1
|
Xu C, Liu Y, Guo H, Du C, Qin G, Li S. From FCC to BCC: Engineering Pd Nuclearity in the PdCu Catalyst to Enhance Ethylene Selectivity in Acetylene Hydrogenation. Inorg Chem 2025; 64:1893-1900. [PMID: 39838938 DOI: 10.1021/acs.inorgchem.4c04597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The ability to finely tune the nuclearity of active metal sites is critical for designing highly selective catalysts, especially for hydrogenation processes. In this work, we developed a novel PdCu catalyst with an ordered body-centered cubic (BCC) structure, enabling precise control over Pd nuclearity to optimize selectivity. Using a facile polyol synthesis method, we modulated the Pd coordination environment, reducing the Pd-Pd coordination number from 3 (disordered face-centered cubic, FCC) to 0 (ordered BCC), thereby achieving full isolation of Pd by the surrounding Cu atoms. This structural transformation enhances hydrogen spillover and weakens ethylene adsorption, resulting in superior activity for the selective hydrogenation of acetylene to ethylene. The ordered PdCu supported on Al2O3 (o-PdCu/Al2O3) achieved a 99% acetylene conversion with an 84.5% ethylene selectivity at near-room temperature. This work highlights the importance of controlling atomic-scale nuclearity in metal catalysts and provides a promising strategy for improving the catalytic efficiency and selectivity in industrially significant processes.
Collapse
Affiliation(s)
- Changjin Xu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yinglei Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Huiqing Guo
- College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| | - Chun Du
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gaowu Qin
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Institute for Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110010, China
| | - Song Li
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
2
|
Kusada K, Kitagawa H. Phase Control in Monometallic and Alloy Nanomaterials. Chem Rev 2025; 125:599-659. [PMID: 39751381 DOI: 10.1021/acs.chemrev.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Metal nanomaterials with unconventional phases have been recently developed with a variety of methods and exhibit novel and attractive properties such as high activities for various catalytic reactions and magnetic properties. In this review, we discuss the progress and the trends in strategies for synthesis, crystal structure, and properties of phase-controlled metal nanomaterials in terms of elements and the combination of alloys. We begin with a brief introduction of the anomalous phase behavior derived from the nanosize effect and general crystal structures observed in metal nanomaterials. Then, phase control in monometallic nanomaterials with respect to each element and alloy nanomaterials classified into three types based on their crystal structures is discussed. In the end, all the content introduced in this review is summarized, and challenges for advanced phase control are discussed.
Collapse
Affiliation(s)
- Kohei Kusada
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- The HAKUBI Center for Advanced Research, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Vito J, Shetty M. Challenges and Opportunities for Exploiting the Role of Zeolite Confinements for the Selective Hydrogenation of Acetylene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67010-67027. [PMID: 38079586 PMCID: PMC11647899 DOI: 10.1021/acsami.3c11935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/13/2024]
Abstract
Zeolites, with their ordered crystalline porous structure, provide a unique opportunity to confine metal catalysts, whether single atoms (e.g., transition metal ions (TMIs)) or metal clusters, when used as a catalyst support. The confined environment has been shown to provide rate and selectivity enhancement across a variety of reactions via both steric and electronic effects, such as size exclusion and transition state stabilization. In this review, we provide a survey of various zeolite confined catalysts used for the semihydrogenation of acetylene highlighting their performance, defined by ethylene selectivity at full acetylene conversion, in relationship to the synthesis technique employed. Synthesis methods that ensure confinement with the catalyst transition metal location in the extra-framework positions are reported to have the highest selectivity to ethylene. However, the underlying molecular factors responsible for selective catalysis within confinement remain elusive due to the difficulty in deconvoluting individual effects. Through the careful use of a combination of characterization and spectroscopic methods, insights into the relationship between the properties of zeolite confined catalysts and their performance have been explored in other works for a variety of reactions. More specifically, operando spectroscopy studies have revealed the dynamic behavior of zeolite confined catalysts under various conditions implying that the structure and properties observed ex situ do not always match those of the active catalyst under reaction conditions. Applying this type of analysis to acetylene semihydrogenation, a simple gas phase reaction, can help elucidate the structure-function relationship of zeolite confined catalysts allowing for more informed design choices and consequently their application to a wider variety of more complex reactions such as the liquid phase hydrogenation of alkynols where solvent effects must also be considered in addition to those of confinement.
Collapse
Affiliation(s)
- Jenna Vito
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| | - Manish Shetty
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| |
Collapse
|
4
|
Luo J, Li X, Ye Y, Zhou T, Wu W, Li H, Yang Q, Yan H, Zeng J. Progressive Fabrication of a Pt-Based High-Entropy-Alloy Catalyst toward Highly Efficient Propane Dehydrogenation. Angew Chem Int Ed Engl 2024:e202419093. [PMID: 39499624 DOI: 10.1002/anie.202419093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
High-entropy alloys (HEAs) have emerged as burgeoning heterogeneous catalysts due to their vast material space, unique structure, and superior stability. However, the dominant trial-and-error approaches hamper the exploration of efficient catalysts, necessitating the development of rational design strategies. Here, we report a progressive approach to the design and fabrication of HEA catalysts guided by alloying effects toward propane dehydrogenation. Cu, Sn, Au, and Pd are selected and demonstrated to induce dilution, encapsulation, surface enrichment, and inhomogeneity effects on Pt. The fabricated HEA, PtCuSnAuPd/SiO2, exhibits excellent activity, selectivity, and stability. The propylene formation rates reach 256 and 390 molC3H6 gPt -1 h-1 at 550 and 600 °C, respectively. Systematic characterizations reveal that the random elemental mixing, structural stability, and high Pt exposure promote the exposure of abundant stable isolated Pt sites. This work comprehensively explores the rational design and fabrication of HEA catalysts from a unique perspective, offering opportunities for developing advanced catalysts.
