1
|
Zhao Y, Ma F, Chen Y, Gu S, Zhu F, Cao J, Zhu S, Xie LG. Photoinduced SF 6 degradation for deoxyfluorination of propargyl alcohols. Org Biomol Chem 2024. [PMID: 39699173 DOI: 10.1039/d4ob01839g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Deoxyfluorination is one of the most practical methods for introducing fluorine atoms, since hydroxyl groups are commonly found in organic small molecules. Traditional fluorination methods often rely on hazardous fluorinating reagents. Herein, we report the deoxyfluorination of propargyl alcohols using sulfur hexafluoride (SF6) as a safe fluorinating agent under photocatalytic conditions.
Collapse
Affiliation(s)
- Yue Zhao
- Anhui Electric Power Research Institute, State Grid, Hefei 230601, China.
| | - Fengxiang Ma
- Anhui Electric Power Research Institute, State Grid, Hefei 230601, China.
| | - Yifeng Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shiyu Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Feng Zhu
- Anhui Electric Power Research Institute, State Grid, Hefei 230601, China.
| | - Jun Cao
- Anhui Electric Power Research Institute, State Grid, Hefei 230601, China.
| | - Shan Zhu
- Anhui Electric Power Research Institute, State Grid, Hefei 230601, China.
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Popek L, Lefebvre G, Debrauwer V, Roubaud D, Blanchard N, Meyer C, Bizet V. Synthesis of Pentafluorosulfanylated Ynamides and Further Functionalizations. Org Lett 2024; 26:10369-10375. [PMID: 39589238 DOI: 10.1021/acs.orglett.4c03972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Herein is described the first synthesis of SF5-ynamides, versatile building blocks featuring the pentafluorosulfanyl motif. This synthesis proceeds through a two-step sequence of radical SF5-addition onto the π-system of a wide range of terminal ynamides and derivatives substituted with various nitrogen fragments followed by a dehydrochlorination reaction. A selection of downstream functionalization reactions, including nucleophilic additions, cycloadditions, and sulfur ylide synthesis, highlights the wide-ranging applications of this novel type of functionalized SF5-building block.
Collapse
Affiliation(s)
- Lucas Popek
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Gauthier Lefebvre
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Vincent Debrauwer
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - David Roubaud
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Nicolas Blanchard
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Christophe Meyer
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Vincent Bizet
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| |
Collapse
|
3
|
Peyrical LC, Vinet L, Azek E, Charette AB. 1,3-Dipolar Cycloaddition of SF 5-Alkynes with Nonstabilized Diazo: Synthesis of Highly Substituted SF 5-3 H-Pyrazoles. Org Lett 2024; 26:10414-10418. [PMID: 39585790 DOI: 10.1021/acs.orglett.4c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
This work presents the 1,3-dipolar cycloaddition of SF5-alkynes with nonstabilized diazo compounds under mild conditions, producing highly substituted SF5-3H-pyrazoles. Eighteen examples are given, with yields of up to 91%. The two regioisomers were obtained in ratios ranging from 27:73 to 73:27. The products can undergo a Van Alphen-Huttel rearrangement. DFT calculations were performed to understand the selectivities and rearrangements.
Collapse
Affiliation(s)
- Lauriane C Peyrical
- FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Département de Chimie, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2 V 0B3, Canada
| | - Laurent Vinet
- FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Département de Chimie, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2 V 0B3, Canada
| | - Emna Azek
- FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Département de Chimie, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2 V 0B3, Canada
| | - André B Charette
- FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Département de Chimie, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2 V 0B3, Canada
| |
Collapse
|
4
|
Jiang Y, Meng X, Zhang J, Wu G, Lin X, Guo S. Photo-induced hydroxypentafluorosulfanylation of alkenes with SF 5Cl and oxygen gas and their further derivatization. Nat Commun 2024; 15:9705. [PMID: 39521769 PMCID: PMC11550833 DOI: 10.1038/s41467-024-54015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Fluorinated or fluoroalkylated alcohols are common structural motifs in biologically active molecules, natural products, and pharmaceuticals. However, pentafluorosulfanyl (SF5) alcohols, a unique class of SF5 compounds that serve as synthetically valuable building blocks, are difficult to prepare with current methodologies. In this article, we present a single-step, metal-free, and photo-induced hydroxypentafluorosulfanylation of styrenes or α,β-unsaturated esters/amide, producing a series of structurally diverse pentafluorosulfanyl alcohols with up to 89% yields. This reaction is mild and operationally simple, using molecular oxygen as the hydroxy source. The protocol is suitable for a wide range of alkenes, including natural products and drug molecule derivatives. The formed SF5 alcohol units can be readily converted into diverse functionalized SF5 compounds, such as α-SF5 ketones, SF5 diols, and SF5 cyclic carbonates. The potential applications of these SF5 compounds in pharmaceutical and material sciences are vast, making this research a step forward in the field.
