1
|
Merschel A, Heda S, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Annulated carbocyclic gallylene and bis-gallylene with two-coordinated Ga(i) atoms. Chem Sci 2024:d4sc06782g. [PMID: 39781217 PMCID: PMC11706234 DOI: 10.1039/d4sc06782g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/09/2024] [Indexed: 01/12/2025] Open
Abstract
The first carbocyclic gallylene [(ADC)2Ga(GaI2)] and bis-gallylene [(ADC)Ga]2 (ADC = PhC{N(Dipp)C}2; Dipp = 2,6-iPr2C6H3) featuring a central C4Ga2 ring annulated between two 1,3-imidazole rings are prepared by KC8 reductions of [(ADC)GaI2]2. Treatment of [(ADC)Ga]2 with Fe2(CO)9 affords complex [(ADC)GaFe(CO)4]2 in which each Ga(i) atom serves as a two-electron donor. [(ADC)Ga]2 activates white phosphorus (P4) and the Csp2 -F bond of aryl fluorides (ArF) to yield compounds [(ADC)Ga(P4)]2 and cis-/trans-[(ADC)GaF(Ar)]2, respectively. [(ADC)Ga]2 undergoes oxidation with (Me2S)AuCl to give [(ADC)GaCl2]2, while with PhN[double bond, length as m-dash]NPh it forms [1 + 4]-cycloaddition product [(ADC)GaN(Ph)N[double bond, length as m-dash]C6H5]2 by the dearomatization of one of the phenyl rings.
Collapse
Affiliation(s)
- Arne Merschel
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Shkelqim Heda
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| |
Collapse
|
2
|
Squire I, Tritto M, Morell J, Bakewell C. Probing the reactivity of a transient Al(I) species with substituted arenes. Chem Commun (Camb) 2024; 60:12908-12911. [PMID: 39417244 DOI: 10.1039/d4cc03904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
With only a handful of compounds known, opportunities to explore the structure and reactivity of dialumenes and related dialumene adducts have been limited. For the first time, a series of dialumene-arene adducts have been synthesised; adduct formation has been probed experimentally and through DFT, and their reactivity investigated.
Collapse
Affiliation(s)
- Imogen Squire
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK.
| | - Michelangelo Tritto
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK.
| | - Juliana Morell
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK.
| | - Clare Bakewell
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK.
| |
Collapse
|
3
|
Saddington A, Dong S, Yao S, Zhu J, Driess M. Bis-Silylene-Supported Aluminium Atoms with Aluminylene and Alane Character. Angew Chem Int Ed Engl 2024; 63:e202410790. [PMID: 39024421 DOI: 10.1002/anie.202410790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The suitability of electron-rich bis-silylenes, specifically the neutral chelating [SiII(Xant)SiII] ligand (SiII=PhC(NtBu)2Si, Xant=9,9-dimethylxanthene) and the anionic [SiII(NAcrid)SiII)]- pincer ligand (NAcrid=2,7,9,9-tetramethylacridane), has been successfully probed to stabilize monovalent bis-silylene-supported aluminium complexes (aluminylenes). At first, the unprecedented aluminium(III) iodide precursors [SiII(Xant)SiII]AlI2 + I- 1 and [SiII(NAcrid)SiII)]AlI2 2 were synthesized using AlI3 and [SiII(Xant)SiII] or [SiII(NAcrid)SiII)]Li(OEt2)], respectively, and structurally characterized. While reduction of 1 with KC8 led merely to unidentified products, the dehalogenation of 2 afforded the dimer of the desired {[SiII(NAcrid)SiII)]Al:} aluminylene with a four-membered SiIV 2AlIII 2 ring. Remarkably, the proposed aluminylene intermediates [SiII(Xant)SiII]AlII and {[SiII(NAcrid)SiII)]Al:} could be produced through reaction of 1 and 2 with Collman's reagent, K2Fe(CO)4, and trapped as AlI:→Fe(CO)4 complexes 5 and 6, respectively. While 6 is stable in solution, 5 loses one CO ligand in solution to afford the silylene- and aluminylene-coordinated iron(0) complex 7 from an intramolecular substitution reaction. The electronic structures of the novel compounds were investigated by Density Functional Theory calculations.
