1
|
Yuan K, Yao Q, Liu Y. Mutual synergistic regulation of chloride anion and cesium cation binding using a new designed macrocyclic multi-functional sites receptor: A case of DFT computational prediction. J Chem Phys 2024; 161:034305. [PMID: 39007389 DOI: 10.1063/5.0214995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The mutual synergistic regulation of the multi-functional sites on a single receptor molecule for ion-binding/recognition is vital for the new receptor design and needs to be well explored from experiment and theory. In this work, a new macrocyclic ion receptor (BEBUR) with three functional zones, including two ether holes and one biurea groups, is designed expecting to mutually enhance the ion-binding performance. The binding behaviors of BEBUR mainly for Cl- and Cs+ are deeply investigated by using density functional theoretical calculations. It is found that Cl-/Cs+ binding can be mutually enhanced and synergistically regulated via corresponding conformational changes of the receptor, well reflecting an electrical complementary matching and mutual reinforcement effect. Moreover, solvent effect calculations indicate that BEBUR may be an excellent candidate structure for Cl--binding with the enhancement of counter ion (Cs+) in water and toluene. In addition, visualization of intermolecular noncovalent interaction is used for analysis on the nature of the binding interactions between receptor and ions.
Collapse
Affiliation(s)
- Kun Yuan
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Key Laboratory of Advanced Optoelectronic Functional Materials of Gasu Province, Tianshui Normal University, Tianshui 741001, China
| | - Qingqing Yao
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Key Laboratory of Advanced Optoelectronic Functional Materials of Gasu Province, Tianshui Normal University, Tianshui 741001, China
| | - Yanzhi Liu
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Key Laboratory of Advanced Optoelectronic Functional Materials of Gasu Province, Tianshui Normal University, Tianshui 741001, China
| |
Collapse
|
2
|
Jing L, Deplazes E, Clegg JK, Wu X. A charge-neutral organic cage selectively binds strongly hydrated sulfate anions in water. Nat Chem 2024; 16:335-342. [PMID: 38351381 DOI: 10.1038/s41557-024-01457-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
In biological systems, enzymes and transport proteins can bind anions in aqueous media solely by forming hydrogen bonds with charge-neutral motifs. Reproducing this functionality in synthetic systems presents challenges and incurs high costs, particularly when targeting strongly hydrated anions such as sulfate. Here we report a [2.2.2]urea cryptand (cage), synthesized in one pot, that selectively binds sulfate in a mixture of dimethyl sulfoxide and water and in water with affinities in the micromolar to millimolar range. The neutral cage bearing six urea groups donates 12 strong hydrogen bonds to encapsulate a sulfate anion, showing favourable enthalpy even in pure water. Sulfate binding can be further enhanced by using micelles to provide a low-polarity microenvironment. The cage finds utility in analysing divalent anions in water and beverage samples or in removing sulfate. The work demonstrates the achievability of robust and selective anion binding in water with minimal synthetic efforts, by using neutral NH hydrogen bonds akin to those found in biology.
Collapse
Affiliation(s)
- Liuyang Jing
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Evelyne Deplazes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Xin Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Hollstein S, von Delius M. The Dynamic Chemistry of Orthoesters and Trialkoxysilanes: Making Supramolecular Hosts Adaptive, Fluxional, and Degradable. Acc Chem Res 2024. [PMID: 38286767 PMCID: PMC10882968 DOI: 10.1021/acs.accounts.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ConspectusThe encapsulation of ions into macro(bi)cyclic hosts lies at the core of supramolecular chemistry. While chemically inert hosts such as crown ethers (synthesis) and cyclodextrins (Febreze) have enabled real-world applications, there is a wider and accelerating trend toward functional molecules and materials that are stimuli-responsive, degradable, or recyclable. To endow supramolecular hosts with these properties, a deviation from ether C-O bonds is required, and functional groups that engage in equilibrium reactions under relatively mild conditions are needed.In this Account, we describe our group's work on supramolecular hosts that comprise orthoester and trialkoxysilane bridgeheads. In their simplest structural realization, these compounds resemble both Cram's crown ethers (macrocycles with oxygen donor atoms) and Lehn's cryptands (macrobicycles with 3-fold symmetry). It is therefore not surprising that these new hosts were found to have a natural propensity to bind cations relatively strongly. In recent work, we were also able to create anion-binding hosts by placing disubstituted urea motifs at the center of the tripodal architecture. Structural modifications of either the terminal substituents (e.g., H vs CH3 on the bridgehead), the diol (e.g., chiral), or the bridgehead atom itself (Si vs C) were found to have profound implications on the guest-binding