Collapse
Affiliation(s)
- Yuanyang Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Xiaoli Meng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Jiangshan Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Gang Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Xinjing Lin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
5
|
Röthel MB, Schöler A, Buß F, Löwe P, Dielmann F. Phosphonium SF 5 - Salts Derived from Sulfur Hexafluoride as Deoxyfluorination Reagents. Chemistry 2024; 30:e202402028. [PMID: 38958451 DOI: 10.1002/chem.202402028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Sulfur based deoxyfluorination reagents are usually derived from the corrosive gas SF4. Herein, we report the synthesis and properties of an easily accessible phosphonium salt [(tmg)3PF]+SF5 - (1) which was obtained from the reaction of sulfur hexafluoride (SF6) with tris(tetramethylguanidinyl)phosphine. The performance of this crystalline SF5 - salt as a reagent in deoxyfluorination reactions was investigated together with a second SF5 - salt [(R1)3PF]+SF5 - (2) containing bulky substituents (R1=1,3-di-tert-butylimidazolidin-2-ylidenamino). Both reagents proved to be effective for the deoxyfluorination of various functional groups including alcohols, anhydrides, and amides.
Collapse
Affiliation(s)
- Maike B Röthel
- Institute of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Schöler
- Institute of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, 6020, Innsbruck, Austria
| | - Florenz Buß
- Institute of Inorganic and Analytical Chemistry, Universität Münster, 48149, Münster, Germany
| | - Pawel Löwe
- Institute of Inorganic and Analytical Chemistry, Universität Münster, 48149, Münster, Germany
| | - Fabian Dielmann
- Institute of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
6
|
Béland V, Nöthling N, Leutzsch M, Cornella J. Activation and Catalytic Degradation of SF 6 and PhSF 5 at a Bismuth Center. J Am Chem Soc 2024; 146:25409-25415. [PMID: 39226694 PMCID: PMC11421020 DOI: 10.1021/jacs.4c07044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
In this work, we report the catalytic degradation of SF6 and PhSF5 using N,C,N pincer bismuthinidene complexes (1 and 5). Exposure of SF6 and PhSF5 to 1 results in the reduction of the S(VI) substrates and concomitant formation of Bi(III) and Bi(II) compounds, which were isolated and characterized. The oxidized bismuth-based products were demonstrated to undergo reduction with PMe3, recovering the starting complex 1. Having established a synthetic redox cycle, the catalytic degradation of SF6 and PhSF5 was developed through ligand optimization to 5, leading to a 528 TON for SF6 and the first reported TON for PhSF5 (3.2).
Collapse
Affiliation(s)
- Vanessa
A. Béland
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Nils Nöthling
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| |
Collapse
|
7
|
Kucher H, Wenzel JO, Rombach D. Hydrothiolation of Triisopropylsilyl Acetylene Sulfur Pentafluoride - Charting the Chemical Space of β-SF 5 Vinyl Sulfides. Chempluschem 2024; 89:e202400168. [PMID: 38691830 DOI: 10.1002/cplu.202400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
Recently, we suggested liquid and high-boiling TIPS-CC-SF5 (TASP) as a versatile reagent to access so far elusive SF5-containing building blocks by less specialized laboratories under bench-top conditions. The synthesis of non-aromatic SF5 building blocks generally requires on-site fluorination or pentafluorosulfanylation steps employing toxic and/or gaseous reagents. Herein, we underline the versatility of this reagent by reporting a benign bench-top protocol for the synthesis of Z-configured β-pentafluorosulfanylated vinyl sulfides in good to excellent yields (up to 99 %) with exclusive (Z)-diasteroselectivity and broad functional group tolerance. This method exploits an in-situ protodesilylation-hydrothiolation sequence. This so far uncharted class of compounds was characterized by means of NMR-spectroscopy as well as SC-XRD. Furthermore, we suggest the reaction to proceed via a kinetically controlled closed-shell reaction pathway, corroborated by in-silico experiments.
Collapse
Affiliation(s)
- Hannes Kucher
- Department of Chemistry and Applied Biosciences Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Jonas O Wenzel
- Department of Chemistry and Applied Biosciences Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - David Rombach
- Department of Chemistry and Applied Biosciences Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| |
Collapse
|
8
|
Pulikkottil F, Burnett JS, Saiter J, Goodall CAI, Claringbold B, Lam K. eFluorination for the Rapid Synthesis of Carbamoyl Fluorides from Oxamic Acids. Org Lett 2024; 26:6103-6108. [PMID: 39016380 PMCID: PMC11287745 DOI: 10.1021/acs.orglett.4c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024]
Abstract
In this letter, we disclose the anodic oxidation of oxamic acids in the presence of Et3N·3HF as a practical, scalable, and robust method to rapidly access carbamoyl fluorides from readily available and stable precursors. The simplicity of this method also led us to develop the first flow electrochemical preparation of carbamoyl fluorides, demonstrating scale-up feasibility as a proof of concept.
