1
|
Han X, Cheng P, Yang H, Guan J, Xin M, Li G, Li X, Zheng Y, Xu J, Bu XH. Supramolecular Assembly Enhanced Linear and Nonlinear Chiroptical Properties of Chiral Manganese Halides. Angew Chem Int Ed Engl 2024:e202419776. [PMID: 39714406 DOI: 10.1002/anie.202419776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Chiral hybrid organic-inorganic metal halides (HOMHs) hold great promise in broad applications ranging from ferroelectrics, spintronics to nonlinear optics, owing to their broken inversion symmetry and tunable chiroptoelectronic properties. Typically, chiral HOMHs are constructed by chiral organic cations and metal anion polyhedra, with the latter regarded as optoelectronic active units. However, the primary design approaches are largely constrained to regulation of general components within structural formula. Herein, supramolecular approaches have been taken for the functionalization of chiral enantiomers by anchoring chiral cations with crown ether hosting molecules. Chiral HOMHs of R-/S-(18-crown-6@ClMBA)2MnBr4 have been thus obtained with boosted linear and nonlinear chiroptical properties. The self-assembled cations lead to enhanced structural rigidity, which promote near-unity green light emission and strong circularly polarized luminescence with a high asymmetry factor, along with high efficiency second-order nonlinear optical responses. In particular, these chiral HOMH single crystals demonstrate a sensitive discrimination for circularly polarized laser in the near-infrared region with the nonlinear optical asymmetry factor (gSHG-CD) as high as 1.8. This work highlights the contribution of supramolecular assembly in improving chiroptical performances, offering valuable insights for the design of new chiral HOMH materials with promising application potentials as linear and nonlinear CPL emitters and detectors.
Collapse
Affiliation(s)
- Xiao Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
- Science and Technology Institute of Advanced Technology, Furong Road 1, Wuhan, Hubei, 430050, P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Huanxin Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Junjie Guan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Mingyang Xin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Geng Li
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, China Rare Earth Group Research Institute, Huangjin Avenue 36, Ganzhou, Jiangxi, 341000, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| |
Collapse
|
2
|
Li C, Wei Y, Li Y, Luo Z, Liu Y, He M, Zhang Y, He X, Chang X, Quan Z. Manipulating Chiroptical Activities in 0D Chiral Hybrid Manganese Bromides by Solvent Molecular Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400338. [PMID: 38766952 DOI: 10.1002/smll.202400338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/23/2024] [Indexed: 05/22/2024]
Abstract
0D hybrid metal halides (0D HMHs) with fully isolated inorganic units provide an ideal platform for studying the correlations between chiroptical activities and crystal structures at atomic levels. Here, through the incorporation of different solvent molecules, a series of 0D chiral manganese bromides (RR/SS-C20H28N2)3MnBr8·2X (X = C2H5OH, CH3OH, or H2O) are synthesized to elucidate their chiroptical properties. They show negligible circular dichroism signals of Mn absorptions due to C2v-symmetric [MnBr4]2- tetrahedra. However, they display distinct circularly polarized luminescence (CPL) signals with continuously increased luminescence asymmetry factors (glum) from 10-4 (X = C2H5OH) to 10-3 (X = H2O). The increased glum value is structurally revealed to originate from the enhancement of [MnBr4]2- tetrahedral bond-angle distortions, due to the presence of different solvent molecules. Furthermore, (RR/SS-C20H28N2)MnBr4·H2O enantiomers with larger bond-angle distortions of [MnBr4]2- tetrahedra are synthesized based on hydrobromic acid-induced structural transformation of (RR/SS-C20H28N2)3MnBr8·2H2O enantiomers. Therefore, such (RR/SS-C20H28N2)MnBr4·H2O enantiomers exhibit enhanced CPL signals with |glum| up to 1.23 × 10-2. This work provides unique insight into enhancing chiroptical activities in 0D HMH systems.