properties.What makes orthoester/trialkoxysilane hosts truly unique is their dynamic covalent chemistry. The ability to conduct exchange reactions with alcohols at the bridgehead carbon or silicon atom is first and foremost an opportunity to develop highly efficient syntheses. Indeed, all hosts presented in this Account were prepared via templated self-assembly in yields of up to 90%. This efficiency is remarkable because the macrobicyclic architecture is established in one single step from at least five components. A second opportunity presented by dynamic bridgeheads is that suitable mixtures of orthoester hosts or their subcomponents can be adaptive, i.e. they respond to the presence of guests such that the addition of a certain guest can dictate the formation of a preferred host. In an extreme example of dynamic adaptivity, we found that ammonium ions can fulfill the dual role of catalyst for orthoester exchange and cationic template for efficient host formation, representing an unprecedented example of a fluxional supramolecular complex. The third implication of dynamic bridgeheads is due to the reaction of orthoesters and trialkoxysilanes with water instead of alcohols. We describe in detail how the hydrolysis rate differs strongly between O,O,O-orthoesters, S,S,S-trithioorthoesters, and trialkoxysilanes and how it is tunable by the choice of substituents and pH.We expect that the fundamental insights into exchange and degradation kinetics described in this Account will be useful far beyond supramolecular chemistry.
Collapse
Affiliation(s)
- Selina Hollstein
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
4
|
Cougnon FBL, Stefankiewicz AR, Ulrich S. Dynamic covalent synthesis. Chem Sci 2024; 15:879-895. [PMID: 38239698 PMCID: PMC10793650 DOI: 10.1039/d3sc05343a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/10/2023] [Indexed: 01/22/2024] Open
Abstract
Dynamic covalent synthesis aims to precisely control the assembly of simple building blocks linked by reversible covalent bonds to generate a single, structurally complex, product. In recent years, considerable progress in the programmability of dynamic covalent systems has enabled easy access to a broad range of assemblies, including macrocycles, shape-persistent cages, unconventional foldamers and mechanically-interlocked species (catenanes, knots, etc.). The reversibility of the covalent linkages can be either switched off to yield stable, isolable products or activated by specific physico-chemical stimuli, allowing the assemblies to adapt and respond to environmental changes in a controlled manner. This activatable dynamic property makes dynamic covalent assemblies particularly attractive for the design of complex matter, smart chemical systems, out-of-equilibrium systems, and molecular devices.
Collapse
Affiliation(s)
- Fabien B L Cougnon
- Department of Chemistry and Nanoscience Centre, University of Jyväskylä Jyväskylä Finland
| | - Artur R Stefankiewicz
- Centre for Advanced Technology and Faculty of Chemistry, Adam Mickiewicz University Poznań Poland
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
5
|
Haridas SV, von Delius M. Synthesis and supramolecular properties of all- cis-2,4,6-trifluorocyclohexane-1,3,5-triol. Chem Commun (Camb) 2024; 60:606-609. [PMID: 38099916 PMCID: PMC10783651 DOI: 10.1039/d3cc05510h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
We report the synthesis of all-cis fluorinated cyclohexanes bearing three hydroxy, ether or ester functionalities in the non-fluorinated positions. These tripodal molecules have a high dipole moment of up to 6.3 debye and were successfully used to bind anions and form gels.
Collapse
Affiliation(s)
- Shyamkumar V Haridas
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany.
| |
Collapse
|
6
|
Stoy A, Jürgensen M, Millidoni C, Berthold C, Ramler J, Martínez S, Buchner MR, Lichtenberg C. Bismuth in Dynamic Covalent Chemistry: Access to a Bowl-Type Macrocycle and a Barrel-Type Heptanuclear Complex Cation. Angew Chem Int Ed Engl 2023; 62:e202308293. [PMID: 37522394 DOI: 10.1002/anie.202308293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Dynamic covalent chemistry (DCvC) is a powerful and widely applied tool in modern synthetic chemistry, which is based on the reversible cleavage and formation of covalent bonds. One of the inherent strengths of this approach is the perspective to reversibly generate in an operationally simple approach novel structural motifs that are difficult or impossible to access with more traditional methods and require multiple bond cleaving and bond forming steps. To date, these fundamentally important synthetic and conceptual challenges in the context of DCvC have predominantly been tackled by exploiting compounds of lighter p-block elements, even though heavier p-block elements show low bond dissociation energies and appear to be ideally suited for this approach. Here we show that a dinuclear organometallic bismuth compound, containing BiMe2 groups that are connected by a thioxanthene linker, readily undergoes selective and reversible cleavage of its Bi-C bonds upon exposure to external stimuli. The exploitation of DCvC in the field of organometallic heavy p-block chemistry grants access to unprecedented macrocyclic and barrel-type oligonuclear compounds.