Collapse
Affiliation(s)
- Artemis Saddington
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Jun Zhu
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, No. 2001 Longxiang Blvd., Longgang Dist., Shenzhen, Guangdong, 518172, China
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
4
|
Zhang C, Gilliard RJ, Cummins CC. Arene extrusion as an approach to reductive elimination at boron: implication of carbene-ligated haloborylene as a transient reactive intermediate. Chem Sci 2024:d4sc05524a. [PMID: 39416303 PMCID: PMC11472773 DOI: 10.1039/d4sc05524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Herein, we report boron-centered arene extrusion reactions to afford putative cyclic(alkyl)(amino) carbene (CAAC)-ligated chloroborylene and bromoborylene intermediates. The borylene precursors, chloro-boranorbornadiene (ClB(C6Me6), 2Cl) and bromo-boranorbornadiene (BrB(C6Me6), 2Br) were synthesized through the reaction of the corresponding 1-halo-2,3,4,5-tetramethylborole dimer (XBC4Me4)2 (X = Cl, 1Cl; X = Br, 1Br) with 2-butyne. Treatment of 2Cl with CAACs resulted in the release of di-coordinate chloro-borylene (CAAC)BCl from hexamethylbenzene (C6Me6) at room temperature. In contrast, the reaction of 2Br with CAAC led to the formation of a boronium species [(CAAC)BC6Me6]+Br- (7) at room temperature. Heating 7 in toluene promoted the release of di-coordinate bromo-borylene (CAAC)BBr as a transient species. Surprisingly, heating 7 in dichloromethane resulted in the C-H activation of hexamethylbenzene. The conversion of a CAAC-stabilized bromo-borepin to a borylene, a boron-centered retro Büchner reaction, was also investigated.
Collapse
Affiliation(s)
- Chonghe Zhang
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| |
Collapse
|
5
|
Liu X, Dong S, Zhu J, Inoue S. Dialumene as a Dimeric or Monomeric Al Synthon for C-F Activation in Monofluorobenzene. J Am Chem Soc 2024; 146:23591-23597. [PMID: 39165246 PMCID: PMC11345846 DOI: 10.1021/jacs.4c08171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024]
Abstract
The activation of C-F bonds has long been regarded as the subject of research in organometallic chemistry, given their synthetic relevance and the fact that fluorine is the most abundant halogen in the Earth's crust. However, C-F bond activation remains a largely unsolved challenge due to the high bond dissociation energies, which was historically dominated by transition metal complexes. Main group elements that can cleave unactivated monofluorobenzene are still quite rare and restricted to s-block complexes with a biphilic nature. Herein, we demonstrate an Al-mediated activation of monofluorobenzene using a neutral dialumene, allowing for the synthesis of the formal oxidative addition products at either double or single aluminum centers. This neutral dialumene system introduces a novel methodology for C-F bond activation based on formal oxidative addition and reductive elimination processes around the two aluminum centers, as demonstrated by combined experimental and computational studies. A "masked" alumylene was unprecedentedly synthesized to prove the proposed reductive elimination pathway. Furthermore, the synthetic utility is highlighted by the functionalization of the resulting aryl-aluminum compounds.
Collapse
Affiliation(s)
- Xufang Liu
- TUM
School of Natural Sciences, Department of Chemistry, Institute of
Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, Garching bei München 85748, Germany
| | - Shicheng Dong
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials (iChem), Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- School
of Science and Engineering, The Chinese
University of Hong Kong, Shenzhen 518172, China
| | - Shigeyoshi Inoue
- TUM
School of Natural Sciences, Department of Chemistry, Institute of
Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, Garching bei München 85748, Germany
| |
Collapse
|
6
|
Sarkar D, Vasko P, Roper AF, Crumpton AE, Roy MMD, Griffin LP, Bogle C, Aldridge S. Reversible [4 + 1] Cycloaddition of Arenes by a "Naked" Acyclic Aluminyl Compound. J Am Chem Soc 2024; 146:11792-11800. [PMID: 38626444 PMCID: PMC11066863 DOI: 10.1021/jacs.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024]
Abstract
The large steric profile of the N-heterocyclic boryloxy ligand, -OB(NDippCH)2, and its ability to stabilize the metal-centered HOMO, are exploited in the synthesis of the first example of a "naked" acyclic aluminyl complex, [K(2.2.2-crypt)][Al{OB(NDippCH)2}2]. This system, which is formed by substitution at AlI (rather than reduction of AlIII), represents the first O-ligated aluminyl compound and is shown to be capable of hitherto unprecedented reversible single-site [4 + 1] cycloaddition of benzene. This chemistry and the unusual regioselectivity of the related cycloaddition of anthracene are shown to be highly dependent on the availability (or otherwise) of the K+ countercation.