Collapse
Affiliation(s)
- Chen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yi Wei
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yawen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zhishan Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yulian Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Meiying He
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yan Zhang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xin He
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xiaoyong Chang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
3
|
Tonoyan GS, Giester G, Ghazaryan VV, Chilingaryan RY, Margaryan AA, Mkrtchyan AH, Petrosyan AM. Crystal structure of bis-(β-alaninium) tetra-bromidoplumbate. Acta Crystallogr E Crystallogr Commun 2024; 80:931-935. [PMID: 39267868 PMCID: PMC11389681 DOI: 10.1107/s2056989024007722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024]
Abstract
The title compound, poly[bis-(β-alaninium) [[di-bromido-plumbate]-di-μ-di-bromido]] {(C2H8NO2)2[PbBr4]} n or (β-AlaH)2PbBr4, crystallizes in the monoclinic space group P21/n. The (PbBr4)2- anion is located on a general position and has a two-dimensional polymeric structure. The Pb center is holodirected. The supra-molecular network is mainly based on O-H⋯Br, N-H⋯Br and N-H⋯O hydrogen bonds.
Collapse
Affiliation(s)
- Gayane S Tonoyan
- Institute of Applied Problems of Physics, NAS of Armenia, 25 Nersessyan Str., 0014 Yerevan, Armenia
| | - Gerald Giester
- Institute of Mineralogy and Crystallography, University of Vienna, Josef-Holaubek-Platz 2, A-1090 Vienna, Austria
| | - Vahram V Ghazaryan
- Institute of Applied Problems of Physics, NAS of Armenia, 25 Nersessyan Str., 0014 Yerevan, Armenia
| | - Ruben Yu Chilingaryan
- Institute of Applied Problems of Physics, NAS of Armenia, 25 Nersessyan Str., 0014 Yerevan, Armenia
| | - Arthur A Margaryan
- Institute of Applied Problems of Physics, NAS of Armenia, 25 Nersessyan Str., 0014 Yerevan, Armenia
| | - Artak H Mkrtchyan
- Institute of Applied Problems of Physics, NAS of Armenia, 25 Nersessyan Str., 0014 Yerevan, Armenia
| | - Aram M Petrosyan
- Institute of Applied Problems of Physics, NAS of Armenia, 25 Nersessyan Str., 0014 Yerevan, Armenia
| |
Collapse
|
4
|
Song T, Wang CQ, Lu H, Mu XJ, Wang BL, Liu JZ, Ma B, Cao J, Sheng CX, Long G, Wang Q, Zhang HL. Achieving Strong Circularly Polarized Luminescence through Cascade Cationic Insertion in Lead-free Hybrid Metal Halides. Angew Chem Int Ed Engl 2024; 63:e202400769. [PMID: 38544401 DOI: 10.1002/anie.202400769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 04/23/2024]
Abstract
Generating circularly polarized luminescence (CPL) with simultaneous high photoluminescence quantum yield (PLQY) and dissymmetry factor (glum) is difficult due to usually unmatched electric transition dipole moment (μ) and magnetic transition dipole moment (m) of materials. Herein we tackle this issue by playing a "cascade cationic insertion" trick to achieve strong CPL (with PLQY of ~100 %) in lead-free metal halides with high glum values reaching -2.3×10-2 without using any chiral inducers. Achiral solvents of hydrochloric acid (HCl) and N, N-dimethylformamide (DMF) infiltrate the crystal lattice via asymmetric hydrogen bonding, distorting the perovskite structure to induce the "intrinsic" chirality. Surprisingly, additional insertion of Cs+ cation to substitute partial (CH3)2NH2 + transforms the chiral space group to achiral but the crystal maintains chiroptical activity. Further doping of Sb3+ stimulates strong photoluminescence as a result of self-trapped excitons (STEs) formation without disturbing the crystal framework. The chiral perovskites of indium-antimony chlorides embedded on LEDs chips demonstrate promising potential as CPL emitters. Our work presents rare cases of chiroptical activity of highly luminescent perovskites from only achiral building blocks via spontaneous resolution as a result of symmetry breaking.
