1
|
Yadav AK, Kushwaha R, Mandal AA, Mandal A, Banerjee S. Intracellular Photocatalytic NADH/NAD(P)H Oxidation for Cancer Drug Development. J Am Chem Soc 2025. [PMID: 39980079 DOI: 10.1021/jacs.4c18328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Photocatalytic cancer therapy (PCT) has emerged as a cutting-edge anticancer mechanism of action, harnessing light energy to mediate the catalytic oxidation of intracellular substrates. PCT is of significant current importance due to its potential to address the limitations of conventional chemotherapy, particularly drug resistance and side effects. This approach offers a noninvasive, targeted cancer treatment option by utilizing metal-based photocatalysts to induce redox and metabolic disorders within cancer cells. The photocatalysts disrupt the cancer cell metabolism by converting NADH/NAD(P)H to NAD+/NAD(P)+ via catalytic photoredox processes, altering intracellular NAD+/NADH or NAD(P)+/NAD(P)H ratios, which are crucial for cellular metabolism. Ir(III), Ru(II), Re(I), and Os(II) photocatalysts demonstrated promising PCT efficacy. Despite these developments, gaps remain in the literature for translating this new anticancer mechanism into clinical trials. This Perspective critically examines the developments in this research area and provides future directions for designing efficient photocatalysts for PCT.
Collapse
Affiliation(s)
- Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Liu Z, Lai K, Li P, Gong Y, Fu H, Dong H, Yang Z, Qin R, Guo L. Enhanced Anticancer Selectivity of Cyclometalated Imidazole/Pyrazole-Imine Iridium III Complexes Through the Switch from Cationic to Zwitterionic Forms. Inorg Chem 2025; 64:2837-2856. [PMID: 39895267 DOI: 10.1021/acs.inorgchem.4c04937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cyclometalated iridiumIII complexes have shown promising anticancer properties, with variations in charge and ligand substitution significantly influencing their biological activity. However, zwitterionic iridiumIII complexes remain scarcely explored. Herein, we report a series of zwitterionic cyclometalated imidazole/pyrazole-imine iridiumIII complexes and compare their biological activity to analogous cationic complexes with sulfonate counteranions. X-ray crystallography confirmed the structural differences between the cationic and zwitterionic forms. These complexes exhibited cytotoxicity against A549, HeLa, and HepG2 cancer cells, with IC50 values ranging from 14.35 to 69.12 μM. While cationic complexes showed higher cytotoxicity, zwitterionic complexes demonstrated enhanced selectivity for A549 cancer cells over BEAS-2B normal cells (selectivity index: 3.72-5.90 for zwitterionic forms vs 1.16-1.44 for cationic forms). This selectivity is attributed to distinct cellular uptake mechanisms: zwitterionic complexes use an energy-dependent pathway in cancer cells and an energy-independent pathway in normal cells, leading to differences in cellular accumulation and redox activity. Mechanistic studies revealed that both complex types induce ROS generation and mitochondrial membrane depolarization (MMP), with apoptosis as the primary cell death pathway.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Pengwei Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ruixin Qin
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
3
|
Li D, Wen G, Wang H, Ren Q, Wang D, Dao A, Huang H, Zhang P. Photoredox-Mediated Immunotherapy Utilizing Rhenium(I) Photocatalysts with Electron Donor-Acceptor-Donor Configuration. J Med Chem 2025. [PMID: 39854246 DOI: 10.1021/acs.jmedchem.4c02836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate via photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes (Re-TPO and Re-TP) with electron donor-acceptor-donor configuration. Notably, Re-TP exhibits aggregation-induced emission properties and enhanced spin-orbit coupling compared to Re-TPO, thus exhibiting promoted photosensitizing capability. In addition to generating type I and II reactive oxygen species, the excited Re-TP facilitates the photocatalytic oxidation of NADH to NAD+ and the photoreduction of pyruvic acid to lactic acid. This metabolic intervention triggers PD-L1-linked immune responses and disrupts tumor redox balance, leading to ferroptosis and immunogenic cell death. The combined ferroptosis and immunotherapy effects significantly suppress both primary and distant B16 tumors. This investigation provides a compelling model for designing efficient metal-based PSs for photoredox-mediated photoimmunotherapy against hypoxic tumors.
Collapse
Affiliation(s)
- Dan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guoqing Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qingyan Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou 313000, China
| | - Anyi Dao
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Vigueras G, Gasser G, Ruiz J. Breaking the deep-red light absorption barrier of iridium(III)-based photosensitizers. Dalton Trans 2025; 54:1320-1328. [PMID: 39780758 DOI: 10.1039/d4dt03014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Activating photosensitizers with long-wavelength excitation is an important parameter for effective photodynamic therapy due to the minimal toxicity of this light, its superior tissue penetration, and excellent spatial resolution. Unfortunately, most Ir(III) complexes suffer from limited absorption within the phototherapeutic window, rendering them ineffective against deep-seated and/or large tumors, which poses a significant barrier to their clinical application. To address this issue, several efforts have been recently made to shift the absorption of Ir(III) photosensitizers to the deep-red/near-infrared region by using different strategies: functionalization with organic fluorophores, including porphyrinoid compounds, and ligand design via π-extension and donor-acceptor interactions. In this Frontier, we highlight such new developments and the ongoing challenges in this field.
Collapse
Affiliation(s)
- Gloria Vigueras
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain.
| |
Collapse
|
5
|
Hao L, Ling YY, Wang J, Shen QH, Li ZY, Tan CP. Theranostic Rhenium(I)-Based ER-Phagy Retardant Promotes Immunogenic Cell Death. J Med Chem 2025; 68:338-347. [PMID: 39720929 DOI: 10.1021/acs.jmedchem.4c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
ER-phagy is a double-edged sword in the occurrence, development, and treatment of cancer; especially, its functions in immunotherapy are still unknown. In this work, we designed a theranostic Re complex (Re1) containing a BODIPY-derived ligand and a β-carboline ligand to target the endoplasmic reticulum (ER) and block ER-phagy at the late stages. Interestingly, as validated both in vitro and in vivo, ER-phagy blockage greatly enhances the capability of Re1 to induce immunogenic cell death (ICD). In summary, we dexterously fused two molecular modules for ER targeting and ER-phagy blockage into a coordination complex to afford a highly effective ICD inducer, which provides clues for designing new cancer immunotherapeutics.