Collapse
Affiliation(s)
- Jun Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xu Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yongjie Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tao Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenlong Wu
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qing Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Han Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| |
Collapse
|
5
|
Ge X, Jing Y, Fei N, Yan K, Liang Y, Cao Y, Zhang J, Qian G, Li L, Jiang H, Zhou X, Yuan W, Duan X. Embedding Single Pd Atoms on NiGa Intermetallic Surfaces for Efficient and Selective Alkyne Hydrogenation. Angew Chem Int Ed Engl 2024; 63:e202410979. [PMID: 38967363 DOI: 10.1002/anie.202410979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Catalytic removal of alkynes is essential in industry for producing polymer-grade alkenes from steam cracking processes. Non-noble Ni-based catalysts hold promise as effective alternatives to industrial Pd-based catalysts but suffer from low activity. Here we report embedding of single-atom Pd onto the NiGa intermetallic surface with replacing Ga atoms via a well-defined synthesis strategy to design Pd1-NiGa catalyst for alkyne semi-hydrogenation. The fabricated Pd1Ni2Ga1 ensemble sites deliver remarkably higher specific mass activity under superb alkene selectivity of >96 % than the state-of-the-art catalysts under industry-relevant conditions. Integrated experimental and computational studies reveal that the single-atom Pd synergizes with the neighbouring Ni sites to facilitate the σ-adsorption of alkyne and dissociation of hydrogen while suppress the alkene adsorption. Such synergistic effects confer the single-atom Pd on the NiGa intermetallic with a Midas touch for alkyne semi-hydrogenation, providing an effective strategy for stimulating low active Ni-based catalysts for other selective hydrogenations in industry.
Collapse
Affiliation(s)
- Xiaohu Ge
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yundao Jing
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Nina Fei
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijing Liang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Hao Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierar-chical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Luo D, Xie Z, Chen S, Yang T, Guo Y, Liu Y, Zhu Z, Gan L, Liu L, Huang J. Enhancing Electrocatalytic Semihydrogenation of Alkynes via Weakening Alkene Adsorption over Electron-Depleted Cu Nanowires. ACS NANOSCIENCE AU 2024; 4:349-359. [PMID: 39430377 PMCID: PMC11487759 DOI: 10.1021/acsnanoscienceau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Electrochemical semihydrogenation (ESH) of alkynes to alkenes is an appealing technique for producing pharmaceutical precursors and polymer monomers, while also preventing catalyst poisoning by alkyne impurities. Cu is recognized as a cost-effective and highly selective catalyst for ESH, whereas its activity is somewhat limited. Here, from a mechanistic standpoint, we hypothesize that electron-deficient Cu can enhance ESH activity by promoting the rate-determining step of alkene desorption. We test this hypothesis by utilizing Cu-Ag hybrids as electrocatalysts, developed through a welding process of Ag nanoparticles with Cu nanowires. Our findings reveal that these rationally engineered Cu-Ag hybrids exhibit a notable enhancement (2-4 times greater) in alkyne conversion rates compared to isolated Ag NPs or Cu NWs, while maintaining over 99% selectivity for alkene products. Through a combination of operando and computational studies, we verify that the electron-depleted Cu sites, resulting from electron transfer between Ag nanoparticles and Cu nanowires, effectively weaken the adsorption of alkenes, thereby substantially boosting ESH activity. This work not only provides mechanistic insights into ESH but also stimulates compelling strategies involving hybridizing distinct metals to optimize ESH activity.
Collapse
Affiliation(s)
- Dan Luo
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute
of Advanced Interdisciplinary Studies, School of Chemistry and Chemical
Engineering, Chongqing University, Chongqing 400044, China
| | - Zhiheng Xie
- College
of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Shuangqun Chen
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute
of Advanced Interdisciplinary Studies, School of Chemistry and Chemical
Engineering, Chongqing University, Chongqing 400044, China
| | - Tianyi Yang
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute
of Advanced Interdisciplinary Studies, School of Chemistry and Chemical
Engineering, Chongqing University, Chongqing 400044, China
| | - Yalin Guo
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute
of Advanced Interdisciplinary Studies, School of Chemistry and Chemical
Engineering, Chongqing University, Chongqing 400044, China
| | - Ying Liu
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute
of Advanced Interdisciplinary Studies, School of Chemistry and Chemical
Engineering, Chongqing University, Chongqing 400044, China
| | - Zhouhao Zhu
- College
of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Liyong Gan
- College
of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Lingmei Liu
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute
of Advanced Interdisciplinary Studies, School of Chemistry and Chemical
Engineering, Chongqing University, Chongqing 400044, China
| | - Jianfeng Huang
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute
of Advanced Interdisciplinary Studies, School of Chemistry and Chemical
Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
7
|
Yang X, Feng J, Li Y, Zhu W, Pan Y, Han Y, Li Z, Xie H, Wang J, Ping J, Tang W. PdMoPtCoNi High Entropy Nanoalloy with d Electron Self-Complementation-Induced Multisite Synergistic Effect for Efficient Nanozyme Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406149. [PMID: 39120124 PMCID: PMC11481210 DOI: 10.1002/advs.202406149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Engineering multimetallic nanocatalysts with the entropy-mediated strategy to reduce reaction activation energy is regarded as an innovative and effective approach to facilitate efficient heterogeneous catalysis. Accordingly, conformational entropy-driven high-entropy alloys (HEAs) are emerging as a promising candidate to settle the catalytic efficiency limitations of nanozymes, attributed to their versatile active site compositions and synergistic effects. As proof of the high-entropy nanozymes (HEzymes) concept, elaborate PdMoPtCoNi HEA nanowires (NWs) with abundant active sites and tuned electronic structures, exhibiting peroxidase-mimicking activity comparable to that of natural horseradish peroxidase are reported. Density functional theory calculations demonstrate that the enhanced electron abundance of HEA NWs near the Fermi level (EF) is facilitated via the self-complementation effect among the diverse transition metal sites, thereby boosting the electron transfer efficiency at the catalytic interface through the cocktail effect. Subsequently, the HEzymes are integrated with a portable electronic device that utilizes Internet of Things-driven signal conversion and wireless transmission functions for point-of-care diagnosis to validate their applicability in digital biosensing of urinary biomarkers. The proposed HEzymes underscore significant potential in enhancing nanozymes catalysis through tunable electronic structures and synergistic effects, paving the way for reformative advancements in nano-bio analysis.