Collapse
Affiliation(s)
- Debotra Sarkar
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Petra Vasko
- Department
of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, P.O. Box 55, Helsinki FI-00014, Finland
| | - Aisling F. Roper
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Agamemnon E. Crumpton
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Matthew M. D. Roy
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Liam P. Griffin
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Charlotte Bogle
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Simon Aldridge
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| |
Collapse
|
7
|
He M, Hu C, Wei R, Wang XF, Liu LL. Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements. Chem Soc Rev 2024; 53:3896-3951. [PMID: 38436383 DOI: 10.1039/d3cs00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rui Wei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
8
|
Merschel A, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Access to a peri-Annulated Aluminium Compound via C-H Bond Activation by a Cyclic Bis-Aluminylene. Chemistry 2024; 30:e202400293. [PMID: 38345596 DOI: 10.1002/chem.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Carbocyclic aluminium halides [(ADC)AlX2]2 (2-X) (X=F, Cl, and I) based on an anionic dicarbene (ADC=PhC{N(Dipp)C}2, Dipp = 2,6-iPr2C6H3) framework are prepared as crystalline solids by dehydrohalogenations of the alane [(ADC)AlH2]2 (1). KC8 reduction of 2-I affords the peri-annulated Al(III) compound [(ADCH)AlH]2 (4) (ADCH=PhC{N(Dipp)C2(DippH)N}, DippH=2-iPr,6-(Me2C)C6H3)) as a colorless crystalline solid in 76 % yield. The formation of 4 suggests intramolecular insertion of the putative bis-aluminylene species [(ADC)Al]2 (3) into the methine C-H bond of HCMe2 group. Calculations predict singlet ground state for 3, while the conversion of 3 into 4 is thermodynamically favored by 61 kcal/mol. Compounds 2-F, 2-Cl, 2-I, and 4 have been characterized by NMR spectroscopy and their solid-state molecular structures have been established by single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Arne Merschel
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
9
|
Kurumada S, Yamanashi R, Sugita K, Kubota K, Ito H, Ikemoto S, Chen C, Moriyama T, Muratsugu S, Tada M, Koitaya T, Ozaki T, Yamashita M. Mechanochemical Synthesis of Non-Solvated Dialkylalumanyl Anion and XPS Characterization of Al(I) and Al(II) Species. Chemistry 2024; 30:e202303073. [PMID: 38018466 DOI: 10.1002/chem.202303073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 11/30/2023]
Abstract
A non-solvated alkyl-substituted Al(I) anion dimer was synthesized by a reduction of haloalumane precursor using a mechanochemical method. The crystallographic and theoretical analysis revealed its structure and electronic properties. Experimental XPS analysis of the Al(I) anions with reference compounds revealed the lower Al 2p binding energy corresponds to the lower oxidation state of Al species. It should be emphasized that the experimentally obtained XPS binding energies were reproduced by delta SCF calculations and were linearly correlated with NPA charges and 2p orbital energies.