Collapse
Affiliation(s)
- Andreas Stoy
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Malte Jürgensen
- Institute of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christina Millidoni
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Chantsalmaa Berthold
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Jacqueline Ramler
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Sebastián Martínez
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Magnus R Buchner
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Crispin Lichtenberg
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| |
Collapse
|
7
|
Yang Y, Ronson TK, Hou D, Zheng J, Jahović I, Luo KH, Nitschke JR. Hetero-Diels-Alder Reaction between Singlet Oxygen and Anthracene Drives Integrative Cage Self-Sorting. J Am Chem Soc 2023; 145:19164-19170. [PMID: 37610128 PMCID: PMC10485901 DOI: 10.1021/jacs.3c04228] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/24/2023]
Abstract
A ZnII8L6 pseudocube containing anthracene-centered ligands, a ZnII4L'4 tetrahedron with a similar side length as the cube, and a trigonal prism ZnII6L3L'2 were formed in equilibrium from a common set of subcomponents. Hetero-Diels-Alder reaction with photogenerated singlet oxygen transformed the anthracene-containing "L" ligands into endoperoxide "LO" ones and ultimately drove the integrative self-sorting to form the trigonal prismatic cage ZnII6LO3L'2 exclusively. This ZnII6LO3L'2 structure lost dioxygen in a retro-Diels-Alder reaction after heating, which resulted in reversion to the initial ZnII8L6 + ZnII4L'4 ⇌ 2 × ZnII6L3L'2 equilibrating system. Whereas the ZnII8L6 pseudocube had a cavity too small for guest encapsulation, the ZnII6L3L'2 and ZnII6LO3L'2 trigonal prisms possessed peanut-shaped internal cavities with two isolated compartments divided by bulky anthracene panels. Guest binding was also observed to drive the equilibrating system toward exclusive formation of the ZnII6L3L'2 structure, even in the absence of reaction with singlet oxygen.
Collapse
Affiliation(s)
- Yuchong Yang
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Tanya K. Ronson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Dingyu Hou
- Department
of Mechanical Engineering, University College
London, London WC1E 7JE, United
Kingdom
| | - Jieyu Zheng
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Ilma Jahović
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Kai Hong Luo
- Department
of Mechanical Engineering, University College
London, London WC1E 7JE, United
Kingdom
| | - Jonathan R. Nitschke
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
8
|
Vogel J, Chen Y, Fadler RE, Flood AH, von Delius M. Steric Control over the Threading of Pyrophosphonates with One or Two Cyanostar Macrocycles during Pseudorotaxane Formation. Chemistry 2023; 29:e202300899. [PMID: 37156722 PMCID: PMC10655069 DOI: 10.1002/chem.202300899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
The supramolecular recognition of anions is increasingly harnessed to achieve the self-assembly of supramolecular architectures, ranging from cages and polymers to (pseudo)rotaxanes. The cyanostar (CS) macrocycle has previously been shown to form 2 : 1 complexes with organophosphate anions that can be turned into [3]rotaxanes by stoppering. Here we achieved steric control over the assembly of pseudorotaxanes comprising the cyanostar macrocycle and a thread that is based, for the first time, on organo-pyrophosphonates. Subtle differences in steric bulk on the threads allowed formation of either [3]pseudorotaxanes or [2]pseudorotaxanes. We demonstrate that the threading kinetics are governed by the steric demand of the organo-pyrophosphonates and in one case, slows down to the timescale of minutes. Calculations show that the dianions are sterically offset inside the macrocycles. Our findings broaden the scope of cyanostar-anion assemblies and may have relevance for the design of molecular machines whose directionality is a result of relatively slow slipping.