Collapse
Affiliation(s)
- Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. China
| | - Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jie Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Qing-Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhi-Yuan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Guangzhou 510006, P. R. China
| |
Collapse
|
6
|
Pang B, Liu Z, Gao Y, Li X, Wang S, Qi M, Zhao X, Fan R, Xu D, Cullen PJ, Zhou R. Enhanced Anticancer Efficacy of Alkaline Plasma-Activated Water through Augmented RONS Production. ACS APPLIED MATERIALS & INTERFACES 2025; 17:467-483. [PMID: 39692225 DOI: 10.1021/acsami.4c16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Despite notable advances in anticancer drug development, their manufacture and use pose environmental and health risks due to toxic byproducts, drug residue contamination, and cytotoxicity to normal cells. Therefore, developing cost-effective anticancer treatments with fewer toxic side effects and higher selectivity is essential to the advancement of highly effective anticancer therapies. Plasma-activated water (PAW) offers a green alternative to conventional chemical treatments as it reverts to water within days. However, the limited duration and dose of reactive oxygen and nitrogen species (RONS) in acidified PAW restrict its clinical deployment and the full understanding of their mechanism. In this study, we propose alkaline PAW as an innovative enhancement of the RONS technology. The alkaline PAW generated markedly superior RONS, with about 10 times higher levels of NO2-, H2O2, and ONOO-/O2•- than acidic PAW. The possible RONS generation pathways in alkaline PAW are analyzed by scavengers. In conventional acidic PAW, 70% of the H2O2 concentration is contributed by •OH but only about 20% in alkaline PAW. ONOO- is mainly formed through the reaction of O2•- with NO in alkaline pH, while in acidic PAW, it mainly forms from NO2- and H2O2. The results unveiled the synergistic and formidable anticancer effects of alkaline PAW against cancer cells, typified by an increase in intracellular ROS/RNS levels. Furthermore, alkaline PAW injection also effectively prevented xenograft tumor growth in mice. We systematically investigated this high-dose anticancer solution without using noble gases, toxic reagents, or extra energy consumption and successfully demonstrated the possibility of alkaline PAW being an effective and environmentally friendly therapeutic technology. The activity is closely linked to the RONS dose, and the generation pathway provides much-needed insight into the fundamental aspects of PAW chemistry required for the optimization of the biochemical activity of PAW.
Collapse
Affiliation(s)
- Bolun Pang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhijie Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuting Gao
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xin Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Sitao Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Miao Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xinyi Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Runze Fan
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
7
|
Shee M, Schleisiek J, Maity N, Das G, Montesdeoca N, Ha-Thi MH, Gore KR, Karges J, Singh NDP. Exploring Excited-State Intramolecular Proton-Coupled Electron Transfer in Dinuclear Ir(III)-Complex via Covalently Tagged Hydroquinone: Phototherapy Through Futile Redox Cycling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408437. [PMID: 39711252 DOI: 10.1002/smll.202408437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Indexed: 12/24/2024]
Abstract
Anticipating intramolecular excited-state proton-coupled electron transfer (PCET) process within dinuclear Ir2-photocatalytic system via the covalent linkage is seminal, yet challenging. Indeed, the development of various dinuclear complexes is also promising for studying integral photophysics and facilitating applications in catalysis or biology. Herein, this study reports dinuclear [Ir2(bis{imidazo-phenanthrolin-2-yl}-hydroquinone)(ppy)4]2+ (12+) complex by leveraging both ligand-centered redox property and intramolecular H-bonding for exploring dual excited-state proton-transfer assisted PCET process. The vital role of covalently placed hydroquinone in bridged ligand is investigated as electron-proton transfer (ET-PT) mediator in intramolecular PCET and validated from triplet spin density plot. Moreover, bimolecular photoinduced ET reaction is studied in acetonitrile/water medium, forging the lowest energy triplet charge separated (3CSPhen-Im) state of 12+ with methyl viologen via favorably concerted-PCET pathway. The result indicates strong donor-acceptors coupling, which limits charge recombination and enhances catalytic efficiency. To showcase the potential application, this bioinspired PCET-based photocatalytic platform is studied for phototherapeutics, indicating significant mitochondrial localization and leading to programmed cell death (apoptosis) through futile redox cycling. Indeed, the consequences of effective internalization (via energy-dependent endocytosis), better safety profile, and higher photoinduced antiproliferative activity of 12+ compared to Cisplatin, as explored in 3D tumor spheroids, this study anticipates it to be a potential lead compound.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Julia Schleisiek
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Nishith Maity
- Université Paris-Saclay, CNRS, Institut des Sciences Molécu-laires d'Orsay, Orsay, 91405, France
| | - Gourav Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Minh-Huong Ha-Thi
- Université Paris-Saclay, CNRS, Institut des Sciences Molécu-laires d'Orsay, Orsay, 91405, France
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
8
|
Zeng YL, Liu LY, Ma TZ, Liu Y, Liu B, Liu W, Shen QH, Wu C, Mao ZW. Iridium(III) Photosensitizers Induce Simultaneous Pyroptosis and Ferroptosis for Multi-Network Synergistic Tumor Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202410803. [PMID: 39180126 DOI: 10.1002/anie.202410803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/26/2024]
Abstract
The integration of pyroptosis and ferroptosis hybrid cell death induction to augment immune activation represents a promising avenue for anti-tumor treatment, but there is a lack of research. Herein, we developed two iridium (III)-triphenylamine photosensitizers, IrC and IrF, with the capacity to disrupt redox balance and induce photo-driven cascade damage to DNA and Kelch-like ECH-associated protein 1 (KEAP1). The activation of the absent in melanoma 2 (AIM2)-related cytoplasmic nucleic acid-sensing pathway, triggered by damaged DNA, leads to the induction of gasdermin D (GSDMD)-mediated pyroptosis. Simultaneously, iron homeostasis, regulated by the KEAP1/nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) pathway, serves as a pivotal bridge, facilitating not only the induction of gasdermin E (GSDME)-mediated non-canonical pyroptosis, but also ferroptosis in synergy with glutathione peroxidase 4 (GPX4) depletion. The collaborative action of pyroptosis and ferroptosis generates a synergistic effect that elicits immunogenic cell death, stimulates a robust immune response and effectively inhibits tumor growth in vivo. Our work introduces the first metal-based small molecule dual-inducers of pyroptosis and ferroptosis for potent cancer immunotherapy, and highlights the significance of iron homeostasis as a vital hub connecting synergistic effects of pyroptosis and ferroptosis.
Collapse
Affiliation(s)
- You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tian-Zhu Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bin Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Qing-Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
9
|
Lee LC, Lo KK. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024; 8:e2400563. [PMID: 39319499 PMCID: PMC11579581 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho‐Cheung Lee
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| |
Collapse
|
10
|
Müller VVL, Moreth D, Kowalski K, Kowalczyk A, Gapińska M, Kutta RJ, Nuernberger P, Schatzschneider U. Tuning The Intracellular Distribution of [3+2+1] Iridium(III) Complexes In Bacterial And Mammalian Cells By iClick Reaction With Biomolecular Carriers Functionalized With Alkynone Groups. Chemistry 2024; 30:e202401603. [PMID: 39288294 DOI: 10.1002/chem.202401603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 09/19/2024]
Abstract
Three iridium(III) triazolato complexes of the general formula [Ir(triazolatoR,R')(ppy)(terpy)]PF6 with ppy=2-phenylpyridine and terpy=2,2':6',2''-terpyridine were efficiently prepared by iClick reaction of [Ir(N3)(ppy)(terpy)]PF6, with alkynes and alkynones, which allowed facile introduction of biological carriers such as biotin and cholic acid. In contrast to the precursor azido complex, which decomposed upon photoexcitation on a very short time scale, the triazolato complexes were stable in solution for up to 48 h. They emit in the spectral region around 540 nm with a quantum yield of 15-35 % in aerated acetonitrile solution and exhibit low cytotoxicity with IC50 values >50 μM for most complexes in L929 and HeLa cells, demonstrating their high suitability as luminescent probes. Cell uptake studies with confocal luminescence microscopy in prokaryotic Gram-positive S. aureus and Gram-negative E. coli bacteria as well as eukaryotic mammalian L929 and HeLa cells showed significant uptake in particular of the cholic acid conjugates iridium(III) moiety and distinct intracellular distribution modulated by the nature of the peripheral functional groups that can easily be modified by the iClick reaction.