Collapse
Grants
- 21H01915 Ministry of Education, Culture, Sports, Science and Technology
- 22H00335 Ministry of Education, Culture, Sports, Science and Technology
- 20H04808 Ministry of Education, Culture, Sports, Science and Technology
- 23H01973 Ministry of Education, Culture, Sports, Science and Technology
- JPMJCR19R1 Japan Science and Technology Corporation
- JPMJFR201I Japan Science and Technology Corporation
- 202115731 Japan Society for the Promotion of Science London
- 22J23885 Japan Society for the Promotion of Science London
Collapse
Affiliation(s)
- Satoshi Kurumada
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Aichi, Japan
| | - Ryotaro Yamanashi
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Aichi, Japan
| | - Kengo Sugita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Aichi, Japan
| | - Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, 060-8628, Sapporo, Hokkaido, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, 060-8628, Sapporo, Hokkaido, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, 060-8628, Sapporo, Hokkaido, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, 060-8628, Sapporo, Hokkaido, Japan
| | - Satoru Ikemoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Aichi, Japan
| | - Chaoqi Chen
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Aichi, Japan
| | - Takumi Moriyama
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Aichi, Japan
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Aichi, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8602, Nagoya, Aichi, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Aichi, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8602, Nagoya, Aichi, Japan
- Research Center for Materials Science (RCMS), Nagoya University, Furo-cho, Chikusa-ku, 464-8602, Nagoya, Aichi, Japan
| | - Takanori Koitaya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, 606-8502, Kyoto, Japan
| | - Taisuke Ozaki
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8581, Kashiwa, Chiba, Japan
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Aichi, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8602, Nagoya, Aichi, Japan
| |
Collapse
|
10
|
Kuroki K, Ito T, Takaya J. Reversible Boron-Insertion into Aromatic C-C Bonds. Angew Chem Int Ed Engl 2023; 62:e202312980. [PMID: 37735101 DOI: 10.1002/anie.202312980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Formation of borabicyclo[3.2.0]heptadiene derivatives was achieved via boron-insertion into aromatic C-C bonds in the photo-promoted skeletal rearrangement reaction of triarylboranes bearing an ortho-phosphino substituent (ambiphilic phosphine-boranes). The borabicyclo[3.2.0]heptadiene derivatives were fully characterized by NMR and X-ray analyses. The dearomatized products were demonstrated to undergo the reverse reaction in the dark at room temperature, realizing photochemical and thermal interconversion between triarylboranes and boron-doped bicyclic systems. Experimental and theoretical studies revealed that sequential two electrocyclic reactions involving E/Z-isomerization of an alkene moiety proceed via a highly strained trans-borepin intermediate.
Collapse
Affiliation(s)
- Kaito Kuroki
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Tatsuyoshi Ito
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Jun Takaya
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
11
|
Zhu H, Fujimori S, Kostenko A, Inoue S. Dearomatization of C 6 Aromatic Hydrocarbons by Main Group Complexes. Chemistry 2023; 29:e202301973. [PMID: 37535350 DOI: 10.1002/chem.202301973] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
The dearomatization reaction is a powerful method for transformation of simple aromatic compounds to unique chemical architectures rapidly in synthetic chemistry. Over the past decades, the chemistry in this field has evolved significantly and various important organic compounds such as crucial bioactive molecules have been synthesized through dearomatization. In general, photochemical conditions or assistance by transition metals are required for dearomatization of rigid arenes. Recently, main-group elements, especially naturally abundant elements in the Earth's crust, have attracted attention as they have low toxicity and are cost-effective compared to the late transition metals. In recent decades, a variety of low-valent main-group molecules, which enable the activation of stable aromatic compounds under mild conditions, have been developed. This minireview highlights the developments in the chemistry of dearomatization of C6 aromatic hydrocarbons by main-group compounds leading to the formation of seven-membered EC6 (E=main-group elements) ring or cycloaddition products.