Collapse
Affiliation(s)
| | | | - Jérémy Saiter
- School of Science, Faculty
of Engineering and Science, University of
Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| | - Charles A. I. Goodall
- School of Science, Faculty
of Engineering and Science, University of
Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| | - Bini Claringbold
- School of Science, Faculty
of Engineering and Science, University of
Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| | - Kevin Lam
- School of Science, Faculty
of Engineering and Science, University of
Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| |
Collapse
|
9
|
Zuo YW, Zhao Y, Zhang YF, Guo XY, Wu TR, Jin RX, Wang XS. Visible-Light-Induced Oxidative Decarboxylative Coupling of Phenylacetic Acid Derivatives Using SF 6 as an Oxidant. Org Lett 2024; 26:5652-5656. [PMID: 38941116 DOI: 10.1021/acs.orglett.4c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A visible-light-mediated decarboxylative coupling reaction of phenylacetic acid derivatives, featuring sulfur hexafluoride (SF6) as the oxidant, has been developed. This metal-free method allows for the synthesis of a series of bibenzyl derivatives and complex all-carbon skeletons, facilitating efficient utilization and degradation of the greenhouse gas SF6.
Collapse
Affiliation(s)
- Ya-Wen Zuo
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yue Zhao
- State Grid Anhui Electric Power Research Institute, Hefei, Anhui 230601, China
| | - Yi-Fan Zhang
- Institution of Advanced Technology, University of Science and Technology of China, 5089 Wangjiang Road, Hefei, Anhui 230031, China
| | - Xiao-Yu Guo
- Institution of Advanced Technology, University of Science and Technology of China, 5089 Wangjiang Road, Hefei, Anhui 230031, China
| | - Tian-Rui Wu
- Institution of Advanced Technology, University of Science and Technology of China, 5089 Wangjiang Road, Hefei, Anhui 230031, China
| | - Ruo-Xing Jin
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Institution of Advanced Technology, University of Science and Technology of China, 5089 Wangjiang Road, Hefei, Anhui 230031, China
| | - Xi-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Institution of Advanced Technology, University of Science and Technology of China, 5089 Wangjiang Road, Hefei, Anhui 230031, China
| |
Collapse
|
10
|
Kraemer Y, Buldt JA, Kong WY, Stephens AM, Ragan AN, Park S, Haidar ZC, Patel AH, Shey R, Dagan R, McLoughlin CP, Fettinger JC, Tantillo DJ, Pitts CR. Overcoming a Radical Polarity Mismatch in Strain-Release Pentafluorosulfanylation of [1.1.0]Bicyclobutanes: An Entryway to Sulfone- and Carbonyl-Containing SF 5-Cyclobutanes. Angew Chem Int Ed Engl 2024; 63:e202319930. [PMID: 38237059 PMCID: PMC11045327 DOI: 10.1002/anie.202319930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 04/26/2024]
Abstract
The first assortment of achiral pentafluorosulfanylated cyclobutanes (SF5-CBs) are now synthetically accessible through strain-release functionalization of [1.1.0]bicyclobutanes (BCBs) using SF5Cl. Methods for both chloropentafluorosulfanylation and hydropentafluorosulfanylation of sulfone-based BCBs are detailed herein, as well as proof-of-concept that the logic extends to tetrafluoro(aryl)sulfanylation, tetrafluoro(trifluoromethyl)sulfanylation, and three-component pentafluorosulfanylation reactions. The methods presented enable isolation of both syn and anti isomers of SF5-CBs, but we also demonstrate that this innate selectivity can be overridden in chloropentafluorosulfanylation; that is, an anti-stereoselective variant of SF5Cl addition across sulfone-based BCBs can be achieved by using inexpensive copper salt additives. Considering the SF5 group and CBs have been employed individually as nonclassical bioisosteres, structural aspects of these unique SF5-CB "hybrid isosteres" were then contextualized using SC-XRD. From a mechanistic standpoint, chloropentafluorosulfanylation ostensibly proceeds through a curious polarity mismatch addition of electrophilic SF5 radicals to the electrophilic sites of the BCBs. Upon examining carbonyl-containing BCBs, we also observed rare instances whereby radical addition to the 1-position of a BCB occurs. The nature of the key C(sp3)-SF5 bond formation step - among other mechanistic features of the methods we disclose - was investigated experimentally and with DFT calculations. Lastly, we demonstrate compatibility of SF5-CBs with various downstream functionalizations.
Collapse
Affiliation(s)
- Yannick Kraemer
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Jón Atiba Buldt
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Alexander M Stephens
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Abbey N Ragan
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Soojun Park
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Zane C Haidar
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Ansh Hiten Patel
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Rachel Shey
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Roee Dagan
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Connor P McLoughlin
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - James C Fettinger
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Cody Ross Pitts
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
11
|
Wenzel JO, Jester F, Togni A, Rombach D. Hydroamination of Triisopropylsilyl Acetylene Sulfur Pentafluoride - a Bench-top Route to Pentafluorosulfanylated Enamines. Chemistry 2024; 30:e202304015. [PMID: 38079230 DOI: 10.1002/chem.202304015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 01/17/2024]
Abstract
Synthetic access to a variety of aliphatic and vinylic pentafluorosulfanylated building blocks remains a major challenge in contemporary organofluorine chemistry hampering its investigation in the context of medicinal chemistry, agrochemistry and functional materials. Herein, we report a bench-top protocol to access the virtually unknown class of α-SF5 -enamines under mild reaction conditions in good to excellent yields (up to 95 %). This reaction combines the protodesilylation of the commercially available precursor TASP with the in situ hydroamination of HC≡C-SF5 . The on-site use of highly toxic gases or corrosive reagents is avoided, making access to this motif applicable to a wide chemical audience. The excellent E-diastereoselectivity of this two-step cascade reaction is suggested to be the result of the convergence of the fast Z-/E- isomerization of a vinyl anion as well as the isomerization of the iminium ion. The remarkable thermal stability of these SF5 -enamines encourages further studies of their synthetic utility.