Collapse
Affiliation(s)
- Victoria V L Müller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Konrad Kowalski
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403, Lodz, Poland
| | - Aleksandra Kowalczyk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Microbiology, Banacha 12/16, 90-237, Lodz, Poland
| | - Magdalena Gapińska
- University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, Banacha 12/16, 90-237, Lodz, Poland
| | - Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
| |
Collapse
|
11
|
Zhang Q, Chen D, Liu X, Deng Z, Li J, Zhu S, Ma B, Liu R, Zhu H. High Photocytotoxicity Iridium(III) Complex Photosensitizer for Photodynamic Therapy Induces Antitumor Effect Through GPX4-Dependent Ferroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403165. [PMID: 39246173 DOI: 10.1002/smll.202403165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The development of small molecule photosensitizers based on iridium complex is limited by the mismatch between therapeutic effect and systemic toxicity, as well as the incomplete understanding of the molecular mechanism underlying cell death induction. Herein, a small molecule iridium complex IrC with high photocytotoxicity is synthesized, with half maximal inhibitory concentration as low as 91 nm, demonstrating excellent anti-tumor, relief of splenomegaly, and negligible side effects. Starting from the factors of effective photosensitizers, the in-depth theoretical analysis on photon absorption efficiency, energy transfer level matching, and properties of the triplet excited state of IrC is conducted. This also elucidates the feasibility of generating the high singlet oxygen quantum yield. In addition, the death mechanism induced by IrC is focused, innovatively utilizing GPX4-overexpression and GPX4-knockout cells via CRISPR/Cas9 technique to comprehensively verify ferroptosis and its further molecular mechanism. The generation of ROS mediated by IrC, along with the direct inhibition of GPX4 and glutathione, synergistically increased cellular oxidative stress and the level of lipid peroxidation. This study provides an effective approach for small molecule complexes to induce GPX4-dependent ferroptosis at low-dose photodynamic therapy.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dezhi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaomeng Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhewen Deng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Senqiang Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hongjun Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
12
|
Dao A, Chen S, Pan L, Ren Q, Wang X, Wu H, Gong Q, Chen Z, Ji S, Ru J, Zhu H, Liang C, Zhang P, Xia H, Huang H. A 700 nm LED Light Activated Ru(II) Complex Destroys Tumor Cytoskeleton via Photosensitization and Photocatalysis. Adv Healthc Mater 2024; 13:e2400956. [PMID: 38635863 DOI: 10.1002/adhm.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Photoactivable chemotherapy (PACT) using metallic complexes provides spatiotemporal selectivity over drug activation for targeted anticancer therapy. However, the poor absorption in near-infrared (NIR) light region of most metallic complexes renders tissue penetration challenging. Herein, an NIR light triggered dinuclear photoactivable Ru(II) complex (Ru2) is presented and the antitumor mechanism is comprehensively investigated. The introduction of a donor-acceptor-donor (D-A-D) linker greatly enhances the intramolecular charge transition, resulting in a high molar extinction coefficient in the NIR region with an extended triplet excited state lifetime. Most importantly, when activated by 700 nm NIR light, Ru2 exhibits unique slow photodissociation kinetics that facilitates synergistic photosensitization and photocatalytic activity to destroy diverse intracellular biomolecules. In vitro and in vivo experiments show that when activated by 700 nm NIR light, Ru2 exhibits nanomolar photocytotoxicity toward 4T1 cancer cells via the induction of calcium overload and endoplasmic reticulum (ER) stress. These findings provide a robust foundation for the development of NIR-activated Ru(II) PACT complexes for phototherapeutic application.
Collapse
Affiliation(s)
- Anyi Dao
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| | - Shiyan Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Pan
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| | - Qingyan Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xun Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haorui Wu
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| | - Qiufang Gong
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Zeduan Chen
- Light Industry and Chemical Engineering College Guangdong University of Technology, Guangzhou, 510006, China
| | - Shaomin Ji
- Light Industry and Chemical Engineering College Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - HaoTu Zhu
- Department of Oncology, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chao Liang
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| |
Collapse
|
13
|
Tang D, Cui M, Wang B, Xu C, Cao Z, Guo J, Xiao H, Shang K. Near Infrared-Fluorescent Dinuclear Iridium(III) Nanoparticles for Immunogenic Sonodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406815. [PMID: 39081102 DOI: 10.1002/adma.202406815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/13/2024] [Indexed: 10/04/2024]
Abstract
Dinuclear iridium(III) complexes activated by light-inducible spatiotemporal control are emerging as promising candidates for cancer therapy. However, broader applications of current light-activated dinuclear iridium(III) complexes are limited by the ineffective tissue penetration and undesirable feedback on guidance activation. Here, an ultrasound (US) triggered near infrared-fluorescent dinuclear iridium(III) nanoparticle, NanoIr, is first reported to precisely and spatiotemporally inhibit tumor growth. It is demonstrated that reactive oxygen species can be generated by NanoIr upon exposure to US irradiation (NanoIr + US), thereby inducing immunogenic cell death. When combined with cisplatin, NanoIr + US elicits synergistic effects in patient-derived tumor xenograft mice models of ovarian cancer. This work first provides a design of dinuclear iridium(III) nanoparticles for immunogenic sonodynamic therapy.
Collapse
Affiliation(s)
- Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Minhui Cui
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, 4006, Australia
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90066, USA
| | - Jin Guo
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing, 100044, P. R. China
| |
Collapse
|
14
|
Kushwaha R, Upadhyay A, Saha S, Yadav AK, Bera A, Dutta A, Banerjee S. Cancer phototherapy by CO releasing terpyridine-based Re(I) tricarbonyl complexes via ROS generation and NADH oxidation. Dalton Trans 2024. [PMID: 39078263 DOI: 10.1039/d4dt01309c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Here, we have synthesized and characterized three visible light responsive terpyridine based-Re(I)-tricarbonyl complexes; [Re(CO)3(ph-tpy)Cl] (Retp1), [Re(CO)3(an-tpy)Cl] (Retp2), and [Re(CO)3(py-tpy)Cl] (Retp3) where ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine; an-tpy = 4'-anthracenyl-2,2':6',2″-terpyridine, py-tpy = 4'-pyrenyl-2,2':6',2″-terpyridine. The structures of Retp1 and Retp2 were confirmed from the SC-XRD data, indicating distorted octahedral structures. Unlike traditional PDT agents, these complexes generated reactive oxygen species (ROS) via type I and type II pathways and oxidized redox crucial NADH (reduced nicotinamide adenine dinucleotide) upon visible light exposure. Retp3 showed significant mitochondrial localization and demonstrated photoactivated anticancer activity (IC50 ∼ 2 µM) by inducing ROS-mediated cell death in cancer cells selectively (photocytotoxicity Index, PI > 28) upon compromising mitochondrial function in A549 cells. Their diagnostic capabilities were ultimately assessed using clinically relevant 3D multicellular tumor spheroids (MCTs).