Collapse
Affiliation(s)
- Xuewei Yang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jianxing Feng
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yuechun Li
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Wenxin Zhu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yifan Pan
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yaru Han
- Department of Chemical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Zhonghong Li
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., LtdHangzhouZhejiang310000China
| | - Jianlong Wang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
| | - Wenzhi Tang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
8
|
Liu H, Zhang Y, Zhang L, Mu X, Zhang L, Zhu S, Wang K, Yu B, Jiang Y, Zhou J, Yang F. Unveiling Atomic-Scaled Local Chemical Order of High-Entropy Intermetallic Catalyst for Alkyl-Substitution-Dependent Alkyne Semihydrogenation. J Am Chem Soc 2024; 146:20193-20204. [PMID: 39004825 DOI: 10.1021/jacs.4c05295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
High-entropy intermetallic (HEI) nanocrystals, composed of multiple elements with an ordered structure, are of immense interest in heterogeneous catalysis due to their unique geometric and electronic structures and the cocktail effect. Despite tremendous efforts dedicated to regulating the metal composition and structures with advanced synthetic methodologies to improve the performance, the surface structure, and local chemical order of HEI and their correlation with activity at the atomic level remain obscure yet challenging. Herein, by determining the three-dimensional (3D) atomic structure of quinary PdFeCoNiCu (PdM) HEI using atomic-resolution electron tomography, we reveal that the local chemical order of HEI regulates the surface electronic structures, which further mediates the alkyl-substitution-dependent alkyne semihydrogenation. The 3D structures of HEI PdM nanocrystals feature an ordered (intermetallic) core enclosed by a disordered (solid-solution) shell rather than an ordered surface. The lattice mismatch between the core and shell results in apparent near-surface distortion. The chemical order of the intermetallic core increases with annealing temperature, driving the electron redistribution between Pd and M at the surface, but the surface geometrical (chemically disordered) configurations and compositions are essentially unchanged. We investigate the catalytic performance of HEI PdM with different local chemical orders toward semihydrogenation across a broad range of alkynes, finding that the electron density of surface Pd and the hindrance effect of alkyl substitutions on alkynes are two key factors regulating selective semihydrogenation. We anticipate that these findings on surface atomic structure will clarify the controversy regarding the geometric and/or electronic effects of HEI catalysts and inspire future studies on tuning local chemical order and surface engineering toward enhanced catalysts.
Collapse
Affiliation(s)
- Haojie Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Zhang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luyao Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xilong Mu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng Zhu
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Kun Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Boyuan Yu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yulong Jiang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Liang J, Cao G, Zeng M, Fu L. Controllable synthesis of high-entropy alloys. Chem Soc Rev 2024; 53:6021-6041. [PMID: 38738520 DOI: 10.1039/d4cs00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
High-entropy alloys (HEAs) involving more than four elements, as emerging alloys, have brought about a paradigm shift in material design. The unprecedented compositional diversities and structural complexities of HEAs endow multidimensional exploration space and great potential for practical benefits, as well as a formidable challenge for synthesis. To further optimize performance and promote advanced applications, it is essential to synthesize HEAs with desired characteristics to satisfy the requirements in the application scenarios. The properties of HEAs are highly related to their chemical compositions, microstructure, and morphology. In this review, a comprehensive overview of the controllable synthesis of HEAs is provided, ranging from composition design to morphology control, structure construction, and surface/interface engineering. The fundamental parameters and advanced characterization related to HEAs are introduced. We also propose several critical directions for future development. This review can provide insight and an in-depth understanding of HEAs, accelerating the synthesis of the desired HEAs.
Collapse
Affiliation(s)
- Jingjing Liang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Guanghui Cao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Lei Fu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Li M, Lin F, Zhang S, Zhao R, Tao L, Li L, Li J, Zeng L, Luo M, Guo S. High-entropy alloy electrocatalysts go to (sub-)nanoscale. SCIENCE ADVANCES 2024; 10:eadn2877. [PMID: 38838156 DOI: 10.1126/sciadv.adn2877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Alloying has proven power to upgrade metallic electrocatalysts, while the traditional alloys encounter limitation for optimizing electronic structures of surface metallic sites in a continuous manner. High-entropy alloys (HEAs) overcome this limitation by manageably tuning the adsorption/desorption energies of reaction intermediates. Recently, the marriage of nanotechnology and HEAs has made considerable progresses for renewable energy technologies, showing two important trends of size diminishment and multidimensionality. This review is dedicated to summarizing recent advances of HEAs that are rationally designed for energy electrocatalysis. We first explain the advantages of HEAs as electrocatalysts from three aspects: high entropy, nanometer, and multidimension. Then, several structural regulation methods are proposed to promote the electrocatalysis of HEAs, involving the thermodynamically nonequilibrium synthesis, regulating the (sub-)nanosize and anisotropic morphologies, as well as engineering the atomic ordering. The general relationship between the electronic structures and electrocatalytic properties of HEAs is further discussed. Finally, we outline remaining challenges of this field, aiming to inspire more sophisticated HEA-based nanocatalysts.