Collapse
Affiliation(s)
- Jonas O Wenzel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Fabian Jester
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - David Rombach
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| |
Collapse
|
12
|
Popek L, Cihan M, Blanchard N, Bizet V. Palladium-Catalyzed Regioselective Synthesis of 2-SF 5 -Indenols and Further Derivatizations. Angew Chem Int Ed Engl 2024; 63:e202315909. [PMID: 38116823 DOI: 10.1002/anie.202315909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
A palladium-catalyzed synthesis of 2-SF5 -indenols has been developed by reacting commercially available boronic acid derivatives and readily accessible SF5 -alkynes. The present methodology is fully regioselective thanks to the intrinsic polarization of SF5 -alkynes. A selection of downstream functionalizations has been performed to highlight the versatility of 2-SF5 -indenols and indenones as platforms for the design of more complex SF5 -containing molecules.
Collapse
Affiliation(s)
- Lucas Popek
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000, Mulhouse, France
| | - Murat Cihan
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000, Mulhouse, France
| | - Nicolas Blanchard
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000, Mulhouse, France
| | - Vincent Bizet
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000, Mulhouse, France
| |
Collapse
|
13
|
Nguyen TM, Popek L, Matchavariani D, Blanchard N, Bizet V, Cahard D. Expanding Radical Chloropentafluorosulfanylation of Alkynes. Org Lett 2024; 26:365-369. [PMID: 38166239 DOI: 10.1021/acs.orglett.3c04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The chloropentafluorosulfanylation of alkynes is a delicate but crucial operation for accessing SF5-alkynes that serve as substrates in numerous transformations. Dolbier's procedure using Et3B/O2 was the most efficient approach, while recent efforts make use of other initiators and light activation. We found that THF, as a single stimulus, is sufficient to trigger the reaction of SF5Cl with alkynes. We determined the configuration of Cl/SF5 products and clarified the structure of side-products.
Collapse
Affiliation(s)
- Thi Mo Nguyen
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, F-76000 Rouen, France
| | - Lucas Popek
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - David Matchavariani
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Nicolas Blanchard
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Vincent Bizet
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, F-76000 Rouen, France
| |
Collapse
|
14
|
Kordnezhadian R, De Bels T, Su K, Van Meervelt L, Ismalaj E, Demaerel J, De Borggraeve WM. An Extrusion Strategy for On-Demand SF 5Cl Gas Generation from a Commercial Disulfide. Org Lett 2023. [PMID: 38051525 DOI: 10.1021/acs.orglett.3c03886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Herein we report a novel methodology for the ex situ generation of SF5Cl by employing 4,4'-dipyridyl disulfide as a safe commercial reagent, obviating the need for lecture bottles. The method is applicable to certain SF5Cl-involving transformations by using a two-chamber reactor. Moreover, easily applying SF5Cl in different solvents is rendered feasible, while avoiding the use of glovebox techniques. This report also suggests 1H-19F HOESY as a simple and fast stereochemistry indication for chloropentafluorosulfanylated olefins.
Collapse
Affiliation(s)
- Reza Kordnezhadian
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box 2404, B-3001 Leuven (Heverlee), Belgium
| | - Tim De Bels
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box 2404, B-3001 Leuven (Heverlee), Belgium
| | - Kexin Su
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box 2404, B-3001 Leuven (Heverlee), Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box 2404, B-3001 Leuven (Heverlee), Belgium
| | - Ermal Ismalaj
- Molecular and Functional Biomarkers, CIC-BiomaGUNE, Paseo Miramon 182, 20014 Donostia-San Sebastian, Spain
| | - Joachim Demaerel
- Molecular and Functional Biomarkers, CIC-BiomaGUNE, Paseo Miramon 182, 20014 Donostia-San Sebastian, Spain
| | - Wim M De Borggraeve
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box 2404, B-3001 Leuven (Heverlee), Belgium
| |
Collapse
|
15
|
Nguyen TM, Legault CY, Blanchard N, Bizet V, Cahard D. Tracking SF 5 I in the Iodopentafluorosulfanylation of Alkynes. Chemistry 2023; 29:e202302914. [PMID: 37698052 DOI: 10.1002/chem.202302914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
In the vibrant field of SF5 chemistry, SF5 X reagents (X=F, Cl, Br) are at the heart of current investigations in radical pentafluorosulfanylation reactions. SF5 I is the missing link whose existence has not been reported despite its potential as SF5 donor. This study reports the formal addition of the hitherto unknown SF5 I reagent to alkynes by means of a combination of SF5 Cl/KI/18-crown-6 ether. The exclusive regio- and stereoselective synthesis of unprecedented (E)-1-iodo-2-(pentafluoro-λ6 -sulfanyl) alkenes was achieved. A consensus was reached through computational and mechanistic studies for the realistic formation of SF5 - anion but not SF5 I in solution and the rational involvement of SF5 ⋅ and iodine radicals in the iodo pentafluorosulfanylation reaction.
