1
|
Ornati E, Perrard J, Hoffmann TA, Bonon R, Bruns N. Bacteria-Mediated Intracellular Radical Polymerizations. J Am Chem Soc 2025. [PMID: 40036043 DOI: 10.1021/jacs.4c17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Intracellular radical polymerizations allow for the direct bioorthogonal synthesis of various synthetic polymers within living cells, thereby providing a pathway to polymer-modified cells or the fermentative production of polymers. Here, we show that Escherichia coli cells can initiate the polymerization of various acrylamide, acrylic, and methacrylic monomers through an atom transfer radical reaction triggered by the activity of naturally occurring biomolecules within the bacterial cells. Intracellular radical polymerizations were confirmed by nuclear magnetic resonance spectroscopy, gel permeation chromatography of polymers extracted from the cells, and fluorescence labeling of the polymer directly inside the cells. The effect of polymerization on cell behavior and the response of the cells to polymerization was investigated through fluorescence microscopy and flow cytometry techniques, as well as metabolic and membrane integrity assays. The polymer synthesis and resulting products are cell-compatible, as indicated by the high viability of the polymerized cells. In cellulo synthesis of synthetic polymers containing fluorescent dyes was also achieved. These results not only enhance our understanding of the untapped potential of bacterial cells as living catalysts for polymer production but also reveal intracellular polymerization based on atom transfer radical polymerization initiators as a bioorthogonal tool for cell engineering and synthetic biology.
Collapse
Affiliation(s)
- Eleonora Ornati
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham House, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Jules Perrard
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Tobias A Hoffmann
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Raissa Bonon
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Nico Bruns
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham House, 295 Cathedral Street, Glasgow G1 1XL, U.K
| |
Collapse
|
2
|
Zhang M, Armes SP, An Z. Synthesis of Star Polymers with Ultrahigh Molecular Weights and Tunable Dispersities via Photoiniferter Polymerization. ACS Macro Lett 2025:306-312. [PMID: 39981946 DOI: 10.1021/acsmacrolett.5c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Simultaneous control over macromolecular chain topology, molecular weight, and dispersity is an important synthetic goal in polymer chemistry. The synthesis of well-defined poly(methyl acrylate) star polymers with ultrahigh molecular weights (>106 g mol-1) and tunable dispersities is realized for the first time via blue light-controlled photoiniferter polymerization using a tetrafunctional switchable RAFT agent (SRA4). The spectroscopic properties and polymerization activity of SRA4 can be reversibly tuned by addition of acid/base. For example, protonation of SRA4 with 4-toluenesulfonic acid (TsOH) leads to enhanced UV-visible light absorption, a faster polymerization rate, and a lower dispersity for the resulting star polymer. Star polymers were prepared with predicted molecular weights (Mn ≈ 80-1550 kg mol-1) and tunable dispersities (Đ ≈ 1.8-1.2) when targeting degrees of polymerization in the range of 1000-20000 in the presence of varying amounts of TsOH. High end-group fidelity for such star polymers was confirmed by one-pot chain extension experiments, which afforded a series of pseudoblock copolymers with controlled dispersities. Finally, rotational rheology was used to examine the effect of molecular weight, dispersity, and chain topology (whether linear or star-shaped) on solution viscosity.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Steven P Armes
- School of Mathematical and Physical Sciences, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Liu X, Yu E, Zhao Q, Han H, Li Q. Enzymes as green and sustainable tools for DNA data storage. Chem Commun (Camb) 2025; 61:2891-2905. [PMID: 39834292 DOI: 10.1039/d4cc06351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
DNA is considered as an ideal supramolecular material for information storage with high storage density and long-term stability. Enzymes, as green and sustainable tools, offer several unique advantages for DNA-based information storage. These advantages include low cost and reduced generation of hazardous wastes during DNA synthesis, as well as the improvements in data reading speed and data recovery accuracy. Moreover, enzymes could achieve scalable data steganography. In this review, we introduced the exciting application strategies of enzymatic tools in each step of DNA information storage (writing, storing, retrieval and reading). We further address the challenges and opportunities associated with enzymatic tools for DNA information storage, aiming at developing new techniques to overcome these obstacles.