Collapse
Affiliation(s)
- Tao Song
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Cheng-Qiang Wang
- Key Laboratory of Photovoltaic Science and Technology, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Haolin Lu
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Xi-Jiao Mu
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Bo-Long Wang
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Ji-Zhong Liu
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Bo Ma
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Jing Cao
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Chuan-Xiang Sheng
- Key Laboratory of Photovoltaic Science and Technology, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Guankui Long
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Qiang Wang
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Hao-Li Zhang
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Cheng P, Jia X, Chai S, Li G, Xin M, Guan J, Han X, Han W, Zeng S, Zheng Y, Xu J, Bu XH. Boosted Second Harmonic Generation of a Chiral Hybrid Lead Halide Resonant to Charge Transfer Exciton from Metal Halide Octahedra to Ligand. Angew Chem Int Ed Engl 2024; 63:e202400644. [PMID: 38470139 DOI: 10.1002/anie.202400644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
Chiral hybrid organic-inorganic metal halides (HOMHs) offer an ideal platform for the advancement of second-order nonlinear optical (NLO) materials owing to their inherent noncentrosymmetric structures. The enhancement of optical nonlinearity of chiral HOMHs could be achieved by matching the free exciton and/or self-trapped exciton energy levels with desired NLO frequencies. However, the current scarcity of resonance modes and low resonance ratio hamper the further improvements of NLO performance. Herein, we propose a new resonant channel of charge transfer (CT) excited states from metal halide polyhedra to organic ligand to boost the second-order optical nonlinearity of chiral HOMHs. The model lead halide (C7H10N)PbBr3 (C7H10N=1-ethylpyridinium) exhibits a drastically enhanced second harmonic generation in resonance to the deep CT exciton energy, with intensity of up to 111.0 times that of KDP and 10.9 times that of urea. The effective NLO coefficient has been determined to be as high as ~40.2 pm V-1, balanced with a large polarization ratio and high laser damage threshold. This work highlights the contribution of organic ligands in the construction of a resonant channel for enhancing second-order NLO coefficients of metal halides, and thus provides guidelines for designing new chiral HOMHs materials for advanced nonlinear photonic applications.
Collapse
Affiliation(s)
- Puxin Cheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Xiaodi Jia
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Siqian Chai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Geng Li
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, China Rare Earth Group Research Institute, Huangjin Avenue 36, Ganzhou, Jiangxi, 341000, P. R. China
| | - Mingyang Xin
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Junjie Guan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Xiao Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Wenqing Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Shuming Zeng
- College of Physics Science and Technology, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| |
Collapse
|
6
|
He X, Zheng Y, Luo Z, Wei Y, Liu Y, Xie C, Li C, Peng D, Quan Z. Bright Circularly Polarized Mechanoluminescence from 0D Hybrid Manganese Halides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309906. [PMID: 38228314 DOI: 10.1002/adma.202309906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/12/2024] [Indexed: 01/18/2024]
Abstract
Hybrid metal halides (HMHs) with efficient circularly polarized luminescence (CPL) have application prospects in many fields, due to their abundant host-guest structures and high photoluminescence quantum yield (PLQY). However, CPLs in HMHs are predominantly excited by light or electricity, limiting their use in multivariate environments. It is necessary to explore a novel excitation method to extend the application of chiral HMHs as smart stimuli-responsive optical materials. In this work, an enantiomeric pair of 0D hybrid manganese bromides, [H2(2R,4R)-(+)/(2S,4S)-(-)-2,4-bis(diphenylphosphino)pentane]MnBr4 [(R/S)-1] is presented, which exhibits efficient CPL emissions with near-unity PLQYs and high dissymmetry factors of ± 2.0 × 10-3. Notably, (R/S)-1 compounds exhibit unprecedented and bright circularly polarized mechanoluminescence (CPML) emissions under mechanical stimulation. Moreover, (R/S)-1 possess high mechanical force sensitivities with mechanoluminescence (ML) emissions detectable under 0.1 N force stimulation. Furthermore, this ML emission exhibits an extraordinary antithermal quenching effect in the temperature range of 300-380 K, which is revealed to originate from a thermal activation energy compensation mechanism from trap levels to Mn(II) 4T1 level. Based on their intriguing optical properties, these compounds as chiral force-responsive materials are demonstrated in multilevel confidential information encryption.