Collapse
Affiliation(s)
- Julian Vogel
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yusheng Chen
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Rachel E Fadler
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
9
|
Li J, Wang C, Mo Y. Selectivity Rule of Cryptands for Anions: Molecular Rigidity and Bonding Site. Chemistry 2023; 29:e202203558. [PMID: 36538660 DOI: 10.1002/chem.202203558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Cryptands utilize inside CH or NH groups as hydrogen bond (H-bond) donors to capture anions such as halides. In this work, the nature and selectivity of confined hydrogen bonds inside cryptands were computationally analyzed with the energy decomposition scheme based on the block-localized wavefunction method (BLW-ED), aiming at an elucidation of governing factors in the binding between cryptands and anions. It was revealed that the intrinsic strengths of inward hydrogen bonds are dominated by the electrostatic attraction, while the anion preferences (selectivity) of inner CH and NH hydrogen bonds are governed by the Pauli exchange repulsion and electrostatic interaction, respectively. Typical conformers of cages are classified into two groups, including the C3(h) -symmetrical conformers, in which all halide anions are located near the centroids of cages, and the "semi-open" conformers, which exhibit shifted bonding sites for different halide anions. Accordingly, the difference in governing factors of selectivity is attributed to either the rigidity of cages or the binding site of anions for these two groups. In details, the C3 conformers of NH cryptands can be enlarged more remarkably than the C3(h) -symmetrical conformers of CH cryptands as the size of anion (ionic radius) increases, resulting in the relaxation of the Pauli repulsion and a dramatic reduction in electrostatic attraction, which eventually rules the selectivity of NH cryptands for halide anions. By contrary, the CH cryptands are more rigid and cannot effectively reduce the Pauli repulsion, which subsequently governs the anion preference. Unlike C3 conformers whose rigidity determines the selectivity, semi-open conformers exhibit different binding sites for different anions. From F- to I- , the bonding site shifts toward the outside end of the pocket inside the semi-open NH cryptand, leading to the significant reduction of the electrostatic interaction that dominates the anion preference. Differently, binding sites are much less affected by the size of anion inside the semi-open CH cryptand, in which the Pauli exchange repulsion remains the key factor for the selectivity of inner hydrogen bonds.
Collapse
Affiliation(s)
- Jiayao Li
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| |
Collapse
|
10
|
Van Craen D, Kalarikkal MG, Holstein JJ. A Charge-Neutral Self-Assembled L 2Zn 2 Helicate as Bench-Stable Receptor for Anion Recognition at Nanomolar Concentration. J Am Chem Soc 2022; 144:18135-18143. [PMID: 36137546 DOI: 10.1021/jacs.2c08579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The field of anion recognition chemistry is dominated by two fundamental approaches to design receptors. One relies on the formation of covalent bonds resulting in organic and often neutral host species, while the other one utilizes metal-driven self-assembly for the formation of charged receptors with well-defined nanocavities. Yet, the combination of their individual advantages in the form of charge-neutral metal-assembled bench-stable anion receptors is severely lacking. Herein, we present a fluorescent and uncharged double-stranded hydroxyquinoline-based zinc(II) helicate with the ability to bind environmentally relevant dicarboxylate anions with high fidelity in dimethyl sulfoxide (DMSO) at nanomolar concentrations. These dianions are pinned between zinc(II) centers with binding constants up to 145 000 000 M-1. The presented investigation exemplifies a pathway to bridge the two design approaches and combine their strength in one structural motif as an efficient anion receptor.
Collapse
Affiliation(s)
- David Van Craen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Malavika G Kalarikkal
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Hollstein S, Shyshov O, Hanževački M, Zhao J, Rudolf T, Jäger CM, von Delius M. Dynamic Covalent Self-Assembly of Chloride- and Ion-Pair-Templated Cryptates. Angew Chem Int Ed Engl 2022; 61:e202201831. [PMID: 35384202 PMCID: PMC9400851 DOI: 10.1002/anie.202201831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 12/17/2022]
Abstract
While supramolecular hosts capable of binding and transporting anions and ion pairs are now widely available, self-assembled architectures are still rare, even though they offer an inherent mechanism for the release of the guest ion(s). In this work, we report the dynamic covalent self-assembly of tripodal, urea-based anion cryptates that are held together by two orthoester bridgeheads. These hosts exhibit affinity for anions such as Cl- , Br- or I- in the moderate range that is typically advantageous for applications in membrane transport. In unprecedented experiments, we were able to dissociate the Cs⋅Cl ion pair by simultaneously assembling suitably sized orthoester hosts around the Cs+ and the Cl- ion.
Collapse
Affiliation(s)
- Selina Hollstein
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Oleksandr Shyshov
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marko Hanževački
- Department of Chemical and Environmental EngineeringUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Jie Zhao
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tamara Rudolf
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Christof M. Jäger
- Department of Chemical and Environmental EngineeringUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Max von Delius
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|