Collapse
Affiliation(s)
- Thi Mo Nguyen
- Univ Rouen Normandie, INSA Rouen Normandie Normandie Univ COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Claude Y Legault
- Centre in Green Chemistry and Catalysis, Department of Chemistry, University of Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Nicolas Blanchard
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000, Mulhouse, France
| | - Vincent Bizet
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000, Mulhouse, France
| | - Dominique Cahard
- Univ Rouen Normandie, INSA Rouen Normandie Normandie Univ COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| |
Collapse
|
16
|
Cho H, Jang S, Lee K, Cha D, Min SJ. Visible-Light-Induced DDQ-Catalyzed Fluorocarbamoylation Using CF 3SO 2Na and Oxygen. Org Lett 2023. [PMID: 37987781 DOI: 10.1021/acs.orglett.3c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The synthesis of carbamoyl fluorides via visible-light induced DDQ catalysis of secondary amines is described. This protocol employs sodium trifluorosulfinate and molecular oxygen for the in situ generation of carbonyl difluoride, which is reacted with amines to afford the corresponding carbamoyl fluorides efficiently. Moreover, carbamoyl fluorides are easily transformed to synthetically useful carbonyl compounds under mild reaction conditions.
Collapse
Affiliation(s)
- Huijeong Cho
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seonga Jang
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Kangjoo Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Dohoon Cha
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Department of Chemical & Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
17
|
Zhang H, Luo T, Chen Y, Liu K, Li H, Pensa E, Fu J, Lin Z, Chai L, Cortés E, Liu M. Highly Efficient Decomposition of Perfluorocarbons for over 1000 Hours via Active Site Regeneration. Angew Chem Int Ed Engl 2023; 62:e202305651. [PMID: 37612240 DOI: 10.1002/anie.202305651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
Tetrafluoromethane (CF4 ), the simplest perfluorocarbon (PFC), has the potential to exacerbate global warming. Catalytic hydrolysis is a viable method to degrade CF4 , but fluorine poisoning severely restricts both the catalytic performance and catalyst lifetime. In this study, Ga is introduced to effectively assists the defluorination of poisoned Al active sites, leading to highly efficient CF4 decomposition at 600 °C with a catalytic lifetime exceeding 1,000 hours. 27 Al and 71 Ga magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) showed that the introduced Ga exists as tetracoordinated Ga sites (GaIV ), which readily dissociate water to form Ga-OH. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density function theory (DFT) calculations confirmed that Ga-OH assists the defluorination of poisoned Al active sites via a dehydration-like process. As a result, the Ga/Al2 O3 catalyst achieved 100 % CF4 decomposition keeping an ultra-long catalytic lifetime and outperforming reported results. This work proposes a new approach for efficient and long-term CF4 decomposition by promoting the regeneration of active sites.
Collapse
Affiliation(s)
- Hang Zhang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Yingkang Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P. R. China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, Hunan, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, Henan, P. R. China
| | - Evangelina Pensa
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P. R. China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, Hunan, P. R. China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P. R. China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, Hunan, P. R. China
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China
| |
Collapse
|
18
|
Yasuo E, Aikawa K, Nozaki K, Okazoe T. Fluoroalkylated hypervalent sulfur fluorides: radical addition of arylchlorotetrafluoro-λ 6-sulfanes to tetrafluoroethylene. Chem Sci 2023; 14:12379-12385. [PMID: 37969576 PMCID: PMC10631236 DOI: 10.1039/d3sc04837c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023] Open
Abstract
Fluorinated groups are essential hydrophobic groups in drug design. Combining a carbon-free tetrafluoro-λ6-sulfanyl (SF4) group with a polyfluoroalkyl group (RF) provides SF4RF groups, exhibiting high hydrophobicity with a short carbon chain. In this study, various aryltetrafluoro(polyfluoroalkyl)-λ6-sulfanes (ArSF4RF) were synthesized through the radical addition of arylchlorotetrafluoro-λ6-sulfanes (ArSF4Cl) to tetrafluoroethylene. In addition, quantification of hydrophobic constants (πPh) indicated that the SF4 group is considerably more hydrophobic than a difluoromethylene (CF2) group. Further transformation reactions revealed the stabilities and reactivities of these novel fluorinated groups. The high hydrophobicity and synthetic utility of the SF4RF group lead to the potential applications of the SF4RF group in the pharmaceutical field.