Collapse
Affiliation(s)
- Xutong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Enyang Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Qixuan Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Huang Z, Dong J, Liu K, Pan X. Oxygen, light, and mechanical force mediated radical polymerization toward precision polymer synthesis. Chem Commun (Camb) 2025; 61:2699-2722. [PMID: 39817502 DOI: 10.1039/d4cc05772d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization. Therefore, we have developed some oxygen-tolerant systems that directly utilize oxygen for initiating and regulating polymerization. We utilize oxygen/alkylborane as an effective radical initiator system in the polymerization, and also as a reductant for the removal of polymer chain ends. Moreover, we employ the gentler photoinduced CRP to circumvent side reactions caused by high temperatures and achieve temporal and spatial control over the polymerization. To enhance the penetration of the light source for polymerization, we have developed near-infrared light-induced atom transfer radical polymerization. Additionally, we have extended photochemistry to reversible addition-fragmentation chain transfer polymerization involving ion-pair inner-sphere electron transfer mechanism, metal-free radical hydrosilylation polymerization, as well as carbene-mediated polymer modification through C-H activation and insertion mechanisms. Furthermore, we propose a new method for polymerization initiation synergistically triggered by oxygen and mechanical energy. This review not only showcases the current advancements in CRP but also outlines future directions, such as the potential for 3D printing and surface coatings, and the exploration of new heteroatom radical polymerizations. By expanding the boundaries of polymer synthesis, these innovations could lead to the creation of new materials with enhanced functionality and applications.
Collapse
Affiliation(s)
- Zhujun Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Jin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Kaiwen Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
5
|
Du Y, Chen Z, Xie Z, Yi S, Matyjaszewski K, Pan X. Oxygen-Driven Atom Transfer Radical Polymerization. J Am Chem Soc 2025; 147:3662-3669. [PMID: 39817566 DOI: 10.1021/jacs.4c15952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In traditional atom transfer radical polymerization (ATRP), oxygen must be meticulously eliminated due to its propensity to quench radical species and halt the polymerization process. Additionally, oxygen oxidizes the lower-valent Cu catalyst, compromising its ability to activate alkyl halides and propagate polymerization. In this study, we present an oxygen-driven ATRP utilizing alkylborane compounds, a method that not only circumvents the need for stringent oxygen removal but also exploits oxygen as an essential cofactor to promote polymerization. This approach exhibits broad compatibility in organic or aqueous media, yielding well-defined polymers with low dispersity (Đ as low as 1.11) and molecular weights closely aligned with theoretical values. Triethylborane (Et3B) and its air-stable triethylborane-amine complex (Et3B-DMAP) facilitate controlled polymerization under open-to-air conditions, demonstrating efficiency across a wide range of monomers. Moreover, the technique enables the successful synthesis of protein-polymer conjugates and supports surface modifications of nanoparticles and silicon wafers under aerobic conditions. This oxygen-driven ATRP represents a robust and versatile platform for precision polymerization with far-reaching implications in materials science, biomedicine, and advanced surface engineering.
Collapse
Affiliation(s)
- Yuxuan Du
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhe Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhikang Xie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Siyu Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Hu L, Jiao L, Chen C, Jia X, Li X, Yan D, Zhai Y, Lu X. Nanozymes with Modulable Inhibition Transfer Pathways for Thiol and Cell Identification. Anal Chem 2025; 97:1767-1774. [PMID: 39806811 DOI: 10.1021/acs.analchem.4c05355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The elementary mechanism and site studies of nanozyme-based inhibition reactions are ambiguous and urgently require advanced nanozymes as mediators to elucidate the inhibition effect. To this end, we develop a class of nanozymes featuring single Cu-N catalytic configurations and B-O sites as binding configurations on a porous nitrogen-doped carbon substrate (B6/CuSA) for inducing modulable inhibition transfer at the atomic level. The full redistribution of electrons across the Cu-N sites, induced by B-O sites incorporation, yields B6/CuSA with enhanced peroxidase-like activity versus CuSA. More importantly, CuSA with single Cu-N sites features in cysteine binding and expresses a competitive inhibition through coordination bonds, with an inhibition constant of 0.048 mM. Benefiting from the modulable binding way in nanozymes, B6/CuSA possesses mixed binding approaches for cysteine through noncovalent bonds and delivers a record-mixed inhibition interaction with a competitive inhibition constant of 0.054 mM and a noncompetitive inhibition constant of 0.71 mM. Based on the modulable inhibition of B6/CuSA and CuSA, a multichannel sensor array accomplishes the detection of various cancer cells, normal cells, and thiols. The design principle of this work is endowed with guidelines for the preliminary inhibition mechanism evaluation of massive potential thiols, cell discrimination, and disease prediction.