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
15
|
Chen Y, Liang C, Kou M, Tang X, Ru J. Lysosome-targeted cyclometalated Ir(III) complexes as photosensitizers/photoredox catalysts for cancer therapy. Dalton Trans 2024; 53:11836-11849. [PMID: 38949269 DOI: 10.1039/d4dt01345j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A novel lysosome-targeted photosensitizer/photoredox catalyst based on cyclometalated Ir(III) complex IrL has been designed and synthesized, which exhibited excellent phosphorescence properties and the ability to generate single oxygen (1O2) and photocatalytically oxidize 1,4-dihydronicotinamide adenine dinucleotide (NADH) under light irradiation. Most importantly, the aforementioned activities are significantly enhanced due to protonation under acidic conditions, which makes them highly attractive in light-activated tumor therapy, especially for acidic lysosomes and tumor microenvironments. The photocytotoxicity of IrL and the mechanism of cell death have been investigated. Additionally, the tumor-killing ability of IrL under light irradiation was evaluated using a 4T1 tumor-bearing mouse model. This work provides a strategy for the development of lysosome-targeted photosensitizers/photoredox catalysts to overcome hypoxic tumors.
Collapse
Affiliation(s)
- Yu Chen
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China.
| | - Chao Liang
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China.
| | - Manchang Kou
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xiaoliang Tang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China.
| |
Collapse
|
16
|
Li XL, Wang MF, Zeng LZ, Li GK, Zhao RY, Liu FD, Li Y, Yan YF, Liu Q, Li Z, Zhang H, Ren X, Gao F. Bithiophene-Functionalized Infrared Two-Photon Absorption Metal Complexes as Single-Molecule Platforms for Synergistic Photodynamic, Photothermal, and Chemotherapy. Angew Chem Int Ed Engl 2024; 63:e202402028. [PMID: 38656658 DOI: 10.1002/anie.202402028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
A planar conjugated ligand functionalized with bithiophene and its Ru(II), Os(II), and Ir(III) complexes have been constructed as single-molecule platform for synergistic photodynamic, photothermal, and chemotherapy. The complexes have significant two-photon absorption at 808 nm and remarkable singlet oxygen and superoxide anion production in aqueous solution and cells when exposed to 808 nm infrared irradiation. The most potent Ru(II) complex Ru7 enters tumor cells via the rare macropinocytosis, locates in both nuclei and mitochondria, and regulates DNA-related chemotherapeutic mechanisms intranuclearly including DNA topoisomerase and RNA polymerase inhibition and their synergistic effects with photoactivated apoptosis, ferroptosis and DNA cleavage. Ru7 exhibits high efficacy in vivo for malignant melanoma and cisplatin-resistant non-small cell lung cancer tumors, with a 100 % survival rate of mice, low toxicity to normal cells and low residual rate. Such an infrared two-photon activatable metal complex may contribute to a new generation of single-molecule-based integrated diagnosis and treatment platform to address drug resistance in clinical practice and phototherapy for large, deeply located solid tumors.
Collapse
Affiliation(s)
- Xue-Lian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Meng-Fan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Li-Zhen Zeng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Guo-Kui Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Run-Yu Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Fu-Dan Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Yun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Yu-Fei Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Qishuai Liu
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Zhao Li
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Xiaoxia Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| |
Collapse
|
17
|
Ruan ML, Ni WX, Chu JCH, Lam TL, Law KC, Zhang Y, Yang G, He Y, Zhang C, Fung YME, Liu T, Huang T, Lok CN, Chan SLF, Che CM. Iridium(III) carbene complexes as potent girdin inhibitors against metastatic cancers. Proc Natl Acad Sci U S A 2024; 121:e2316615121. [PMID: 38861602 PMCID: PMC11194514 DOI: 10.1073/pnas.2316615121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Many cancer-driving protein targets remain undruggable due to a lack of binding molecular scaffolds. In this regard, octahedral metal complexes with unique and versatile three-dimensional structures have rarely been explored as inhibitors of undruggable protein targets. Here, we describe antitumor iridium(III) pyridinium-N-heterocyclic carbene complex 1a, which profoundly reduces the viability of lung and breast cancer cells as well as cancer patient-derived organoids at low micromolar concentrations. Compound 1a effectively inhibits the growth of non-small-cell lung cancer and triple-negative breast cancer xenograft tumors, impedes the metastatic spread of breast cancer cells, and can be modified into an antibody-drug conjugate payload to achieve precise tumor delivery in mice. Identified by thermal proteome profiling, an important molecular target of 1a in cellulo is Girdin, a multifunctional adaptor protein that is overexpressed in cancer cells and unequivocally serves as a signaling hub for multiple pivotal oncogenic pathways. However, specific small-molecule inhibitors of Girdin have not yet been developed. Notably, 1a exhibits high binding affinity to Girdin with a Kd of 1.3 μM and targets the Girdin-linked EGFR/AKT/mTOR/STAT3 cancer-driving pathway, inhibiting cancer cell proliferation and metastatic activity. Our study reveals a potent Girdin-targeting anticancer compound and demonstrates that octahedral metal complexes constitute an untapped library of small-molecule inhibitors that can fit into the ligand-binding pockets of key oncoproteins.