Collapse
Affiliation(s)
- Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Rui Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Junyi Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Ma J, Yang C, Ye X, Pan X, Nie S, Cao X, Li H, Matsumoto H, Wu L, Chen C. Circumventing the activity-selectivity trade-off via the confinement effect from induced potential barriers on the Pd nanoparticle surface. Chem Sci 2024; 15:8363-8371. [PMID: 38846393 PMCID: PMC11151836 DOI: 10.1039/d4sc00635f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
The request for both high catalytic selectivity and high catalytic activity is rather challenging, particularly for catalysis systems with the primary and side reactions having comparable energy barriers. Here in this study, we simultaneously optimized the selectivity and activity for acetylene semi-hydrogenation by rationally and continuously varying the doping ratio of Zn atoms on the surface of Pd particles in Pd/ZnO catalysts. In the reaction temperature range of 40-200 °C, the conversion of acetylene was close to ∼100%, and the selectivity for ethylene exceeded 90% (the highest ethylene selectivity, ∼98%). Experimental characterization and density functional theory calculations revealed that the Zn promoter could alter the catalyst's potential energy surface, resulting in a "confinement" effect, which effectively improves the selectivity yet without significantly impairing the catalytic activity. The mismatched impacts on activity and selectivity resulting from continuous and controllable alteration in the catalyst structure provide a promising parameter space within which the two aspects could both be optimized.
Collapse
Affiliation(s)
- Junguo Ma
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Chongya Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Science Dalian P. R. China
| | - Xue Ye
- College of Chemistry and Chemical Engineering, Yangzhou University Yangzhou P. R. China
| | - Xiaoli Pan
- Dalian Institute of Chemical Physics, Chinese Academy of Science Dalian P. R. China
| | - Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Xing Cao
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Huinan Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing P. R. China
| | | | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai P. R. China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing P. R. China
| |
Collapse
|
12
|
Shen T, Xiao D, Deng Z, Wang S, An L, Song M, Zhang Q, Zhao T, Gong M, Wang D. Stabilizing Diluted Active Sites of Ultrasmall High-Entropy Intermetallics for Efficient Formic Acid Electrooxidation. Angew Chem Int Ed Engl 2024; 63:e202403260. [PMID: 38503695 DOI: 10.1002/anie.202403260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
The poisoning of undesired intermediates or impurities greatly hinders the catalytic performances of noble metal-based catalysts. Herein, high-entropy intermetallics i-(PtPdIrRu)2FeCu (HEI) are constructed to inhibit the strongly adsorbed carbon monoxide intermediates (CO*) during the formic acid oxidation reaction. As probed by multiple-scaled structural characterizations, HEI nanoparticles are featured with partially negative Pt oxidation states, diluted Pt/Pd/Ir/Ru atomic sites and ultrasmall average size less than 2 nm. Benefiting from the optimized structures, HEI nanoparticles deliver more than 10 times promotion in intrinsic activity than that of pure Pt, and well-enhanced mass activity/durability than that of ternary i-Pt2FeCu intermetallics counterpart. In situ infrared spectroscopy manifests that both bridge and top CO* are favored on pure Pt but limited on HEI. Further theoretical elaboration indicates that HEI displayed a much weaker binding of CO* on Pt sites and sluggish diffusion of CO* among different sites, in contrast to pure Pt that CO* bound more strongly and was easy to diffuse on larger Pt atomic ensembles. This work verifies that HEIs are promising catalysts via integrating the merits of intermetallics and high-entropy alloys.
Collapse
Affiliation(s)
- Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiping Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shuang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lulu An
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Min Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qian Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tonghui Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mingxing Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
13
|
Sun X, Sun Y. Synthesis of metallic high-entropy alloy nanoparticles. Chem Soc Rev 2024; 53:4400-4433. [PMID: 38497773 DOI: 10.1039/d3cs00954h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The theoretically infinite compositional space of high-entropy alloys (HEAs) and their novel properties and applications have attracted significant attention from a broader research community. The successful synthesis of high-quality single-phase HEA nanoparticles represents a crucial step in fully unlocking the potential of this new class of materials to drive innovations. This review analyzes the various methods reported in the literature to identify their commonalities and dissimilarities, which allows categorizing these methods into five general strategies. Physical minimization of HEA metals into HEA nanoparticles through cryo-milling represents the typical top-down strategy. The counter bottom-up strategy requires the simultaneous generation and precipitation of metal atoms of different elements on growing nanoparticles. Depending on the metal atom generation process, there are four synthesis strategies: vaporization of metals, burst reduction of metal precursors, thermal shock-induced reduction of metal precursors, and solvothermal reduction of metal precursors. Comparisons among the methods within each strategy, along with discussions, provide insights and guidance for achieving the robust synthesis of HEA nanoparticles.
Collapse
Affiliation(s)
- Xiuyun Sun
- College of Energy and Mechanical Engineering, Dezhou University, Dezhou, Shandong, 253023, P. R. China
| | - Yugang Sun
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania, 19122, USA.
| |
Collapse
|
14
|
Ge X, Yin J, Ren Z, Yan K, Jing Y, Cao Y, Fei N, Liu X, Wang X, Zhou X, Chen L, Yuan W, Duan X. Atomic Design of Alkyne Semihydrogenation Catalysts via Active Learning. J Am Chem Soc 2024; 146:4993-5004. [PMID: 38333965 DOI: 10.1021/jacs.3c14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Alkyne hydrogenation on palladium-based catalysts modified with silver is currently used in industry to eliminate trace amounts of alkynes in alkenes produced from steam cracking and alkane dehydrogenation processes. Intensive efforts have been devoted to designing an alternative catalyst for improvement, especially in terms of selectivity and catalyst cost, which is still far away from that as expected. Here, we describe an atomic design of a high-performance Ni-based intermetallic catalyst aided by active machine learning combined with density functional theory calculations. The engineered NiIn catalyst exhibits >97% selectivity to ethylene and propylene at the full conversion of acetylene and propyne at mild temperature, outperforming the reported Ni-based catalysts and even noble Pd-based ones. Detailed mechanistic studies using theoretical calculations and advanced characterizations elucidate that the atomic-level defined coordination environment of Ni sites and well-designed hybridization of Ni 3d with In 5p orbital determine the semihydrogenation pathway.