Collapse
Affiliation(s)
- Lijun Hu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Chengjie Chen
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiangkun Jia
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiaotong Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Dongbo Yan
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiaoquan Lu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
7
|
Zhang S, Li R, An Z. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization-Induced Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202315849. [PMID: 38155097 DOI: 10.1002/anie.202315849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and in situ self-assembly of block copolymers in one system and has become a widely used method to prepare block copolymer nanoparticles at high concentrations. The persistence of polymers in the environment poses a huge threat to the ecosystem and represents a significant waste of resources. There is an urgent need to develop novel chemical approaches to synthesize degradable polymers. To meet with this demand, it is crucial to install degradability into PISA nanoparticles. Most recently, degradable PISA nanoparticles have been synthesized by introducing degradation mechanisms into either shell-forming or core-forming blocks. This Minireview summarizes the development in degradable block copolymer nanoparticles synthesized by PISA, including shell-degradable, core-degradable, and all-degradable nanoparticles. Future development will benefit from expansion of polymerization techniques with new degradation mechanisms and adaptation of high-throughput approaches for both PISA syntheses and degradation studies.
Collapse
Affiliation(s)
- Shudi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
8
|
Sivokhin A, Orekhov D, Kazantsev O, Otopkova K, Sivokhina O, Chuzhaykin I, Ovchinnikov A, Zamyshlyayeva O, Pavlova I, Ozhogina O, Chubenko M. Amide-Containing Bottlebrushes via Continuous-Flow Photoiniferter Reversible Addition-Fragmentation Chain Transfer Polymerization: Micellization Behavior. Polymers (Basel) 2023; 16:134. [PMID: 38201799 PMCID: PMC10780833 DOI: 10.3390/polym16010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Herein, a series of ternary amphiphilic amide-containing bottlebrushes were synthesized by photoiniferter (PI-RAFT) polymerization of macromonomers in continuous-flow mode using trithiocarbonate as a chain transfer agent. Visible light-mediated polymerization of macromonomers under mild conditions enabled the preparation of thermoresponsive copolymers with low dispersity and high yields in a very short time, which is not typical for the classical reversible addition-fragmentation chain transfer process. Methoxy oligo(ethylene glycol) methacrylate and alkoxy(C12-C14) oligo(ethylene glycol) methacrylate were used as the basic monomers providing amphiphilic and thermoresponsive properties. The study investigated how modifying comonomers, acrylamide (AAm), methacrylamide (MAAm), and N-methylacrylamide (-MeAAm) affect the features of bottlebrush micelle formation, their critical micelle concentration, and loading capacity for pyrene, a hydrophobic drug model. The results showed that the process is scalable and can produce tens of grams of pure copolymer per day. The unmodified copolymer formed unimolecular micelles at temperatures below the LCST in aqueous solutions, as revealed by DLS and SLS data. The incorporation of AAm, MAAm, and N-MeAAm units resulted in an increase in micelle aggregation numbers. The resulting bottlebrushes formed uni- or bimolecular micelles at extremely low concentrations. These micelles possess a high capacity for loading pyrene, making them a promising choice for targeted drug delivery.