Collapse
Affiliation(s)
- Mei-Ling Ruan
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou515041, Guangdong, China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou515041, Guangdong, China
| | - Jacky C. H. Chu
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tsz-Lung Lam
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok-Chung Law
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yiwei Zhang
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guanya Yang
- AI And Life Sciences Institute (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Ying He
- AI And Life Sciences Institute (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Chunlei Zhang
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou515041, Guangdong, China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou515041, Guangdong, China
| | - Tao Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou515041, Guangdong, China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou515041, Guangdong, China
| | - Chun-Nam Lok
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sharon Lai-Fung Chan
- Department of Applied Biology and Chemical Biology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Chi-Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
18
|
Kushwaha R, Singh V, Peters S, Yadav AK, Sadhukhan T, Koch B, Banerjee S. Comparative Study of Sonodynamic and Photoactivated Cancer Therapies with Re(I)-Tricarbonyl Complexes Comprising Phenanthroline Ligands. J Med Chem 2024; 67:6537-6548. [PMID: 38603561 DOI: 10.1021/acs.jmedchem.3c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Herein, we have compared the effectivity of light-based photoactivated cancer therapy and ultrasound-based sonodynamic therapy with Re(I)-tricarbonyl complexes (Re1-Re3) against cancer cells. The observed photophysical and TD-DFT calculations indicated the potential of Re1-Re3 to act as good anticancer agents under visible light/ultrasound exposure. Re1 did not display any dark- or light- or ultrasound-triggered anticancer activity. However, Re2 and Re3 displayed concentration-dependent anticancer activity upon light and ultrasound exposure. Interestingly, Re3 produced 1O2 and OH• on light/ultrasound exposure. Moreover, Re3 induced NADH photo-oxidation in PBS and produced H2O2. To the best of our knowledge, NADH photo-oxidation has been achieved here with the Re(I) complex for the first time in PBS. Additionally, Re3 released CO upon light/ultrasound exposure. The cell death mechanism revealed that Re3 produced an apoptotic cell death response in HeLa cells via ROS generation. Interestingly, Re3 showed slightly better anticancer activity under light exposure compared to ultrasound exposure.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Virendra Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Silda Peters
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Tumpa Sadhukhan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
19
|
Kench T, Rahardjo A, Terrones GG, Bellamkonda A, Maher TE, Storch M, Kulik HJ, Vilar R. A Semi-Automated, High-Throughput Approach for the Synthesis and Identification of Highly Photo-Cytotoxic Iridium Complexes. Angew Chem Int Ed Engl 2024; 63:e202401808. [PMID: 38404222 DOI: 10.1002/anie.202401808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The discovery of new compounds with pharmacological properties is usually a lengthy, laborious and expensive process. Thus, there is increasing interest in developing workflows that allow for the rapid synthesis and evaluation of libraries of compounds with the aim of identifying leads for further drug development. Herein, we apply combinatorial synthesis to build a library of 90 iridium(III) complexes (81 of which are new) over two synthesise-and-test cycles, with the aim of identifying potential agents for photodynamic therapy. We demonstrate the power of this approach by identifying highly active complexes that are well-tolerated in the dark but display very low nM phototoxicity against cancer cells. To build a detailed structure-activity relationship for this class of compounds we have used density functional theory (DFT) calculations to determine some key electronic parameters and study correlations with the experimental data. Finally, we present an optimised semi-automated synthesise-and-test protocol to obtain multiplex data within 72 hours.
Collapse
Affiliation(s)
- Timothy Kench
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
| | - Arielle Rahardjo
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
| | - Gianmarco G Terrones
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
| | | | - Thomas E Maher
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
- Institute of Chemical Biology, Imperial College London, White City Campus, W12 0BZ, London, UK
| | - Marko Storch
- Department of Infectious Disease, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
- London Biofoundry, Imperial College Translation and Innovation Hub, W12 0BZ, London, UK
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
- Institute of Chemical Biology, Imperial College London, White City Campus, W12 0BZ, London, UK
| |
Collapse
|
20
|
Das U, Paira P. Exploring the phototoxicity of GSH-resistant 2-(5,6-dichloro-1 H-benzo[ d]imidazol-2-yl)quinoline-based Ir(III)-PTA complexes in MDA-MB-231 cancer cells. Dalton Trans 2024; 53:6459-6471. [PMID: 38512047 DOI: 10.1039/d3dt04361d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Metal complexes play a crucial role in photo-activated chemotherapy (PACT), which has recently been used to treat specific disorders. Triple-negative breast cancer has an enormously high rate of relapse due to the existence and survival of cancer stem cells (CSCs) characterized by increased amounts of glutathione (GSH). Hence, designing a phototoxic molecule is an enticing area of research to combat triple-negative breast cancer (TNBC) via GSH depletion and DNA photocleavage. Herein, we focus on the application of PTA and non-PTA Ir(III) complexes for phototoxicity in the absence and presence of GSH against MDA-MB-231 TNBC cells. Between these two complexes, [Cp*IrIII(DD)PTA]·2Cl (DDIRP) exhibited better phototoxicity (IC50 ∼ 2.80 ± 0.52 μM) compared to the non-PTA complex [Cp*IrIII(DD)Cl]·Cl (DDIR) against TNBC cells because of the high GSH resistance power of the complex DDIRP. The significant potency of the complex DDIRP under photo irradiation in both normoxia and hypoxia conditions can be attributed to selective transportation, high cellular permeability and uptake towards the nucleus, GSH depletion by GSH-GSSG conversion, the ability of strong DNA binding including intercalation, and oxidative stress. The strong affinity to serum albumin, which serves as a carrier protein, aids in the transport of the complex to its target site while preventing glutathione (GSH) deactivation. Consequently, the complex DDIRP was developed as a suitable phototoxic complex in selective cancer therapy, ruling over the usual chemotherapeutic drug cisplatin and the PDT drug Photofrin. The ability of ROS generation under hypoxic conditions delivers this complex as a hypoxia-efficient selective metallodrug for the treatment of TNBC.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
21
|
Zhang Z, Dao A, Yang X, Pan L, Li W, Lin Y, Zhang X, Huang H. Photoactive rhodamine-based photosensitizer eliminates Staphylococcus aureus via superoxide radical photosensitization. Bioorg Chem 2024; 144:107067. [PMID: 38232683 DOI: 10.1016/j.bioorg.2023.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024]
Abstract
Due to the antibiotics abuse, bacterial infection has become one of the leading causes of human death worldwide. Novel selective antimicrobial agents are urgently needed, with the hope of maintaining the balance of the microbial environment. Photo-activated chemotherapeutics have shown great potential to eliminate bacteria with appealing spatiotemporal selectivity. In this work, we reported the structural modification to enhance the triplet excited state property of Rhodamine B, synthesizing a rhodamine-based photosensitizer RBPy. Upon light activation, RBPy exhibited much stronger photosensitization ability than the parent compound Rhodamine B both in solution and in bacteria. Importantly, RBPy can selectively inactivate Staphylococcus aureus and inhibit biofilm formation with high biocompatibility. This work provides a new strategy to develop rhodamine-based photoactive chemotherapeutics for antimicrobial photodynamic therapy.
Collapse
Affiliation(s)
- Zhishang Zhang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Anyi Dao
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoqi Yang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Li Pan
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wenqing Li
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yicao Lin
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, China
| | - Xin Zhang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
22
|
Zhang Z, Wei Z, Guo J, Lyu J, Wang B, Wang G, Wang C, Zhou L, Yuan Z, Xing G, Wu C, Zhang X. Metallopolymer strategy to explore hypoxic active narrow-bandgap photosensitizers for effective cancer photodynamic therapy. Nat Commun 2024; 15:170. [PMID: 38167652 PMCID: PMC10762066 DOI: 10.1038/s41467-023-43890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Practical photodynamic therapy calls for high-performance, less O2-dependent, long-wavelength-light-activated photosensitizers to suit the hypoxic tumor microenvironment. Iridium-based photosensitizers exhibit excellent photocatalytic performance, but the in vivo applications are hindered by conventional O2-dependent Type-II photochemistry and poor absorption. Here we show a general metallopolymerization strategy for engineering iridium complexes exhibiting Type-I photochemistry and enhancing absorption intensity in the blue to near-infrared region. Reactive oxygen species generation of metallopolymer Ir-P1, where the iridium atom is covalently coupled to the polymer backbone, is over 80 times higher than that of its mother polymer without iridium under 680 nm irradiation. This strategy also works effectively when the iridium atom is directly included (Ir-P2) in the polymer backbones, exhibiting wide generality. The metallopolymer nanoparticles exhibiting efficient O2•- generation are conjugated with integrin αvβ3 binding cRGD to achieve targeted photodynamic therapy.