Collapse
Affiliation(s)
- Huaiyuan Zhu
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| | - Shiori Fujimori
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| |
Collapse
|
12
|
Liu HC, Ruan K, Ma K, Fei J, Lin YM, Xia H. Synthesis of metalla-dual-azulenes with fluoride ion recognition properties. Nat Commun 2023; 14:5583. [PMID: 37696902 PMCID: PMC10495402 DOI: 10.1038/s41467-023-41250-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Azulene-based conjugated systems are of great interests due to their unusual structures and photophysical properties. Incorporation of a transition metal into azulene skeleton presents an intriguing opportunity to combine the dπ-pπ and pπ-pπ conjugated properties. No such metallaazulene skeleton however has been reported to date. Here, we describe our development of an efficient [5 + 2] annulation reaction to rapid construction of a unique metal-containing [5-5-7] scaffold, termed metalla-dual-azulene (MDA), which includes a metallaazulene and a metal-free organic azulene intertwined by sharing the tropylium motif. The two azulene motifs in MDA exhibit distinct reactivities. The azulene motif readily undergoes nucleophilic addition, leading to N-, O- and S-substituted cycloheptanetrienyl species. Demetalation of the metallaazulene moiety occurs when it reacts with nBu4NF, which enables highly selective recognition of fluoride anion and a noticeable color change. The practical [5 + 2] annulation methodology, facile functional-group modification, high and selective fluoride detection make this new π-conjugated polycyclic system very suitable for potential applications in photoelectric and sensing materials.
Collapse
Affiliation(s)
- Hai-Cheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Kaidong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Kexin Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Yu-Mei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China.
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China.
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
13
|
Zhang X, Liu LL. Crystalline Neutral Aluminum Selenide/Telluride: Isoelectronic Aluminum Analogues of Carbonyls. J Am Chem Soc 2023; 145:15729-15734. [PMID: 37459288 DOI: 10.1021/jacs.3c05954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Neutral aluminum chalcogenides (R-Al(L)═Ch; L = ligand, Ch = chalcogen), stabilized by a Lewis base ligand, represent isoelectronic counterparts to carbonyl compounds and have long been pursued for isolation. Herein, we present the synthesis of an aluminum selenide, [N]-Al(iPr2-bimy)═Se, and an aluminum telluride, [N]-Al(iPr2-bimy)═Te, under ambient conditions ([N] = 1,8-bis(3,5-di-tert-butylphenyl)-3,6-di-tert-butylcarbazolyl; iPr2-bimy = 1,3-diisoproplylbenzimidazole-2-ylidene). These compounds arise from the oxidation reaction of [N]-Al(iPr2-bimy) with Se and (nBu)3P═Te, respectively. One notable characteristic of the Al and Ch interaction is the presence of an Al-Ch σ bond, strengthened by the electrostatic attraction between the Al+ and Ch- centers as well as the donation of lone pairs from Ch into vacant orbitals at Al. This results in an Al-Ch multiple bond with an ambiphilic nature. Preliminary investigations into their reactivity unveil their remarkable propensity for facile (cyclo)addition reactions with diverse substrates, including PhCCH, PhCN, AdN3, MeI, PhSiH3, and C6F6, leading to the formation of unprecedented main group heterocycles and alumachalcogenides.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Zhu M, Chai Z, Lv ZJ, Li T, Liu W, Wei J, Zhang WX. Selective Cleavage of the Strong or Weak C-C Bonds in Biphenylene Enabled by Rare-Earth Metals. J Am Chem Soc 2023; 145:6633-6638. [PMID: 36917557 DOI: 10.1021/jacs.3c01466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Selective cleavage of C-C bonds within arene rings is of great interest but remains elusive, especially for the molecules possessing the active and inert C-C bonds. Here, we report that the active and inert C-C bonds of biphenylene could be controllably cleaved by the reaction of biphenylene, potassium graphite, and rare-earth complexes with different metal centers. For scandium, the bond activation occurs at the Caryl-Caryl single bond, yielding 9-scandafluorene. For Lu, the reaction goes through ring contraction of the aromatic ring in biphenylene to provide benzopentalene dianionic lutetium. The origin of the selectivity and the reaction mechanism were illustrated by the isolation of intermediates and DFT calculations.