Collapse
Affiliation(s)
- Xin He
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yuantian Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhishan Luo
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yi Wei
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yulian Liu
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Chenlong Xie
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Chen Li
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zewei Quan
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
7
|
Guan J, Zheng Y, Cheng P, Han W, Han X, Wang P, Xin M, Shi R, Xu J, Bu XH. Free Halogen Substitution of Chiral Hybrid Metal Halides for Activating the Linear and Nonlinear Chiroptical Properties. J Am Chem Soc 2023. [PMID: 38039190 DOI: 10.1021/jacs.3c09395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Halogen substitution has been proven as an effective approach to the band gap engineering and optoelectronic modulation of organic-inorganic hybrid metal halide (OIHMH) materials. Various high-performance mixed halide OIHMH film materials have been primarily obtained through the substitution of coordinated halogens in their inorganic octahedra. Herein, we propose a new strategy of substitution of free halogen outside the inorganic octahedra for constructing mixed halide OIHMH single crystals with chiral structures, resulting in a boost of their linear and nonlinear chiroptical properties. The substitution from DMA4[InCl6]Cl (DMA = dimethylammonium) to DMA4[InCl6]Br crystals through a facile antisolvent vaporization method produces centimeter-scale single crystals with high thermal stability along with high quantum yield photoluminescence, conspicuous circularly polarized luminescence, and greatly enhanced second harmonic generation (SHG). In particular, the obtained DMA4[InCl6]Br single crystal features an intrinsic chiral structure, exhibiting a significant SHG circular dichroism (SHG-CD) response with a highest reported anisotropy factor (gSHG-CD) of 1.56 among chiral OIHMH materials. The enhancements in both linear and nonlinear chiroptical properties are directly attributed to the modulation of octahedral distortion. The mixed halide OIHMH single crystals obtained by free halogen substitution confine the introduced halogens within free halogen sites of the lattice, thereby ensuring the stability of compositions and properties. The successful employment of such a free halogen substitution approach may broaden the horizon of the regulation of structures and the optoelectronic properties of the OIHMH materials.
Collapse
Affiliation(s)
- Junjie Guan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Wenqing Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Xiao Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Peihan Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Mingyang Xin
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Rongchao Shi
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| |
Collapse
|
8
|
Yu B, Han W, Liu G, Wei Y, Wei J, Zheng Y, Dang Y. Oxidation-Induced Dissolution Recrystallization Structural Transformation Strategy Enhanced Nonlinear Optical Effect of Hybrid Chiral Tin Bromide Single Crystals. Inorg Chem 2023. [PMID: 38033304 DOI: 10.1021/acs.inorgchem.3c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In order to reveal the integrated effect of inorganic lattice structure disturbances and chiral ligands on the structure of tin halide hybrid materials, we show the synthesis, crystal growth, dissolution recrystallization structural transformation (DRST), optical properties, energy band structure, and nonlinear optical properties of a class of chiral tin bromide R/S-2-mpip[SnBr3]Br (2-mpip is 2-methylpiperazinium) and R/S-2-mpipSnBr6 for the first time. The formation of R/S-2-mpipSnBr6 in solution was interestingly caused by irreversible DRST of R/S-2-mpip[SnBr3]Br. The second-harmonic generation response of the new phase R-2-mpipSnBr6 is significantly enhanced compared to that of the initial phase R-2-mpip[SnBr3]Br. These structural transformations of chiral tin bromides reflect, to some extent, the DRST commonality of the tin halide family induced by oxidation and serve as a starting point for investigating the structural chirality and asymmetry of chiral metal hybrid halides.
Collapse
Affiliation(s)
- Binyin Yu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wenqing Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Guokui Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Yaoyao Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Jing Wei
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Yangyang Dang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
9
|
Qin F, Lu M, Lu P, Sun S, Bai X, Zhang Y. Luminescence and Degeneration Mechanism of Perovskite Light-Emitting Diodes and Strategies for Improving Device Performance. SMALL METHODS 2023; 7:e2300434. [PMID: 37434048 DOI: 10.1002/smtd.202300434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/17/2023] [Indexed: 07/13/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) can be a promising technology for next-generation display and lighting applications due to their excellent optoelectronic properties. However, a systematical overview of luminescence and degradation mechanism of perovskite materials and PeLEDs is lacking. Therefore, it is crucial to fully understand these mechanisms and further improve device performances. In this work, the fundamental photophysical processes of perovskite materials, electroluminescence mechanism of PeLEDs including carrier kinetics and efficiency roll-off as well as device degradation mechanism are discussed in detail. In addition, the strategies to improve device performances are summarized, including optimization of photoluminescence quantum yield, charge injection and recombination, and light outcoupling efficiency. It is hoped that this work can provide guidance for future development of PeLEDs and ultimately realize industrial applications.