Collapse
Affiliation(s)
- Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jun Yin
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zhouhong Ren
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yundao Jing
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Nina Fei
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaonan Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
15
|
Xu J, Huang W, Li R, Li L, Ma J, Qi J, Ma H, Ruan M, Lu L. Potassium regulating electronic state of zirconia supported palladium catalyst and hydrogen spillover for improved acetylene hydrogenation. J Colloid Interface Sci 2024; 655:584-593. [PMID: 37956546 DOI: 10.1016/j.jcis.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
High-selectivity acetylene hydrogenation to produce ethylene is an important issue of removing acetylene impurity in ethylene for industrial polyethylene production. Developing high-efficiency catalyst with excellent ethylene selectivity and catalytic durability is desirable but still challenging. In this work, potassium doped palladium catalysts supported on zirconia with different K contents (Pd/ZrO2-xK) have been developed to catalyze acetylene hydrogenation, the Pd/ZrO2-16K exhibits impressive catalytic performance with acetylene conversion of 100 %, ethylene selectivity of 81 % and high catalytic durability. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), in situ synchrotron radiation photoionization mass spectrometry (SR-PIMS) and density functional theory (DFT) calculations reveal that K doping effectively weakens the adsorption of ethylene by regulating the electronic state of catalyst to improve ethylene selectivity and substantially lowers the barriers of hydrogen activation and transfer reactions to favor hydrogen spillover, thus conferring a remarkably improved durability on the Pd/ZrO2-16K catalysts.
Collapse
Affiliation(s)
- Junjie Xu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Mineral Processing Research Institute, Hubei Polytechnic University, Huangshi 435003, China
| | - Weixiong Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ruiling Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Li Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jinjin Ma
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiaou Qi
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haiyan Ma
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Min Ruan
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Mineral Processing Research Institute, Hubei Polytechnic University, Huangshi 435003, China.
| | - Lilin Lu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
16
|
Chen T, Qiu C, Zhang X, Wang H, Song J, Zhang K, Yang T, Zuo Y, Yang Y, Gao C, Xiao W, Jiang Z, Wang Y, Xiang Y, Xia D. An Ultrasmall Ordered High-Entropy Intermetallic with Multiple Active Sites for the Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:1174-1184. [PMID: 38153040 PMCID: PMC10785812 DOI: 10.1021/jacs.3c12649] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Controlling multimetallic ensembles at the atomic level is significantly challenging, particularly for high-entropy alloys with more than five elements. Herein, we report an innovative ultrasmall (∼2 nm) PtFeCoNiCuZn high-entropy intermetallic (PFCNCZ-HEI) with a well-ordered structure synthesized by using the space-confined strategy. By exploiting these combined metals, the PFCNCZ-HEI nanoparticles achieve an ultrahigh mass activity of 2.403 A mgPt-1 at 0.90 V vs reversible hydrogen electrode for the oxygen reduction reaction, which is up to 19-fold higher than that of state-of-the-art commercial Pt/C. A proton exchange membrane fuel cell assembled with PFCNCZ-HEI as the cathode (0.03 mgPt cm-2) exhibits a power density of 1.4 W cm-2 and a high mass-normalized rated power of 45 W mgPt-1. Furthermore, theoretical calculations reveal that the outer electrons of the non-noble-metal atoms on the surface of the PFCNCZ-HEI nanoparticle are modulated to show characteristics of multiple active centers. This work offers a promising catalyst design direction for developing highly ordered HEI nanoparticles for electrocatalysis.
Collapse
Affiliation(s)
- Tao Chen
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Chunyu Qiu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinkai Zhang
- Beijing
Key Laboratory of Bio-inspired Energy Materials and Devices, School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Hangchao Wang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Jin Song
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Kun Zhang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Tonghuan Yang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Yuxuan Zuo
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Yali Yang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Chuan Gao
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Wukun Xiao
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Zewen Jiang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Yucheng Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Xiang
- Beijing
Key Laboratory of Bio-inspired Energy Materials and Devices, School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Dingguo Xia
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
17
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Zeng X, Jing Y, Gao S, Zhang W, Zhang Y, Liu H, Liang C, Ji C, Rao Y, Wu J, Wang B, Yao Y, Yang S. Hydrogenated borophene enabled synthesis of multielement intermetallic catalysts. Nat Commun 2023; 14:7414. [PMID: 37973849 PMCID: PMC10654666 DOI: 10.1038/s41467-023-43294-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Supported metal catalysts often suffer from rapid degradation under harsh conditions due to material failure and weak metal-support interaction. Here we propose using reductive hydrogenated borophene to in-situ synthesize Pt/B/C catalysts with small sizes (~2.5 nm), high-density dispersion (up to 80 wt%Pt), and promising stability, originating from forming Pt-B bond which are theoretically ~5× stronger than Pt-C. Based on the Pt/B/C module, a series (~18 kinds) of carbon supported binary, ternary, quaternary, and quinary Pt intermetallic compound nanocatalysts with sub-4 nm size are synthesized. Thanks to the stable intermetallics and strong metal-support interaction, annealing at 1000 °C does not cause those nanoparticles sintering. They also show much improved activity and stability in electrocatalytic oxygen reduction reaction. Therefore, by introducing the boron chemistry, the hydrogenated borophene derived multielement catalysts enable the synergy of small size, high loading, stable anchoring, and flexible compositions, thus demonstrating high versatility toward efficient and durable catalysis.