Collapse
Affiliation(s)
- Eisuke Yasuo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 2-11-16 Yayoi Bunkyo-ku Tokyo 113-0032 Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 2-11-16 Yayoi Bunkyo-ku Tokyo 113-0032 Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 2-11-16 Yayoi Bunkyo-ku Tokyo 113-0032 Japan
- Yokohama Technical Center, AGC Inc. 1-1 Suehiro-cho Tsurumi-ku Yokohama 230-0045 Japan
| |
Collapse
|
19
|
Lee TC, Tong Y, Fu WC. Advances in Continuous Flow Fluorination Reactions. Chem Asian J 2023; 18:e202300723. [PMID: 37707985 DOI: 10.1002/asia.202300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Fluorination reactions are important in constructing organofluorine motifs, which contribute to favorable biological properties in pharmaceuticals and agrochemicals. However, fluorination reagents and reactions are associated with various problems, such as their hazardous nature, high exothermicity, and poor selectivity and scalability. Continuous flow has emerged as a transformative technology to provide many advantages relative to batch syntheses. This review article summarizes recent continuous flow techniques that address the limitations and challenges of fluorination reactions. Approaches based on different flow techniques are discussed, including gas-liquid reactions, packed-bed reactors, in-line purifications, streamlined multistep synthesis, large-scale reactions well as flow photoredox- and electrocatalysis.
Collapse
Affiliation(s)
- Tsz Chun Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Yi Tong
- Department of Chemistry, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Wai Chung Fu
- Department of Chemistry, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
Herbstritt D, Tomar P, Braun T. Activation of SF 5CF 3 by the N-Heterocyclic Carbene SIMes. Molecules 2023; 28:6693. [PMID: 37764468 PMCID: PMC10535660 DOI: 10.3390/molecules28186693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The greenhouse gas SF5CF3 was photochemically activated with SIMes (1,3-Bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) to give 1,3-dimesityl-2,2-difluoroimidazolidine (SIMesF2), and 1,3-dimesitylimidazolidine-2-sulfide, as well as the trifluoromethylated carbene derivative 1,3-dimesityl-2-fluoro-2-trifluoromethylimidazolidine. CF3 radicals, as well as SF4, serve presumably as intermediates of the conversions. In addition, the photochemical activation of SF5CF3 was performed in the presence of triphenylphosphine. The formation of triphenyldifluorophosphorane and triphenylphosphine sulfide was observed.
Collapse
Affiliation(s)
| | | | - Thomas Braun
- Department of Chemistry, Humboldt–Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
21
|
Crousse B. Recent Advances in the Syntheses of N-CF 3 Scaffolds up to Their Valorization. CHEM REC 2023; 23:e202300011. [PMID: 36922747 DOI: 10.1002/tcr.202300011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Indexed: 03/18/2023]
Abstract
This review provides a recent overview of the different synthetic routes of the N-CF3 group. This scaffold can be prepared from the desulfurization of thiocabamoyl fluorides or isothiocyanates with fluoride ions. Electrophilic and radical trifluoromethylations are also a great way to generate this motif. This report also focuses on the valorization of some N-CF3 compounds, which leads to new unknown N-trifluoromethyl derivatives. Finally, the first metabolic stability studies will be given for certain structures.
Collapse
Affiliation(s)
- Benoît Crousse
- BioCIS UMR 8076 CNRS, Building Henri Moissan, Université Paris-Saclay, 17 avenue des sciences, 91400, Orsay, France
| |
Collapse
|
22
|
Liu L, Gu YC, Zhang CP. Recent Advances in the Synthesis and Transformation of Carbamoyl Fluorides, Fluoroformates, and Their Analogues. CHEM REC 2023; 23:e202300071. [PMID: 37098875 DOI: 10.1002/tcr.202300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Indexed: 04/27/2023]
Abstract
Carbamoyl fluorides, fluoroformates, and their analogues are a class of important compounds and have been evidenced as versatile building blocks for the preparation of useful molecules in organic chemistry. While major achievements were made in the synthesis of carbamoyl fluorides, fluoroformates, and their analogues in the last half of 20th century, an increasing number of reports have focused on using O/S/Se=CF2 species or their equivalents as the fluorocarbonylation reagents for the direct construction of these compounds from the parent heteroatom-nucleophiles in recent years. This review mainly summarizes the advances in the synthesis and typical application of carbamoyl fluorides, fluoroformates, and their analogues by the halide exchanges and fluorocarbonylation reactions since 1980.