Collapse
Affiliation(s)
- Zhao Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Zixiang Wei
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Jintong Guo
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Jinxiao Lyu
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Bingzhe Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, China
| | - Gang Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, China
| | - Chunfei Wang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Liqiang Zhou
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Zhen Yuan
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China.
| |
Collapse
|
23
|
Zhang J, Ma J, Zhang S, Lou X, Ding Y, Li Y, Xu M, Xie X, Jiao X, Dou X, Wang X, Tang B. Exploration of Thermally Activated Delayed Fluorescence (TADF)-Based Photoredox Catalyst To Establish the Mechanisms of Action for Photodynamic Therapy. ACS NANO 2023; 17:23430-23441. [PMID: 38011322 DOI: 10.1021/acsnano.3c05106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The mechanisms of action (MoA) have been proposed to further reduce the O2 dependence of photodynamic therapy (PDT) significantly. However, the triplet states of traditional photosensitizers are relatively short and also are easily deactivated by the quenching of H2O or O2. This is not conducive for the electron transfer in the photocatalytic process and poses a great obstacle to establish the MoA. Therefore, we selected and synthesized a zirconium(IV) complex (Zr(MesPDPPh)2) reported by Milsmann to address this issue. The specific symmetric and intact geometry endowed Zr(MesPDPPh)2 NPs with long-lived triplet excited state (τ = 350 μs), desired sensitized ability, and improved anti-interfering performance on O2, which was matched with the requirements of photoredox catalyst significantly. The results showed that while PDT (I) and PDT (II) could be achieved simultaneously by leveraging Zr(MesPDPPh)2 NPs, it also could be served as a rare example of thermally activated delayed fluorescence (TADF)-based photoredox catalyst to implement the MoA of PDT. It involved the oxidation of NADH and the establishment of catalytic cycle collaborating by O2 and cytochrome c (cyt c) in normoxia and hypoxia, respectively. As a result, the oxygen-free PDT and tumor-growth inhibition was realized.
Collapse
Affiliation(s)
- Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Jushuai Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Shuyue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiaoyan Lou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yunshu Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Miaomiao Xu
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210003, People's Republic of China
| | - Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xueyu Dou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
- Laoshan Laboratory, Qingdao 266237, People's Republic of China
| |
Collapse
|
24
|
Negi M, Dixit T, Venkatesh V. Ligand Dictated Photosensitization of Iridium(III) Dithiocarbamate Complexes for Photodynamic Therapy. Inorg Chem 2023; 62:20080-20095. [PMID: 37994001 DOI: 10.1021/acs.inorgchem.3c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Organelle-targeted photosensitizers (PSs) for photodynamic therapy (PDT) are considered as an effective therapeutic strategy for the development of next generation PSs with the least side effects and high therapeutic efficacy. However, multiorganelle targeted PSs eliciting PDT via both type I and type II mechanisms are scarce. Herein, a series of cyclometalated iridium(III) complexes were formulated [Ir(C∧N)2(S∧S)] (C∧N = 2-phenylpyridine (ppy) and 2-(thiophen-2-yl)pyridine (thpy); S∧S = diethyldithiocarbamate (DEDTC), morpholine-N-dithiocarbamate (MORDTC) and methoxycarbonodithioate (MEDTC)) and the newly designed complexes Ir2@DEDTC and Ir1@MEDTC were characterized by single crystal X-ray crystallography. Complexes containing thpy as C∧N ligand exhibit excellent photophysical properties such as red-shifted emission, high singlet oxygen quantum yield (ϕΔ) and longer photoluminescence lifetime when compared with complexes containing ppy ligands. Ir2@DEDTC exhibits the highest ϕΔ and photoluminescence lifetimes among the synthesized complexes. Therefore, Ir2@DEDTC was chosen to evaluate the photosensitizing ability to produce reactive oxygen species (ROS). Upon blue light irradiation (456 nm), it efficiently produces ROS, i.e., hydroxy radical (•OH) and singlet oxygen (1O2), which was confirmed by electron paramagnetic resonance (EPR) spectroscopy. In vitro photocytotoxicity toward HCT116, HeLa, and PC3 cell lines showed that out of all the synthesized complexes, Ir2@DEDTC has the highest photocytotoxic index (PI > 400) value. Ir2@DEDTC is efficiently taken up by the HCT116 cell line and accumulated mainly in the lysosome and mitochondria of the cells, and after PDT treatment, it elicits cell shrinkage, membrane blebbing, and DNA fragmentation. The phototherapeutic efficacy of Ir2@DEDTC has been investigated against 3D spheroids considering its ability to mimic some of the basic features of solid tumors. The morphology was drastically altered in the Ir2@DEDTC treated 3D spheroid after the light irradiation unleashed the potential of the Ir(III) dithiocarbamate complex as a superior PS for PDT. Hence, mitochondria and lysosome targeted photoactive cyclometalated Ir(III) dithiocarbamate complex exerting oxidative stress via both type I and type II PDT can be regarded as a dual-organelle targeted two-pronged approach for enhanced PDT.
Collapse
Affiliation(s)
- Monika Negi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Tejal Dixit
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - V Venkatesh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
25
|
Mandal A, Rai R, Saha S, Kushwaha R, Wei L, Gogoi H, Mandal AA, Yadav AK, Huang H, Dutta A, Dhar P, Banerjee S. Polypyridyl-based Co(III) complexes of vitamin B 6 Schiff base for photoactivated antibacterial therapy. Dalton Trans 2023; 52:17562-17572. [PMID: 37965840 DOI: 10.1039/d3dt02967k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, five novel polypyridyl-based Co(III) complexes of Schiff bases, viz., [Co(dpa)(L1)]Cl (1), [Co(dpa)(L2)]Cl (2), [Co(L3)(L2)]Cl (3), [Co(L3)(L1)]Cl (4), and [Co(L4)(L1)]Cl (5), where dpa (dipicolylamine) = bis(2-pyridylmethyl)amine; H2L1 = (E)-2-((2-hydroxybenzylidene)amino)phenol; H2L2 = (E)-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridin-3-ol; L3 = 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy); and L4 = 4'-ferrocenyl-2,2':6',2''-terpyridine (Fc-tpy), were synthesized and characterized. Complexes 1, 3, and 4 were structurally characterized by single-crystal XRD, indicating an octahedral CoIIIN4O2 coordination core. The absorption bands of these complexes were observed in the visible range with a λmax at ∼430-485 nm. Complex 5 displayed an extra absorption band near 545 nm because of a ferrocene moiety. These absorptions in the visible region reflect the potential of the complexes to act as visible-light antimicrobial photodynamic therapy (aPDT) agents. All of these complexes showed reactive oxygen species (ROS)-mediated antibacterial effects against S. aureus (Gram-positive) and E. coli (Gram-negative bacteria) upon low-energy visible light (0.5 J cm-2, 400-700 nm) exposure. Additionally, 1-5 did not show any toxicity toward A549 (Human Lung adenocarcinoma) cells, reflecting their selective bacteria-killing abilities.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Varanasi, Uttar Pradesh, India 221005.