Collapse
Affiliation(s)
- Xiaoxiao Zeng
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, PR China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yudan Jing
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, PR China
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd, Xi'an, 710100, PR China
| | - Saisai Gao
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, PR China
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd, Xi'an, 710100, PR China
| | - Wencong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Hydrogen Science Research Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yang Zhang
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, PR China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Hanwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Chao Liang
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, PR China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Chenchen Ji
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China
| | - Yi Rao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Hydrogen Science Research Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Bin Wang
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, PR China.
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Yonggang Yao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Shengchun Yang
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, PR China.
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
20
|
Feng J, Yang X, Du T, Zhang L, Zhang P, Zhuo J, Luo L, Sun H, Han Y, Liu L, Shen Y, Wang J, Zhang W. Transition Metal High-Entropy Nanozyme: Multi-Site Orbital Coupling Modulated High-Efficiency Peroxidase Mimics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303078. [PMID: 37870181 PMCID: PMC10667809 DOI: 10.1002/advs.202303078] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/24/2023] [Indexed: 10/24/2023]
Abstract
Strong substrate affinity and high catalytic efficiency are persistently pursued to generate high-performance nanozymes. Herein, with unique surface atomic configurations and distinct d-orbital coupling features of different metal components, a class of highly efficient MnFeCoNiCu transition metal high-entropy nanozymes (HEzymes) is prepared for the first time. Density functional theory calculations demonstrate that improved d-orbital coupling between different metals increases the electron density near the Fermi energy level (EF ) and shifts the position of the overall d-band center with respect to EF , thereby boosting the efficiency of site-to-site electron transfer while also enhancing the adsorption of oxygen intermediates during catalysis. As such, the proposed HEzymes exhibit superior substrate affinities and catalytic efficiencies comparable to that of natural horseradish peroxidase (HRP). Finally, HEzymes with superb peroxidase (POD)-like activity are used in biosensing and antibacterial applications. These results suggest that HEzymes have great potential as new-generation nanozymes.
Collapse
Affiliation(s)
- Jianxing Feng
- College of Food Science and EngineeringNorthwest A&F University22 Xinong RoadYanglingShaanxi712100China
| | - Xuewei Yang
- College of Food Science and EngineeringNorthwest A&F University22 Xinong RoadYanglingShaanxi712100China
| | - Ting Du
- College of Food Science and EngineeringNorthwest A&F University22 Xinong RoadYanglingShaanxi712100China
| | - Liang Zhang
- College of Food Science and EngineeringNorthwest A&F University22 Xinong RoadYanglingShaanxi712100China
| | - Pengfei Zhang
- College of Food Science and EngineeringNorthwest A&F University22 Xinong RoadYanglingShaanxi712100China
| | - Junchen Zhuo
- College of Food Science and EngineeringNorthwest A&F University22 Xinong RoadYanglingShaanxi712100China
| | - Linpin Luo
- College of Food Science and EngineeringNorthwest A&F University22 Xinong RoadYanglingShaanxi712100China
| | - Hao Sun
- College of Food Science and EngineeringNorthwest A&F University22 Xinong RoadYanglingShaanxi712100China
| | - Yaru Han
- Department of Chemical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Lizhi Liu
- Department of AnesthesiologyDivision of Critical Care MedicineBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Yizhong Shen
- School of Food & Biological EngineeringKey Laboratory for Agricultural Products Processing of Anhui ProvinceHefei University of TechnologyHefei230009China
| | - Jianlong Wang
- College of Food Science and EngineeringNorthwest A&F University22 Xinong RoadYanglingShaanxi712100China
| | - Wentao Zhang
- College of Food Science and EngineeringNorthwest A&F University22 Xinong RoadYanglingShaanxi712100China
| |
Collapse
|
21
|
Han J, Yang J, Zhang Z, Jiang X, Liu W, Qiao B, Mu J, Wang F. Strong Metal-Support Interaction Facilitated Multicomponent Alloy Formation on Metal Oxide Support. J Am Chem Soc 2023; 145:22671-22684. [PMID: 37814206 DOI: 10.1021/jacs.3c07915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Multicomponent alloy (MA) contains a nearly infinite number of unprecedented active sites through entropy stabilization, which is a desired platform for exploring high-performance catalysts. However, MA catalysts are usually synthesized under severe conditions, which induce support structure collapse and further deteriorate the synergy between MA and support. We propose that a strong metal-support interaction (SMSI) could facilitate the formation of MA by establishing a tunnel of oxygen vacancy for metal atom transport under low reduction temperature (400-600 °C), which exemplifies the holistic design of MA catalysts without deactivating supports. PtPdCoFe MA is readily synthesized on anatase TiO2 with the help of SMSI, which exhibits good catalytic activity and stability for methane combustion. This strategy demonstrates excellent universality on various supports and multicomponent alloy compositions. Our work not only reports a holistic synthesis strategy for MA synthesis by synergizing unique properties of reducible oxides and the mixing entropy of alloy but also offers a new insight that SMSI plays a vigorous role in the formation of alloy NPs on reducible oxides.