Collapse
Affiliation(s)
- Alexey Sivokhin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Dmitry Orekhov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Oleg Kazantsev
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Ksenia Otopkova
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Sivokhina
- V.A. Kargin Research Institute of Chemistry and Technology of Polymers with Pilot Plant, 606000 Dzerzhinsk, Nizhegorodskaya obl., Russia
| | - Ilya Chuzhaykin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Alexey Ovchinnikov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Zamyshlyayeva
- Department of High Molecular Compounds and Colloidal Chemistry, Faculty of Chemistry, Lobachevsky State University, Gagarina pr. 23, 603950 Nizhny Novgorod, Russia
| | - Irina Pavlova
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Ozhogina
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Maria Chubenko
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| |
Collapse
|
9
|
Tan W, Li X, Zhang P, Yao X, Li J, Jin P, Li K. A fatty acid photodecarboxylase-mimicking photonanozyme with defect-induced enzymatic substrate-binding pockets. J Colloid Interface Sci 2023; 652:1965-1973. [PMID: 37690304 DOI: 10.1016/j.jcis.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/20/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Hydrocarbon synthesis hints at the significance of in-depth investigations and detailed explanations of mimicking fatty acid photodecarboxylase (FAP). Considering the importance of photodecarboxylases in hydrocarbon synthesis, we present the potential of defective semiconductor nanomaterials as a novel type of photonanozymes (PNZs) that mimic enzyme-like performance, serving as alternatives to FAP. Ferrum-doped titanium dioxide (Fe-TiO2) was synthesized to introduce appropriate amounts of surface defects including reduced Ti3+ sites and oxygen vacancies, which reduce the band gap of TiO2 and enhance the visible-light absorption, thereby facilitating efficient charge trapping. Notably, the surface defects of Fe-TiO2 PNZs singularly act as enzymatic substrate-binding pockets that enable efficient carboxylic acid adsorption during the dark process, conversely facilitating the formation of more defects and boosting the FAP-like activity for photocatalytic decarboxylation reactions. This work provides a creative strategy for designing substrate-dependent higher-concentration defects as enzyme-like binding sites on promising PNZs that mimic natural photoenzymes.
Collapse
Affiliation(s)
- Wenlong Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, PR China
| | - Xu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, PR China
| | - Pei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, PR China
| | - Xuyan Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, PR China
| | - Jinzhao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, PR China
| | - Peng Jin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, PR China
| | - Kun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
10
|
Belluati A, Happel D, Erbe M, Kirchner N, Szelwicka A, Bloch A, Berner V, Christmann A, Hertel B, Pardehkhorram R, Reyhani A, Kolmar H, Bruns N. Self-decorating cells via surface-initiated enzymatic controlled radical polymerization. NANOSCALE 2023; 15:19486-19492. [PMID: 38051112 DOI: 10.1039/d3nr04008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Through the innovative use of surface-displayed horseradish peroxidase, this work explores the enzymatic catalysis of both bioRAFT polymerization and bioATRP to prompt polymer synthesis on the surface of Saccharomyces cerevisiae cells, with bioATRP outperforming bioRAFT polymerization. The resulting surface modification of living yeast cells with synthetic polymers allows for a significant change in yeast phenotype, including growth profile, aggregation characteristics, and conjugation of non-native enzymes to the clickable polymers on the cell surface, opening new avenues in bioorthogonal cell-surface engineering.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
- Centre for Synthetic Biology, Technical University of Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glashow G1 1XL, UK
| | - Dominic Happel
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Malte Erbe
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Nicole Kirchner
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Anna Szelwicka
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Adrian Bloch
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Valeria Berner
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Andreas Christmann
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Brigitte Hertel
- Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Raheleh Pardehkhorram
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Amin Reyhani
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Harald Kolmar
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
- Centre for Synthetic Biology, Technical University of Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
| | - Nico Bruns
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
- Centre for Synthetic Biology, Technical University of Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glashow G1 1XL, UK
| |
Collapse
|
11
|
Ma Q, Qiao GG, An Z. Visible Light Photoiniferter Polymerization for Dispersity Control in High Molecular Weight Polymers. Angew Chem Int Ed Engl 2023; 62:e202314729. [PMID: 37814139 DOI: 10.1002/anie.202314729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The synthesis of polymers with high molecular weights, controlled sequence, and tunable dispersities remains a challenge. A simple and effective visible-light controlled photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization is reported here to realize this goal. Key to this strategy is the use of switchable RAFT agents (SRAs) to tune polymerization activities coupled with the inherent highly living nature of photoiniferter RAFT polymerization. The polymerization activities of SRAs were in situ adjusted by the addition of acid. In addition to a switchable chain-transfer coefficient, photolysis and polymerization kinetic studies revealed that neutral and protonated SRAs showed different photolysis and polymerization rates, which is unique to photoiniferter RAFT polymerization in terms of dispersity control. This strategy features no catalyst, no exogenous radical source, temporal regulation by visible light, and tunable dispersities in the unprecedented high molecular weight regime (up to 500 kg mol-1 ). Pentablock copolymers with three different dispersity combinations were also synthesized, highlighting that the highly living nature was maintained even for blocks with large dispersities. Tg was lowered for high-dispersity polymers of similar MWs due to the existence of more low-MW polymers. This strategy holds great potential for the synthesis of advanced materials with controlled molecular weight, dispersity and sequence.