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Li Wei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Hemonta Gogoi
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Huayi Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Varanasi, Uttar Pradesh, India 221005.
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
26
|
Yu L, Lee KW, Zhao YQ, Xu Y, Zhou Y, Li M, Kim JS. Metal Modulation: An Effortless Tactic for Refining Photoredox Catalysis in Living Cells. Inorg Chem 2023; 62:18767-18778. [PMID: 37905835 DOI: 10.1021/acs.inorgchem.3c03284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The remarkable impact of photoredox catalytic chemistries has sparked a wave of innovation, opening doors to novel biotechnologies in the realm of catalytic antitumor therapy. Yet, the quest for novel photoredox catalysts (PCs) suitable for living systems, or the enhancement of catalytic efficacy in existing biocompatible PC systems, persists as a formidable challenge. Within this context, we introduce a readily applicable metal modulation strategy that significantly augments photoredox catalysis within living cells, exemplified by a set of metalloporphyrin complexes termed M-TCPPs (M = Zn, Mn, Ni, Co, Cu). Among these complexes, Zn-TCPP emerges as an exceptional catalyst, displaying remarkable photocatalytic activity in the oxidation of nicotinamide adenine dinucleotide (NADH), nicotinamide adenine dinucleotide phosphate (NADPH), and specific amino acids. Notably, comprehensive investigations reveal that Zn-TCPP's superior catalytic prowess primarily arises from the establishment of an efficient oxidative cycle for PC, in contrast to previously reported PCs engaged in reductive cycles. Moreover, theoretical calculations illuminate that amplified intersystem crossing rates and geometry alterations in Zn-TCPP contribute to its heightened photocatalytic performance. In vitro studies demonstrated that Zn-TCPP exhibits therapeutic potential and is found to be effective for photocatalytic antitumor therapy in both glioblastoma G98T cells and 3D multicellular spheroids. This study underscores the transformative role of "metal modulation" in advancing high-performance PCs for catalytic antitumor therapy, marking a significant stride toward the realization of this innovative therapeutic approach.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Kyung-Woo Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Yu-Qiang Zhao
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yunjie Xu
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Ying Zhou
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Mingle Li
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02856, Republic of Korea
| |
Collapse
|
27
|
Hu M, Zhou XL, Xiao TX, Hao L, Li Y. Inducing and monitoring mitochondrial pH changes with an iridium(III) complex via two-photon lifetime imaging. Dalton Trans 2023; 52:15859-15865. [PMID: 37828856 DOI: 10.1039/d3dt02541a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Real-time monitoring of mitochondrial dynamic changes plays a key role in the development of mitochondria-targeted anticancer theranostic agents. In this work, a pH-responsive and mitochondria-targeted cyclometalated iridium(III) complex MitoIr-NH has been explored as a novel anticancer agent. MitoIr-NH displayed pH-responsive phosphorescence intensity and lifetime, accumulated in mitochondria, showed higher antiproliferative activity and induced a series of mitochondria-related events. Moreover, MitoIr-NH could simultaneously induce mitophagy and quantitatively monitor mitochondrial pH changes through two-photon phosphorescence lifetime imaging microscopy (TPPLIM) in a real-time manner.
Collapse
Affiliation(s)
- Meng Hu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Xin-Lan Zhou
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Tian-Xin Xiao
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
28
|
Zhang Z, Li W, Wu H, Liu Z, Huang H. Novel photoactivated Indole-pyridine chemotherapeutics with strong antimicrobial and antibiofilm activity toward Staphylococcus aureus. Bioorg Chem 2023; 140:106813. [PMID: 37657196 DOI: 10.1016/j.bioorg.2023.106813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
The challenge of antibiotic resistance worldwide has brought an urgent need to explore novel drugs for bacterial infections. Antimicrobial photodynamic therapy has been proven to be a potential antimicrobial modality but is limited by biofilms. In this study, we synthesized three cationic photosensitizers with strong photoinduced antimicrobial and antibiofilm activities toward gram-positive Staphylococcus aureus. The indole-pyridine compounds illustrated multiple type I/II photosensitization and coenzyme NAD(P)H photocatalytic activity upon excitation. A mechanistic study showed that intracellular reactive oxygen generation and NAD(P)H oxidation caused membrane damage, leading to protein/nucleus acid leakage. This research provides insights into the development of novel chemotherapeutics with synergetic photodynamic and photocatalytic reactivity.
Collapse
Affiliation(s)
- Zhishang Zhang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wenqing Li
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Haorui Wu
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhuangfeng Liu
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
29
|
Mandal A, Kushwaha R, Mandal AA, Bajpai S, Yadav AK, Banerjee S. Transition Metal Complexes as Antimalarial Agents: A Review. ChemMedChem 2023; 18:e202300326. [PMID: 37436090 DOI: 10.1002/cmdc.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
In antimalarial drug development research, overcoming drug resistance has been a major challenge for researchers. Nowadays, several drugs like chloroquine, mefloquine, sulfadoxine, and artemisinin are used to treat malaria. But increment in drug resistance has pushed researchers to find novel drugs to tackle drug resistance problems. The idea of using transition metal complexes with pharmacophores as ligands/ligand pendants to show enhanced antimalarial activity with a novel mechanism of action has gained significant attention recently. The advantages of metal complexes include tunable chemical/physical properties, redox activity, avoiding resistance factors, etc. Several recent reports have successfully demonstrated that the metal complexation of known organic antimalarial drugs can overcome drug resistance by showing enhanced activities than the parent drugs. This review has discussed the fruitful research works done in the past few years falling into this criterion. Based on transition metal series (3d, 4d, or 5d), the antimalarial metal complexes have been divided into three broad categories (3d, 4d, or 5d metal-based), and their activities have been compared with the similar control complexes as well as the parent drugs. Furthermore, we have also commented on the potential issues and their possible solution for translating these metal-based antimalarial complexes into the clinic.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Sumit Bajpai
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| |
Collapse
|
30
|
Li XL, Zeng LZ, Yang R, Bi XD, Zhang Y, Cui RB, Wu XX, Gao F. Iridium(III)-Based Infrared Two-Photon Photosensitizers: Systematic Regulation of Their Photodynamic Therapy Efficacy. Inorg Chem 2023; 62:16122-16130. [PMID: 37717260 DOI: 10.1021/acs.inorgchem.3c02364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Cyclometalated iridium(III) complexes are of significant importance in the field of antitumor photodynamic therapy (PDT), whether they exist as single molecules or are incorporated into nanomaterials. Nevertheless, a comprehensive examination of the relationship between their molecular structure and PDT effectiveness remains awaited. The influencing factors of two-photon excited PDT can be anticipated to be further multiplied, particularly in relation to intricate nonlinear optical properties. At present, a comprehensive body of research on this topic is lacking, and few discernible patterns have been identified. In this study, through systematic structure regulation, the nitro-substituted styryl group and 1-phenylisoquinoline ligand containing YQ2 was found to be the most potent infrared two-photon excitable photosensitizer in a 4 × 3 combination library of cyclometalated Ir(III) complexes. YQ2 could enter cells via an energy-dependent and caveolae-mediated pathway, bind specifically to mitochondria, produce 1O2 in response to 808 nm LPL irradiation, activate caspases, and induce apoptosis. In vitro, YQ2 displayed a remarkable phototherapy index for both malignant melanoma (>885) and non-small-cell lung cancer (>1234) based on these functions and was minimally deleterious to human normal liver and kidney cells. In in vivo antitumor phototherapy, YQ2 inhibited tumor growth by an impressive 85% and could be eliminated from the bodies of mice with a half-life as short as 43 h. This study has the potential to contribute significantly to the development of phototherapeutic drugs that are extremely effective in treating large, profoundly located solid tumors as well as the understanding of the structure-activity relationship of Ir(III)-based PSs in PDT.