Collapse
Affiliation(s)
- Jianyu Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyi Yang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Xunzhu Jiang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Botao Qiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Junju Mu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| |
Collapse
|
22
|
Soliman SS, Dey GR, McCormick CR, Schaak RE. Temporal Evolution of Morphology, Composition, and Structure in the Formation of Colloidal High-Entropy Intermetallic Nanoparticles. ACS NANO 2023; 17:16147-16159. [PMID: 37549244 DOI: 10.1021/acsnano.3c05241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Morphology-controlled nanoparticles of high entropy intermetallic compounds are quickly becoming high-value targets for catalysis. Their ordered structures with multiple distinct crystallographic sites, coupled with the "cocktail effect" that emerges from randomly mixing a large number of elements, yield catalytic active sites capable of achieving advanced catalytic functions. Despite this growing interest, little is known about the pathways by which high entropy intermetallic nanoparticles form and grow in solution. As a result, controlling their morphology remains challenging. Here, we use the high entropy intermetallic compound (Pd,Rh,Ir,Pt)Sn, which adopts a NiAs-related crystal structure, as a model system for understanding how nanoparticle morphology, composition, and structure evolve during synthesis in solution using a slow-injection reaction. By performing a time-point study, we establish the initial formation of palladium-rich cube-like Pd-Sn seeds onto which the other metals deposit over time, concomitant with continued incorporation of tin. For (Pd,Rh,Ir,Pt)Sn, growth occurs on the corners, resulting in a sample having a mixture of flower-like and cube-like morphologies. We then synthesize and characterize a library of 14 distinct intermetallic nanoparticle systems that comprise all possible binary, ternary, and quaternary constituents of (Pd,Rh,Ir,Pt)Sn. From these studies, we correlated compositions, morphologies, and growth pathways with the constituent elements and their competitive reactivities, ultimately mapping out a framework that rationalizes the key features of the high entropy (Pd,Rh,Ir,Pt)Sn intermetallic nanoparticles based on those of their simpler constituents. We then validated these design guidelines by applying them to the synthesis of a morphologically pure variant of flowerlike (Pd,Rh,Ir,Pt)Sn particles as well as a series of (Pd,Rh,Ir,Pt)Sn particles with tunable morphologies based on control of composition.
Collapse
|
23
|
Zhang N, Chen X, Liu S, Meng J, Armbrüster M, Liang C. PtFeCoNiCu High-Entropy Alloy Catalyst for Aqueous-Phase Hydrogenation of Maleic Anhydride. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23276-23285. [PMID: 37148281 DOI: 10.1021/acsami.3c02810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
High-entropy alloys (HEAs), as new heterogeneous catalytic materials, possess remarkable catalytic performance in numerous reactions. However, rational and controllable synthesis of these complex structures remains a challenge. In this work, bulk and carbon nanotube (CNT)-supported ultrasmall PtFeCoNiCu HEA nanoparticles with an average particle size of 1.58 nm are prepared by lithium naphthalenide-driven reduction under mild conditions. The supported PtFeCoNiCu/CNT catalyst exhibits high catalytic activity in the aqueous-phase hydrogenation of maleic anhydride to succinic acid with a selectivity of 98% at full conversion of maleic acid (the hydrolysis product of maleic anhydride), a low apparent activation energy (Ea = 49 kJ mol-1), and excellent stability. Moreover, a much higher mass-specific activity of Pt in the catalyst is displayed over PtFeCoNiCu/CNT (1515.4 mmolmaleic acid gPt-1 h-1) than that of 5 wt % Pt/CNT (388.0 mmolmaleic acid gPt-1 h-1). This work provides a strong support for HEAs as advanced heterogeneous catalysts and will be of great significance for promoting the research and application of HEAs in the field of selective hydrogenation.
Collapse
Affiliation(s)
- Nannan Zhang
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao Chen
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shiyao Liu
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jipeng Meng
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Marc Armbrüster
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, Chemnitz 09107, Germany
| | - Changhai Liang
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
24
|
Xue W, Liu X, Liu C, Zhang X, Li J, Yang Z, Cui P, Peng HJ, Jiang Q, Li H, Xu P, Zheng T, Xia C, Zeng J. Electrosynthesis of polymer-grade ethylene via acetylene semihydrogenation over undercoordinated Cu nanodots. Nat Commun 2023; 14:2137. [PMID: 37059857 PMCID: PMC10104804 DOI: 10.1038/s41467-023-37821-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
The removal of acetylene impurities remains important yet challenging to the ethylene downstream industry. Current thermocatalytic semihydrogenation processes require high temperature and excess hydrogen to guarantee complete acetylene conversion. For this reason, renewable electricity-based electrocatalytic semihydrogenation of acetylene over Cu-based catalysts is an attractive route compared to the energy-intensive thermocatalytic processes. However, active Cu electrocatalysts still face competition from side reactions and often require high overpotentials. Here, we present an undercoordinated Cu nanodots catalyst with an onset potential of -0.15 V versus reversible hydrogen electrode that can exclusively convert C2H2 to C2H4 with a maximum Faradaic efficiency of ~95.9% and high intrinsic activity in excess of -450 mA cm-2 under pure C2H2 flow. Subsequently, we successfully demonstrate simulated crude ethylene purification, continuously producing polymer-grade C2H4 with <1 ppm C2H2 for 130 h at a space velocity of 1.35 × 105 ml gcat-1 h-1. Theoretical calculations and in situ spectroscopies reveal a lower energy barrier for acetylene semihydrogenation over undercoordinated Cu sites than nondefective Cu surface, resulting in the excellent C2H2-to-C2H4 catalytic activity of Cu nanodots.
Collapse
Affiliation(s)
- Weiqing Xue
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Xinyan Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Xinyan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Jiawei Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Zhengwu Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, P. R. China
| | - Hong-Jie Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, Zhejiang, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Pengping Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- Institute of Advanced Technology, University of Science and Technology of China, 230031, Hefei, Anhui, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, Zhejiang, P. R. China.
- Research Center for Carbon-Neutral Environmental & Energy Technology, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China.