Collapse
Affiliation(s)
- Lei Liu
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG426EY, UK
| | - Cheng-Pan Zhang
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
23
|
McKnight EA, Arora R, Pradhan E, Fujisato YH, Ajayi AJ, Lautens M, Zeng T, Le CM. BF 3-Catalyzed Intramolecular Fluorocarbamoylation of Alkynes via Halide Recycling. J Am Chem Soc 2023; 145:11012-11018. [PMID: 37172320 DOI: 10.1021/jacs.3c03982] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A BF3-catalyzed atom-economical fluorocarbamoylation reaction of alkyne-tethered carbamoyl fluorides is reported. The catalyst acts as both a fluoride source and Lewis acid activator, thereby enabling the formal insertion of alkynes into strong C-F bonds through a halide recycling mechanism. The developed method provides access to 3-(fluoromethylene) oxindoles and γ-lactams with excellent stereoselectivity, including fluorinated derivatives of known protein kinase inhibitors. Experimental and computational studies support a stepwise mechanism for the fluorocarbamoylation reaction involving a turnover-limiting cyclization step, followed by internal fluoride transfer from a BF3-coordinated carbamoyl adduct. For methylene oxindoles, a thermodynamically driven Z-E isomerization is facilitated by a transition state with aromatic character. In contrast, this aromatic stabilization is not relevant for γ-lactams, which results in a higher barrier for isomerization and the exclusive formation of the Z-isomer.
Collapse
Affiliation(s)
- E Ali McKnight
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ramon Arora
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ekadashi Pradhan
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Yuriko H Fujisato
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ayonitemi J Ajayi
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Mark Lautens
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tao Zeng
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Christine M Le
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
24
|
Herbstritt D, Braun T. Reduction of SF 5CF 3via iridium catalysis: radical trifluoromethylation of aromatics. Chem Commun (Camb) 2023; 59:3850-3853. [PMID: 36891951 DOI: 10.1039/d3cc00495c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The greenhouse gas SF5CF3 acts as CF3 source for the photocatalytic trifluoromethylation of arenes on using [Ir(dtbbpy)(ppy)2]PF6 (4,4'-di-tert-butyl-2,2'-dipyridyl, ppy = 2-phenylpyridine) as catalyst. The trifluoromethylation of C6D6 in the presence of 1-octanol results in the concomitant generation of 1-fluorooctane, presumably by intermediate SF4.
Collapse
Affiliation(s)
- Domenique Herbstritt
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| |
Collapse
|
25
|
Reactions of difluoro-pentafluorosulfanyl-iodomethane (SF5CF2I) with electronically different types of alkenes. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Zhao X, Shou JY, Newton JJ, Qing FL. trans-Trifluoromethyltetrafluorosulfanyl Chloride: Selective Synthesis and Reaction with Diazo Compounds. Org Lett 2022; 24:8412-8416. [DOI: 10.1021/acs.orglett.2c03540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Zhao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Jia-Yi Shou
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Josiah J. Newton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
27
|
Eder T, Buß F, Wilm LFB, Seidl M, Podewitz M, Dielmann F. Oxidative Fluorination of Selenium and Tellurium Compounds using a Thermally Stable Phosphonium SF 5 - Salt Accessible from SF 6. Angew Chem Int Ed Engl 2022; 61:e202209067. [PMID: 36018610 PMCID: PMC9826459 DOI: 10.1002/anie.202209067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 01/11/2023]
Abstract
Fluorinated group 16 moieties are attractive building blocks in synthetic chemistry but only few synthetic methods are available to prepare them. Herein, we report a new oxidative fluorination reagent capable of stabilizing reactive fluorinated anions. It consists of an SF5 - anion and a chemically inert phosphonium cation and is exceptionally thermally stable. Accordingly, it was used to generate the SeF5 - and TeF5 - anions from the elemental chalcogens and to prepare the unknown tetrafluoro(phenyl)-λ5 -selenate PhSeF4 - and -tellurate PhTeF4 - from the corresponding diphenyl dichalcogenides. In addition, we show that further derivatization of [PhTeF4 ]- by oxidation to trans-PhTeF4 O- and subsequent alkylation gives access to a new class of trans-(alkoxy)(phenyl)tetrafluoro-λ6 -tellanes (trans-PhTeF4 OR), thus providing an approach to introduce the functional group into organic molecules.
