrocycles to be readily oxidized chemically and electrochemically, leading to the sequential production of a series of positively charged polycationic open-shell cyclophanes. Their redox-dependent electronic states of the resulting multispin polyradicals have been characterized by VT-ESR, UV/Vis-NIR absorption and spectroelectrochemical measurements. The singlet (ΔES-T=-1.29 kcal mol-1) and a nearly degenerate singlet-triplet ground state (ΔES-T(calcd)=-0.15 kcal mol-1 and ΔES-T(exp)=0.01 kcal mol-1) were proved for diradical dications 12+2⋅ and 22+2⋅, respectively. Our work provides an experimental proof for the construction of electron-donating new chiral nanorings, and more importantly for highly charged polyradicals with potential applications in chirospintronics and organic conductors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yuting Xue
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiaoyu Hu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yu Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yanqiu Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Cuiping Sun
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Niu Zhang
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Yan Xiong
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Tianyun Jin
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography University of California, San Diego La Jolla, 92093, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
7
|
Wu S, Han Y, Ni Y, Hou X, Wei H, Li Z, Wu J. Unveiling Möbius/Hückel Topology and Aromaticity in A Core-Expanded [10]Annulene at Different Oxidation States. Angew Chem Int Ed Engl 2024; 63:e202320144. [PMID: 38243691 DOI: 10.1002/anie.202320144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
The exploration of annulene's conformation, electronic properties and aromaticity has generated enduring interest over the years, yet it continues to present formidable challenges for annulenes with more than ten carbon atoms. In this study, we present the synthesis of a stable [10]cyclo-para-phenylmethine derivative (1), which bears a resemblance to [10]annulene. 1 can be readily oxidized into its respective cations, wherein electrons are effectively delocalized along the backbone, resulting in different conformations and aromaticity. Both 1 and its tetracation (14+ ⋅ 4SbF6 - ) exhibit a nearly planar conformation with a rectangular shape, akin to the E,Z,E,Z,Z-[10]annulene. In contrast, the radical cation (1⋅+ ⋅ SbCl6 - ) possesses a doubly twisted Hückel topology. Furthermore, the dication (12+ ⋅ 2SbCl6 - ) displays conformational flexibility in solution and crystalizes with the simultaneous presence of Möbius-twisted (1a2+ ⋅ 2SbCl6 - ) and Hückel-planar (1b2+ ⋅ 2SbCl6 - ) isomers in its unit cell. Detailed experimental measurements and theoretical calculations reveal that: (1) 1 demonstrates localized aromaticity with an alternating benzenoid/quinoid structure; (2) 1a2+ ⋅ 2SbCl6 - and 1b2+ ⋅ 2SbCl6 - with 48π electrons are weakly Möbius aromatic and Hückel antiaromatic, respectively; (3) 14+ ⋅ 4SbF6 - exhibits Hückel aromaticity (46π) and open-shell diradical character.
Collapse
Affiliation(s)
- Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Yong Ni
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Xudong Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Haipeng Wei
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Zhengtao Li
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province, 32400, P. R. China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
8
|
Jana P, Koppayithodi S, Mahato S, Molla S, Bandyopadhyay S. Stable Diradical on the Dimethyldihydropyrene Scaffold. J Phys Chem Lett 2023; 14:7433-7439. [PMID: 37578893 DOI: 10.1021/acs.jpclett.3c01808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The diradical character in a molecular architecture can be customized primarily in two ways: first, by employing a quinoidal pro-aromatic system with net energy gained by aromatization that compensates for the energy required to generate the diradical species and, second, by employing an antiaromatic system having easily accessible triplet states that impart a diradical character. We have chosen a 14π aromatic framework, Boekelheide's dimethyldihydropyrene, and perturbed its aromaticity through the construction of its quinoidal form. The perturbed aromaticity was evident from the bond alteration in the X-ray diffraction structure, 1H nuclear magnetic resonance chemical shifts, and quantum chemical calculations. The aromaticity was restored as the system underwent a transition to the biradical structure centered on two exocyclic carbons. In addition, upon photoexcitation and without using an external reducing reagent, the diradical could be converted to a radical anion and dianion form easily when dimethylformamide was used as a solvent.