Collapse
Affiliation(s)
- Feisong Qin
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Po Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Siqi Sun
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
10
|
Liu Y, Luo Z, Wei Y, Li C, Chen Y, He X, Chang X, Quan Z. Integrating Achiral and Chiral Organic Ligands in Zero-Dimensional Hybrid Metal Halides to Boost Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2023; 62:e202306821. [PMID: 37486135 DOI: 10.1002/anie.202306821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
Chiral zero-dimensional hybrid metal halides (0D HMHs) could combine excellent optical properties and chirality, making them promising for circularly polarized luminescence (CPL). However, chiral 0D HMHs with efficient CPL have been rarely reported. Here, we propose an efficient strategy to achieve simultaneously high photoluminescence quantum yield (PLQY) and large dissymmetry factor (glum ), by integrating achiral and chiral ligands into 0D HMHs. Specifically, three pairs of chiral 0D hybrid indium-antimony chlorides are synthesized by combing achiral guanidine with three types of chiral methylbenzylammonium-based derivatives as the organic cations. These chiral 0D HMHs exhibit near-unity PLQY and large glum values up to around ±1×10-2 . The achiral guanidine ligand is not only essential to crystallize these hybrid indium-antimony chlorides to achieve near-unity PLQYs, but also greatly enhances the chirality induction from organic ligands to inorganic units in these 0D HMHs. Furthermore, the choice of different chiral ligands can modify the strength of hydrogen bonding interactions in these 0D HMHs, to maximize their glum values. Overall, this study provides a robust way to realize efficient CPL in chiral HMHs, expanding their applications in chiroptical fields.
Collapse
Affiliation(s)
- Yulian Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhishan Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yi Wei
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Chen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yulin Chen
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Xin He
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Xiaoyong Chang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
11
|
Liu DY, Li HY, Han RP, Liu HL, Zang SQ. Multiple Stimuli-Responsive Luminescent Chiral Hybrid Antimony Chlorides for Anti-Counterfeiting and Encryption Applications. Angew Chem Int Ed Engl 2023; 62:e202307875. [PMID: 37460441 DOI: 10.1002/anie.202307875] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Stimuli-responsive circularly polarized luminescence (CPL) materials are ideal for information anti-countering applications, but the best-performing materials have not yet been identified. This work presents enantiomorphic hybrid antimony halides R-(C5 H12 NO)2 SbCl5 (1) and S-(C5 H12 NO)2 SbCl5 (2) showing mirror-imaged CPL activity with a dissymmetry factor of 1.2×10-3 . Interestingly, the DMF-induced structural transformation is realized to obtain non-emissive R-(C5 H12 NO)2 SbCl5 ⋅ DMF (3) and S-(C5 H12 NO)2 SbCl5 ⋅ DMF (4) upon exposure to DMF vapor. The transformation process is reversed upon heating. DFT calculations showed that the DMF-induced-quenched-luminescence is attributed to the intersection of the ground and excited state curves on the configuration coordinates. Unexpectedly, the nanocrystals of the chiral antimony halides 1 and 2 were prepared and indicate the excellent solution process performance. The reversible PL and CPL switching gives the system applications in information technology, anti-counterfeiting, encryption-decryption, and logic gates.