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- School of Chemistry & Chemical Engineering, Anhui University of Technology, 243002, Ma'anshan, Anhui, P. R. China.
| |
Collapse
|
25
|
Xing F, Furukawa S. Metallic Catalysts for Oxidative Dehydrogenation of Propane Using CO 2. Chemistry 2023; 29:e202202173. [PMID: 36184570 DOI: 10.1002/chem.202202173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/23/2022]
Abstract
The oxidative dehydrogenation of propane using CO2 (CO2 -ODP) is a promising technique for realizing high-yield propylene production and CO2 usage. Developing a highly efficient catalyst for CO2 -ODP is essential and beneficial to the chemical industry and for realizing net-zero emissions. Many studies have investigated metal oxide-based catalysts, revealing that rapid deactivation and low selectivity remain limiting factors for their industrial applications. In recent years, metallic nanoparticle catalysts have become increasingly attractive due to their unique properties. Therefore, we summarize the performance of metal-based catalysts in CO2 -ODP reactions by considering catalyst design concepts, different mechanisms in the reaction process, and the role of CO2 .
Collapse
Affiliation(s)
- Feilong Xing
- Institute for Catalysis, Hokkaido University N-21, W-10, Sapporo, 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University N-21, W-10, Sapporo, 001-0021, Japan.,Department of Research Promotion, Japan Science and Technology Agency Chiyoda, Tokyo, 102-0076, Japan
| |
Collapse
|
26
|
Chen W, Luo S, Sun M, Wu X, Zhou Y, Liao Y, Tang M, Fan X, Huang B, Quan Z. High-Entropy Intermetallic PtRhBiSnSb Nanoplates for Highly Efficient Alcohol Oxidation Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206276. [PMID: 36063819 DOI: 10.1002/adma.202206276] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The control of multimetallic ensembles at the atomic-level is challenging, especially for high-entropy alloys (HEAs) possessing five or more elements. Herein, the one-pot synthesis of hexagonal-close-packed (hcp) PtRhBiSnSb high-entropy intermetallic (HEI) nanoplates with intrinsically isolated Pt, Rh, Bi, Sn, and Sb atoms is reported, to boost the electrochemical oxidation of liquid fuels. Taking advantage of these combined five metals, the well-defined PtRhBiSnSb HEI nanoplates exhibit a remarkable mass activity of 19.529, 15.558, and 7.535 A mg-1 Pt+Rh toward the electrooxidation of methanol, ethanol, and glycerol in alkaline electrolytes, respectively, representing a state-of-the-art multifunctional electrocatalyst for alcohol oxidation reactions. In particular, the PtRhBiSnSb HEI achieves record-high methanol oxidation reaction (MOR) activity in an alkaline environment. Theoretical calculations demonstrate that the introduction of the fifth metal Rh enhances the electron-transfer efficiency in PtRhBiSnSb HEI nanoplates, which contributes to the improved oxidation capability. Meanwhile, robust electronic structures of the active sites are achieved due to the synergistic protections from Bi, Sn, and Sb sites. This work offers significant research advances in developing well-defined HEA with delicate control over compositions and properties.
Collapse
Affiliation(s)
- Wen Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Shuiping Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Wu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yongsheng Zhou
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yujia Liao
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Min Tang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Xiaokun Fan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
27
|
Nakaya Y, Furukawa S. Catalysis of Alloys: Classification, Principles, and Design for a Variety of Materials and Reactions. Chem Rev 2022; 123:5859-5947. [PMID: 36170063 DOI: 10.1021/acs.chemrev.2c00356] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alloying has long been used as a promising methodology to improve the catalytic performance of metallic materials. In recent years, the field of alloy catalysis has made remarkable progress with the emergence of a variety of novel alloy materials and their functions. Therefore, a comprehensive disciplinary framework for catalytic chemistry of alloys that provides a cross-sectional understanding of the broad research field is in high demand. In this review, we provide a comprehensive classification of various alloy materials based on metallurgy, thermodynamics, and inorganic chemistry and summarize the roles of alloying in catalysis and its principles with a brief introduction of the historical background of this research field. Furthermore, we explain how each type of alloy can be used as a catalyst material and how to design a functional catalyst for the target reaction by introducing representative case studies. This review includes two approaches, namely, from materials and reactions, to provide a better understanding of the catalytic chemistry of alloys. Our review offers a perspective on this research field and can be used encyclopedically according to the readers' individual interests.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
28
|
Li Y, Yan K, Cao Y, Ge X, Zhou X, Yuan W, Chen D, Duan X. Mechanistic and Atomic-Level Insights into Semihydrogenation Catalysis to Light Olefins. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yurou Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
29
|
Safdar Hossain SK, Saleem J, Mudassir Ahmad Alwi M, Al-Odail FA, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cells - Part I - Fundamentals and Pd Based Catalysts. CHEM REC 2022; 22:e202200045. [PMID: 35733082 DOI: 10.1002/tcr.202200045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Indexed: 11/11/2022]
Abstract
Direct formic acid fuel cells (DFAFCs) have gained immense importance as a source of clean energy for portable electronic devices. It outperforms other fuel cells in several key operational and safety parameters. However, slow kinetics of the formic acid oxidation at the anode remains the main obstacle in achieving a high power output in DFAFCs. Noble metal-based electrocatalysts are effective, but are expensive and prone to CO poisoning. Recently, a substantial volume of research work have been dedicated to develop inexpensive, high activity and long lasting electrocatalysts. Herein, recent advances in the development of anode electrocatalysts for DFAFCs are presented focusing on understanding the relationship between activity and structure. This review covers the literature related to the electrocatalysts based on noble metals, non-noble metals, metal-oxides, synthesis route, support material, and fuel cell performance. The future prospects and bottlenecks in the field are also discussed at the end.
Collapse
Affiliation(s)
- S K Safdar Hossain
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - M Mudassir Ahmad Alwi
- Department of Materials Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Faisal A Al-Odail
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, College of Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31612, Kingdom of Saudi Arabia
| |
Collapse
|