Collapse
Affiliation(s)
- Palash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sudeep Koppayithodi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Samyadeb Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741246, India
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Sariful Molla
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
9
|
Han H, Huang Y, Tang C, Liu Y, Krzyaniak MD, Song B, Li X, Wu G, Wu Y, Zhang R, Jiao Y, Zhao X, Chen XY, Wu H, Stern CL, Ma Y, Qiu Y, Wasielewski MR, Stoddart JF. Spin-Frustrated Trisradical Trication of PrismCage. J Am Chem Soc 2023; 145:18402-18413. [PMID: 37578165 DOI: 10.1021/jacs.3c04340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Organic trisradicals featuring threefold symmetry have attracted significant interest because of their unique magnetic properties associated with spin frustration. Herein, we describe the synthesis and characterization of a triangular prism-shaped organic cage for which we have coined the name PrismCage6+ and its trisradical trication─TR3(•+). PrismCage6+ is composed of three 4,4'-bipyridinium dications and two 1,3,5-phenylene units bridged by six methylene groups. In the solid state, PrismCage6+ adopts a highly twisted conformation with close to C3 symmetry as a result of encapsulating one PF6- anion as a guest. PrismCage6+ undergoes stepwise reduction to its mono-, di-, and trisradical cations in MeCN on account of strong electronic communication between its 4,4'-bipyridinium units. TR3(•+), which is obtained by the reduction of PrismCage6+ employing CoCp2, adopts a triangular prism-shaped conformation with close to C2v symmetry in the solid state. Temperature-dependent continuous-wave and nutation-frequency-selective electron paramagnetic resonance spectra of TR3(•+) in frozen N,N-dimethylformamide indicate its doublet ground state. The doublet-quartet energy gap of TR3(•+) is estimated to be -0.08 kcal mol-1, and the critical temperature of spin-state conversion is found to be ca. 50 K, suggesting that it displays pronounced spin frustration at the molecular level. To the best of our knowledge, this example is the first organic radical cage to exhibit spin frustration. The trisradical trication of PrismCage6+ opens up new possibilities for fundamental investigations and potential applications in the fields of both organic cages and spin chemistry.
Collapse
Affiliation(s)
- Han Han
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuheng Huang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Molecular Quantum Transduction, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Chun Tang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yiming Liu
- Beijing National Laboratory for Molecular Sciences, Centre for the Soft Matter Science and Engineering, The Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Matthew D Krzyaniak
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Molecular Quantum Transduction, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuesong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Guangcheng Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yong Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ruihua Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Centre for the Soft Matter Science and Engineering, The Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yunyan Qiu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Molecular Quantum Transduction, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Sugiura S, Kubo T, Haketa Y, Hori Y, Shigeta Y, Sakai H, Hasobe T, Maeda H. Deprotonation-Induced and Ion-Pairing-Modulated Diradical Properties of Partially Conjugated Pyrrole-Quinone Conjunction. J Am Chem Soc 2023; 145:8122-8129. [PMID: 36976916 DOI: 10.1021/jacs.3c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Quinoidal molecules based on dipyrrolyldiketone boron complexes (QPBs), in which pyrrole units were connected by a partially conjugated system as a singlet spin coupler, were synthesized. QPB, which was stabilized by the introduction of a benzo unit at the pyrrole β-positions, formed a closed-shell tautomer conformation that showed near-infrared absorption. The deprotonated species, monoanion QPB- and dianion QPB2-, showing over 1000 nm absorption, were formed by the addition of bases, providing ion pairs in combination with countercations. Diradical properties were observed in QPB2-, whose hyperfine coupling constants were modulated by ion-pairing with π-electronic and aliphatic cations, demonstrating cation-dependent diradical properties. VT NMR and ESR along with a theoretical study revealed that the singlet diradical was more stable than the triplet diradical.