Collapse
Affiliation(s)
- Dan-Yang Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Run-Ping Han
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua-Li Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
12
|
Chai CY, Han XB, Liu CD, Fan CC, Liang BD, Zhang W. Circularly Polarized Luminescence in Zero-Dimensional Antimony Halides: Structural Distortion Controlled Luminescence Thermometer. J Phys Chem Lett 2023; 14:4063-4070. [PMID: 37094225 DOI: 10.1021/acs.jpclett.3c00693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Materials emitting circularly polarized luminescence (CPL) have been intensively studied for their promising applications in various fields. However, developing tunable and responsive CPL materials in a wide wavelength range remains a great challenge. Here, a pair of chiral (R,R/S,S-DCDA)3Sb2Cl12 (DCDA = dimethyl-1,2-cyclohexanediamine divalent cation) shows efficient broadband yellow emission with a photoluminescence (PL) quantum yield of 27.6% with a CPL asymmetry factor of 3 × 10-3. The associated chiroptical activity is attributed to the efficient chiral transfer as well as the self-trapped exciton emission originating from the large distortion of the inorganic blocks. Notably, (R,R/S,S-DCDA)3Sb2Cl12 exhibits a large red-shift emission exceeding 100 nm upon lowering temperature. An excellent linear correlation of the PL wavelength on temperature indicates that the compounds can be used as PL thermometers, which originates from a temperature-dependent linear structural distortion of the [SbCl6] emitter. This work inspires the potential utilization of CPL-emitting materials as responsive light sources.
Collapse
Affiliation(s)
- Chao-Yang Chai
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Bei-Dou Liang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
13
|
Wei Y, Li C, Li Y, Luo Z, Wu X, Liu Y, Zhang L, He X, Wang W, Quan Z. Circularly Polarized Luminescence from Zero-Dimensional Hybrid Lead-Tin Bromide with Near-Unity Photoluminescence Quantum Yield. Angew Chem Int Ed Engl 2022; 61:e202212685. [PMID: 36269276 DOI: 10.1002/anie.202212685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 11/18/2022]
Abstract
Zero-dimensional (0D) hybrid metal halides with perfect host-guest structures are promising candidates to construct circularly polarized luminescence (CPL)-active materials. However, it still remains challenging to obtain 0D chiral metal halides with simultaneously strong CPL and high photoluminescence quantum yield. Here, a new enantiomeric pair of 0D hybrid lead-tin bromides, (RR/SS-C6 N2 H16 )2 Pb0.968 Sn0.032 Br6 ⋅ 2H2 O (R/S-PbSnBr ⋅ H2 O), is reported. The R/S-PbSnBr ⋅ H2 O compounds not only show intriguing self-trapped exciton emissions with near-unity quantum yield, but also present intense CPL with a dissymmetry factor glum of ±3.0×10-3 . Such CPL activities originate from the asymmetric [SnBr6 ]4- luminophores in R/S-PbSnBr ⋅ H2 O, due to the induced structural chirality by the organic ligands via N-H⋅⋅⋅Br hydrogen bonds. Furthermore, CPL emissions with tunable colors from R/S-PbSnBr ⋅ H2 O and dehydrated compounds are reversibly observed, which extends their chiroptical applications.
Collapse
Affiliation(s)
- Yi Wei
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Chen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yawen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zhishan Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xiaoyu Wu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yulian Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Liming Zhang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xin He
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Wei Wang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
14
|
Zheng Y, Han X, Cheng P, Jia X, Xu J, Bu XH. Induction of Chiral Hybrid Metal Halides from Achiral Building Blocks. J Am Chem Soc 2022; 144:16471-16479. [PMID: 36063390 DOI: 10.1021/jacs.2c05063] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chiral hybrid organic-inorganic metal halides (HOMHs) with intrinsic noncentrosymmetry have shown great promise for broad applications in chiroptoelectronics, spintronics, and ferroelectronics. However, the construction strategies for chiral HOMHs often involve chiral building blocks in their frameworks, which greatly limit their chemical diversity. Here, we take advantage of a chiral induction approach and have successfully constructed a series of chiral HOMHs, DMA4MX7 (DMA = dimethylammonium, M = Sb or Bi, X = Cl or Br), based on achiral precursors. The resulting chiral products demonstrate a clear enantioenrichment, as confirmed by single-crystal X-ray diffraction analysis and solid-state circular dichroism (CD) spectroscopy. The induction of chiral HOMHs enables superior nonlinear optical performances with very high thermal stability and laser resistance. The successful employment of such a chiral induction approach might facilitate the construction of libraries of chiral HOMH crystals from diverse achiral precursors, in particular those into which it is not easy to introduce intrinsic chiral centers, and would thus pave a new way for rational preparation and application of chiral HOMH materials.
Collapse
Affiliation(s)
- Yongshen Zheng
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Xiao Han
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Xiaodi Jia
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| |
Collapse
|