Collapse
Affiliation(s)
- Miaomiao Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhengqi Chai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ze-Jie Lv
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tianyu Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Xu F, Zhu J. Probing a General Strategy to Break the C-C Bond of Benzene by a Cyclic (Alkyl)(Amino)Aluminyl Anion. Chemistry 2023; 29:e202203216. [PMID: 36349746 DOI: 10.1002/chem.202203216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/10/2022]
Abstract
The oxidative addition of C-C bonds in aromatic hydrocarbons by low valent main group species has attracted considerable attention from both theoretical and experimental chemists due to the big challenge in breaking their aromaticity. Herein, a general strategy to break the C-C bonds in benzene by cyclic (alkyl)(amino)aluminyl anion is demonstrated via density functional theory (DFT) calculations. The results suggest that the activation of the C-C bond of benzene by this anion is both kinetically and thermodynamically unfavorable whereas introducing electron-withdrawing groups makes such C-C bond activation becomes favorable both kinetically and thermodynamically. Such a sharp change on the kinetics and thermodynamics could be rationalized by the frontier molecular orbital theory by decreasing the lowest unoccupied molecular orbitals of the mono- and disubstituted benzenes. Aromaticity is found to stabilize the transition state for the ring open step. All these findings can help develop the chemistry of small-molecule activation.
Collapse
Affiliation(s)
- Fangzhou Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
16
|
Loh YK, Melaimi M, Munz D, Bertrand G. An Air-Stable "Masked" Bis(imino)carbene: A Carbon-Based Dual Ambiphile. J Am Chem Soc 2023; 145:2064-2069. [PMID: 36649656 DOI: 10.1021/jacs.2c12847] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Carbenes, once considered laboratory curiosities, now serve as powerful tools in the chemical and material sciences. To date, all stable singlet carbenes are single-site ambiphiles. Here we describe the synthesis of a carbene which is a carbon-based dual ambiphile (both single-site and dual-site). The key is to employ imino substituents derived from a cyclic (alkyl)(amino)carbene (CAAC), which imparts a 1,3-dipolar character to the carbene. Its dual ambiphilic nature is consistent with the ability to activate simple organic molecules in both 1,1- and 1,3-fashion. Furthermore, its 1,3-ambiphilicity facilitates an unprecedented reversible intramolecular dearomative [3 + 2] cycloaddition with a proximal arene substituent, giving the carbene the ability to "mask" itself as an air-stable cycloadduct. We perceive that the concept of dual ambiphilicity opens a new dimension for future carbene chemistry, expanding the repertoire of applications beyond that known for classical single-site ambiphilic carbenes.
Collapse
Affiliation(s)
- Ying Kai Loh
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Mohand Melaimi
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Dominik Munz
- Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
17
|
Zhu H, Kostenko A, Franz D, Hanusch F, Inoue S. Room Temperature Intermolecular Dearomatization of Arenes by an Acyclic Iminosilylene. J Am Chem Soc 2023; 145:1011-1021. [PMID: 36597967 DOI: 10.1021/jacs.2c10467] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel nontransient acyclic iminosilylene (1), bearing a bulky super silyl group (-SitBu3) and N-heterocyclic imine ligand with a methylated backbone, was prepared and isolated. The methylated backbone is the feature of 1 that distinguishes it from the previously reported nonisolable iminosilylenes, as it prevents the intramolecular silylene center insertion into an aromatic C-C bond of an aryl substituent. Instead, 1 exhibits an intermolecular Büchner-ring-expansion-type reactivity; the silylene is capable of dearomatization of benzene and its derivatives, giving the corresponding silicon analogs of cycloheptatrienes, i.e. silepins, featuring seven-membered SiC6 rings with nearly planar geometry. The ring expansion reactions of 1 with benzene and 1,4-bis(trifluoromethyl)benzene are reversible. Similar reactions of 1 with N-heteroarenes (pyridine and DMAP) proceed more rapidly and irreversibly forming the corresponding azasilepins, also with nearly planar seven-membered SiNC5 rings. DFT calculations reveal an ambiphilic nature of 1 that allows the intermolecular aromatic C-C bond insertion to occur. Additional computational studies, which elucidate the inherent reactivity of 1, the role of the substituent effect, and reaction mechanisms behind the ring expansion transformations, are presented.
Collapse
Affiliation(s)
- Huaiyuan Zhu
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Arseni Kostenko
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Daniel Franz
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Franziska Hanusch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| |
Collapse
|
18
|
Zhang X, Mei Y, Liu LL. Free Aluminylenes: An Emerging Class of Compounds. Chemistry 2022; 28:e202202102. [DOI: 10.1002/chem.202202102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Zhang
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yanbo Mei
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Leo Liu
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|