Collapse
Affiliation(s)
- Shinya Sugiura
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| |
Collapse
|
11
|
Wu S, Ni Y, Han Y, Xin S, Hou X, Zhu J, Li Z, Wu J. Aromaticity in Fully π-Conjugated Open-Cage Molecules. J Am Chem Soc 2022; 144:23158-23167. [DOI: 10.1021/jacs.2c10859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yong Ni
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shan Xin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Xudong Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jun Zhu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhengtao Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
12
|
Wei H, Hou X, Xu T, Zou Y, Li G, Wu S, Geng Y, Wu J. Solution‐Phase Synthesis and Isolation of An Aza‐Triangulene and Its Cation in Crystalline Form. Angew Chem Int Ed Engl 2022; 61:e202210386. [DOI: 10.1002/anie.202210386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Haipeng Wei
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Xudong Hou
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Tingting Xu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ya Zou
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Guangwu Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shaofei Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yanhou Geng
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Jishan Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
13
|
Xin S, Han Y, Fan W, Wang X, Ni Y, Wu J. Enhanced Aromaticity and Open‐Shell Diradical Character in the Dianions of 9‐Fluorenylidene‐Substituted Expanded Radialenes. Angew Chem Int Ed Engl 2022; 61:e202209448. [DOI: 10.1002/anie.202209448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Shan Xin
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350507 China
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yi Han
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Wei Fan
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Xuhui Wang
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yong Ni
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350507 China
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
14
|
Wei H, Hou X, Xu T, Zou Y, Li G, Wu S, Geng Y, Wu J. Solution‐Phase Synthesis and Isolation of An Aza‐Triangulene and Its Cation in Crystalline Form. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haipeng Wei
- National University of Singapore Chemistry SINGAPORE
| | - Xudong Hou
- National University of Singapore Chemistry SINGAPORE
| | - Tingting Xu
- National University of Singapore Chemistry SINGAPORE
| | - Ya Zou
- National University of Singapore Chemistry SINGAPORE
| | - Guangwu Li
- National University of Singapore Chemistry SINGAPORE
| | - Shaofei Wu
- National University of Singapore Chemistry SINGAPORE
| | - Yanhou Geng
- National University of Singapore Chemistry SINGAPORE
| | - Jishan Wu
- National University of Singapore Chemistry 3 Science Drive 3 117543 Singapore SINGAPORE
| |
Collapse
|
15
|
Xin S, Han Y, Fan W, Wang X, Ni Y, Wu J. Enhanced Aromaticity and Open‐shell Diradical Character in The Dianions of 9‐Fluorenylidene Substituted Expanded Radialenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shan Xin
- National University of Singapore Chemistry SINGAPORE
| | - Yi Han
- National University of Singapore Chemistry SINGAPORE
| | - Wei Fan
- National University of Singapore Chemistry SINGAPORE
| | - Xuhui Wang
- National University of Singapore Chemistry SINGAPORE
| | - Yong Ni
- National University of Singapore Chemistry SINGAPORE
| | - Jishan Wu
- National University of Singapore Chemistry 3 Science Drive 3 117543 Singapore SINGAPORE
| |
Collapse
|
16
|
El Bakouri O, Szczepanik DW, Jorner K, Ayub R, Bultinck P, Solà M, Ottosson H. Three-Dimensional Fully π-Conjugated Macrocycles: When 3D-Aromatic and When 2D-Aromatic-in-3D? J Am Chem Soc 2022; 144:8560-8575. [PMID: 35523019 PMCID: PMC9121391 DOI: 10.1021/jacs.1c13478] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Several fully π-conjugated
macrocycles with puckered or cage-type
structures were recently found to exhibit aromatic character according
to both experiments and computations. We examine their electronic
structures and put them in relation to 3D-aromatic molecules (e.g., closo-boranes) and to 2D-aromatic
polycyclic aromatic hydrocarbons. Using qualitative theory combined
with quantum chemical calculations, we find that the macrocycles explored
hitherto should be described as 2D-aromatic with three-dimensional
molecular structures (abbr. 2D-aromatic-in-3D) and not as truly 3D-aromatic.
3D-aromatic molecules have highly symmetric structures (or nearly
so), leading to (at least) triply degenerate molecular orbitals, and
for tetrahedral or octahedral molecules, an aromatic closed-shell
electronic structure with 6n + 2 electrons. Conversely,
2D-aromatic-in-3D structures exhibit aromaticity that results from
the fulfillment of Hückel’s 4n + 2
rule for each macrocyclic path, yet their π-electron counts
are coincidentally 6n + 2 numbers for macrocycles
with three tethers of equal lengths. It is notable that 2D-aromatic-in-3D
macrocyclic cages can be aromatic with tethers of different lengths, i.e., with π-electron counts different from 6n + 2, and they are related to naphthalene. Finally, we
identify tetrahedral and cubic π-conjugated molecules that fulfill
the 6n + 2 rule and exhibit significant electron
delocalization. Yet, their properties resemble those of analogous
compounds with electron counts that differ from 6n + 2. Thus, despite the fact that these molecules show substantial
π-electron delocalization, they cannot be classified as true
3D-aromatics.
Collapse
Affiliation(s)
- Ouissam El Bakouri
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala 751 20, Sweden.,Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 6, Girona, Catalonia 17003, Spain
| | - Dariusz W Szczepanik
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 6, Girona, Catalonia 17003, Spain.,K. Guminski Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Kjell Jorner
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala 751 20, Sweden
| | - Rabia Ayub
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala 751 20, Sweden
| | - Patrick Bultinck
- Department of Chemistry, Ghent University, Krijgslaan 281 S3, Gent 9000, Belgium
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 6, Girona, Catalonia 17003, Spain
| | - Henrik Ottosson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala 751 20, Sweden
| |
Collapse
|