Collapse
Affiliation(s)
- Tobias Eder
- Institute of GeneralInorganic and Theoretical ChemistryLeopold-Franzens-Universität InnsbruckInnrain 80–826020InnsbruckAustria
- Institute of Inorganic and Analytical ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 28–3048149MünsterGermany
| | - Florenz Buß
- Institute of Inorganic and Analytical ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 28–3048149MünsterGermany
| | - Lukas F. B. Wilm
- Institute of Inorganic and Analytical ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 28–3048149MünsterGermany
| | - Michael Seidl
- Institute of GeneralInorganic and Theoretical ChemistryLeopold-Franzens-Universität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Maren Podewitz
- Institute of Materials ChemistryTU WienGetreidemarkt 91060ViennaAustria
| | - Fabian Dielmann
- Institute of GeneralInorganic and Theoretical ChemistryLeopold-Franzens-Universität InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
28
|
Shou J, Qing F. Three‐Component Reaction of Pentafluorosulfanyl Chloride, Alkenes and Diazo Compounds and Synthesis of Pentafluorosulfanylfurans. Angew Chem Int Ed Engl 2022; 61:e202208860. [DOI: 10.1002/anie.202208860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Jia‐Yi Shou
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
29
|
Eder T, Buß F, Wilm LFB, Seidl M, Podewitz M, Dielmann F. Oxidative Fluorination of Selenium and Tellurium Compounds using a Thermally Stable Phosphonium SF5‐ Salt Accessible from SF6. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tobias Eder
- Leopold Franzens Universität für Innsbruck: Universitat Innsbruck Inorganic Chemistry AUSTRIA
| | - Florenz Buß
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Inorganic Chemistry GERMANY
| | - Lukas F. B. Wilm
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Inorganic Chemistry GERMANY
| | - Michael Seidl
- Leopold Franzens Universität für Innsbruck: Universitat Innsbruck Inorganic Chemistry AUSTRIA
| | - Maren Podewitz
- TU Wien: Technische Universitat Wien Institute of Materials Chemistry AUSTRIA
| | - Fabian Dielmann
- Universitat Innsbruck Fakultat fur Chemie und Pharmazie Institut für Allgemeine, Anorganische und Theoretische Chemie Innrain 80-82 6020 Innsbruck AUSTRIA
| |
Collapse
|
30
|
Cadwallader D, Tiburcio TR, Cieszynski GA, Le CM. Synthesis of Carbamoyl Fluorides Using a Difluorophosgene Surrogate Derived from Difluorocarbene and Pyridine N-Oxides. J Org Chem 2022; 87:11457-11468. [PMID: 35972076 DOI: 10.1021/acs.joc.2c01017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a method for the synthesis of carbamoyl fluorides from secondary amines using bench-stable, inexpensive, and readily accessible starting materials that, when combined, yield a surrogate for toxic difluorophosgene (COF2) gas. In contrast to state-of-the-art methods for the synthesis of carbamoyl fluorides, our protocol does not require the use of pre-functionalized substrates, the preparation of light-, temperature-, and/or moisture-sensitive chemicals, or the application of explosive fluorinating reagents.
Collapse
Affiliation(s)
- Dusty Cadwallader
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Tristan R Tiburcio
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - George A Cieszynski
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Christine M Le
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
31
|
Shou JY, Qing FL. Three‐Component Reaction of Pentafluorosulfanyl Chloride, Alkenes and Diazo Compounds and Synthesis of Pentafluorosulfanylfurans. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jia-Yi Shou
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry CHINA
| | - Feng-Ling Qing
- Shanghai Institute of Organic Chemistry Laboratory of Organofluorine Chemistry 345 lingling Lu 200032 Shanghai CHINA
| |
Collapse
|
32
|
Kraemer Y, Bergman EN, Togni A, Pitts CR. Oxidative Fluorination of Heteroatoms Enabled by Trichloroisocyanuric Acid and Potassium Fluoride. Angew Chem Int Ed Engl 2022; 61:e202205088. [PMID: 35580251 PMCID: PMC9400999 DOI: 10.1002/anie.202205088] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 12/27/2022]
Abstract
In synthetic method development, the most rewarding path is seldom a straight line. While our initial entry into pentafluorosulfanyl (SF5 ) chemistry did not go according to plan (due to inaccessibility of reagents such as SF5 Cl at the time), a "detour" led us to establish mild and inexpensive oxidative fluorination conditions that made aryl-SF5 compound synthesis more accessible. The method involved the use of potassium fluoride and trichloroisocyanuric acid (TCICA)-a common swimming pool disinfectant-as opposed to previously employed reagents such as F2 , XeF2 , HF, and Cl2 . Thereafter, curiosity led us to explore applications of TCICA/KF as a more general approach to the synthesis of fluorinated Group 15, 16, and 17 heteroatoms in organic scaffolds; this, in turn, prompted SC-XRD, VT-NMR, computational, and physical organic studies. Ultimately, it was discovered that TCICA/KF can be used to synthesize SF5 Cl, enabling SF5 chemistry in an unexpected way.
Collapse
Affiliation(s)
- Yannick Kraemer
- Department of ChemistryUniversity of California, Davis1 Shields AvenueDavisCA 95616USA
| | - Emily Nicole Bergman
- Department of ChemistryUniversity of California, Davis1 Shields AvenueDavisCA 95616USA
| | - Antonio Togni
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1ZürichSwitzerland
| | - Cody Ross Pitts
- Department of ChemistryUniversity of California, Davis1 Shields AvenueDavisCA 95616USA
| |
Collapse
|
33
|
Kraemer Y, Bergman EN, Togni A, Pitts CR. Oxidative Fluorination of Heteroatoms Enabled by Trichloroisocyanuric Acid and Potassium Fluoride. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yannick Kraemer
- Department of Chemistry University of California, Davis 1 Shields Avenue Davis CA 95616 USA
| | - Emily Nicole Bergman
- Department of Chemistry University of California, Davis 1 Shields Avenue Davis CA 95616 USA
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 Zürich Switzerland
| | - Cody Ross Pitts
- Department of Chemistry University of California, Davis 1 Shields Avenue Davis CA 95616 USA
| |
Collapse
|