Collapse
Affiliation(s)
- Qingchi Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Greg G Qiao
- Department of Chemical Engineering, University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
12
|
Tributylborane/p-quinone system: reversible and irreversible inhibition in the styrene polymerization. Macromol Res 2023. [DOI: 10.1007/s13233-023-00136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
13
|
Zaborniak I, Pieńkowska N, Chmielarz P, Bartosz G, Dziedzic A, Sadowska-Bartosz I. Nitroxide-containing amphiphilic polymers prepared by simplified electrochemically mediated ATRP as candidates for therapeutic antioxidants. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
14
|
Li R, Kong W, An Z. Controlling Radical Polymerization with Biocatalysts. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Weina Kong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
Yuan Y, Liu Y, Liu K, Hua J. Structurally controllable anisotropic polymer brushes and their application in antifouling nanocoatings. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Shirinichi F, Ibrahim T, Rodriguez M, Sun H. Assembling the best of two worlds: Biomolecule‐polymer nanoparticles via polymerization‐induced self‐assembly. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Farbod Shirinichi
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Tarek Ibrahim
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Mia Rodriguez
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Hao Sun
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| |
Collapse
|
17
|
Cesana PT, Page CG, Harris D, Emmanuel MA, Hyster TK, Schlau-Cohen GS. Photoenzymatic Catalysis in a New Light: Gluconobacter “Ene”-Reductase Conjugates Possessing High-Energy Reactivity with Tunable Low-Energy Excitation. J Am Chem Soc 2022; 144:17516-17521. [DOI: 10.1021/jacs.2c06344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul T. Cesana
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Claire G. Page
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Megan A. Emmanuel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Todd K. Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Zhang WJ, Chang ZX, Bai W, Hong CY. Greatly Enhanced Accessibility and Reproducibility of Worm‐like Micelles by in situ Crosslinking Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen-Jian Zhang
- Anhui University Institute of Physical Science and Information Technology 合肥 CHINA
| | - Zi-Xuan Chang
- University of Science and Technology of China Department of Polymer Science and Engineering CHINA
| | - Wei Bai
- Anhui University Institute of Physical Science and Information Technology CHINA
| | - Chun-Yan Hong
- University of Science and Technology of China Department of Polymer Science and Engineering Jinzhai Road 96 230026 Hefei CHINA
| |
Collapse
|
19
|
Gong H, Ji Q, Cheng Y, Xiong J, Zhang M, Zhang Z. Controllable synthesis and structural design of novel all-organic polymers toward high energy storage dielectrics. Front Chem 2022; 10:979926. [PMID: 36059883 PMCID: PMC9428677 DOI: 10.3389/fchem.2022.979926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
As the core unit of energy storage equipment, high voltage pulse capacitor plays an indispensable role in the field of electric power system and electromagnetic energy related equipment. The mostly utilized polymer materials are metallized polymer thin films, which are represented by biaxially oriented polypropylene (BOPP) films, possessing the advantages including low cost, high breakdown strength, excellent processing ability, and self-healing performance. However, the low dielectric constant (εr < 3) of traditional BOPP films makes it impossible to meet the demand for increased high energy density. Controlled/living radical polymerization (CRP) and related techniques have become a powerful approach to tailor the chemical and physical properties of materials and have given rise to great advances in tuning the properties of polymer dielectrics. Although organic-inorganic composite dielectrics have received much attention in previous studies, all-organic polymer dielectrics have been proven to be the most promising choice because of its light weight and easy large-scale continuous processing. In this short review, we begin with some basic theory of polymer dielectrics and some theoretical considerations for the rational design of dielectric polymers with high performance. In the guidance of these theoretical considerations, we review recent progress toward all-organic polymer dielectrics based on two major approaches, one is to control the polymer chain structure, containing microscopic main-chain and side-chain structures, by the method of CRP and the other is macroscopic structure design of all-organic polymer dielectric films. And various chemistry and compositions are discussed within each approach.
Collapse
Affiliation(s)
- Honghong Gong
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Jiaotong University Suzhou Academy, Suzhou, Jiangsu, China
| | - Qinglong Ji
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yipin Cheng
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Jiaotong University Suzhou Academy, Suzhou, Jiangsu, China
| | - Jie Xiong
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Meirong Zhang
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhicheng Zhang
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Zhicheng Zhang,
| |
Collapse
|