Collapse
Affiliation(s)
- Xue-Lian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Li-Zhen Zeng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Rong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xu-Dan Bi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Ruo-Bing Cui
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xin-Xi Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
31
|
Cao F, Wang H, Lu N, Zhang P, Huang H. A Photoisomerizable Zinc (II) Complex Inhibits Microtubule Polymerization for Photoactive Therapy. Angew Chem Int Ed Engl 2023; 62:e202301344. [PMID: 36749111 DOI: 10.1002/anie.202301344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
The photoisomerization-induced cytotoxicity in photopharmacology provides a unique pathway for phototherapy because it is independent of endogenous oxygen. In this study, we developed a biosafe photoisomerizable zinc(II) complex (Zn1), which releases its trans ligand (trans-L1) after being irradiated with blue light. This causes the complex to undergo photoisomerization and produce the toxic cis product (cis-L1) and generate singlet oxygen (1 O2 ). The resulting series of events caused impressive phototoxicity in hypoxic A431 skin cancer cells, as well as in a tumor model in vivo. Interestingly, Zn1 was able to inhibit tumor microtubule polymerization, while still showing good biocompatibility and biosafety in vivo. This photoisomerizable zinc(II) complex provides a novel strategy for addressing the oxygen-dependent limitation of traditional photodynamic therapy.
Collapse
Affiliation(s)
- Fengshu Cao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Nong Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| |
Collapse
|
32
|
Fan Z, Xie J, Kushwaha R, Liang S, Li W, Mandal AA, Wei L, Banerjee S, Huang H. Anticancer Screening of Ru(II) Photoredox Catalysts at Single Cancer Cell Level. Chem Asian J 2023; 18:e202300047. [PMID: 36894498 DOI: 10.1002/asia.202300047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/11/2023]
Abstract
The rapid efflux of Pt-based chemotherapeutics by cancer cells is one of the major causes of drug resistance in clinically available drugs. Therefore, both the high cellular uptake as well as adequate retention efficiency of an anticancer agent are important factors to overcome drug resistance. Unfortunately, rapid and efficient quantification of metallic drug concentration in individual cancer cells still remains a tricky problem. Herein, with the help of newly developed single cell inductively coupled plasma mass spectrometry (SC-ICP-MS), we have found that the well-known Ru(II)-based complex, Ru3, displayed remarkable intracellular uptake and retention efficiency in every single cancer cell with high photocatalytic therapeutic activity to overcome cisplatin resistance. Moreover, Ru3 has shown sensational photocatalytic anticancer properties with excellent in-vitro and in-vivo biocompatibility under light exposure.
Collapse
Affiliation(s)
- Zhongxian Fan
- Pharmacy Department, Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, 516600, P. R. China
- School of Pharmaceutical Science (Shenzen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Jiaen Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Rajesh Kushwaha
- Chemistry, Indian Institute of Chemistry (BHU), Varanasi IIT (BHU), Varanasi, UP, 221005, India
| | | | - Wenqing Li
- School of Pharmaceutical Science (Shenzen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Arif Ali Mandal
- Chemistry, Indian Institute of Chemistry (BHU), Varanasi IIT (BHU), Varanasi, UP, 221005, India
| | - Li Wei
- School of Pharmaceutical Science (Shenzen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Samya Banerjee
- Chemistry, Indian Institute of Chemistry (BHU), Varanasi IIT (BHU), Varanasi, UP, 221005, India
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| |
Collapse
|
33
|
Zhu Z, Wei L, Yadav AK, Fan Z, Kumar A, Miao M, Banerjee S, Huang H. Cyanine-Functionalized 2,2'-Bipyridine Compounds for Photocatalytic Cancer Therapy. J Org Chem 2023; 88:626-631. [PMID: 36522290 DOI: 10.1021/acs.joc.2c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recently, interest has been given to developing photocatalytic anticancer drugs. This area of research is dominated by metal complexes. Here, we report the potential of lysosome/mitochondria targeting cyanine appended bipyridine compounds as the organic photocatalytic anticancer agents. The organocatalyst (bpyPCN) not only exhibits light-induced NADH oxidation but also generates intracellular ROS to demonstrate anticancer activity. This is the first example of organic compound induced catalytic NADH photo-oxidation in an aqueous solution and in cancer cells.
Collapse
Affiliation(s)
- Zilin Zhu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Li Wei
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Zhongxian Fan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Ashish Kumar
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Mengzhao Miao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
34
|
Yang T, Zhu M, Jiang M, Yang F, Zhang Z. Current status of iridium-based complexes against lung cancer. Front Pharmacol 2022; 13:1025544. [PMID: 36210835 PMCID: PMC9538862 DOI: 10.3389/fphar.2022.1025544] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors, with the highest mortality rate in the world, and its incidence is second only to breast cancer. It has posed a serious threat to human health. Cisplatin, a metal-based drug, is one of the most widely used chemotherapeutic agents for the treatment of various cancers. However, its clinical efficacy is seriously limited by numerous side effects and drug resistance. This has led to the exploration and development of other transition metal complexes for the treatment of malignant tumors. In recent years, iridium-based complexes have attracted extensive attention due to their potent anticancer activities, limited side effects, unique antitumor mechanisms, and rich optical properties, and are expected to be potential antitumor drugs. In this review, we summarize the recent progress of iridium complexes against lung cancer and introduce their anti-tumor mechanisms, including apoptosis, cycle arrest, inhibition of lung cancer cell migration, induction of immunogenic cell death, etc.
Collapse
Affiliation(s)
- Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
- School of food and biochemical engineering, Guangxi Science and Technology Normal University, Laibin, Guangxi, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
- *Correspondence: Zhenlei Zhang,
| |
Collapse
|