1
|
Rajarathinam T, Jayaraman S, Seol J, Lee J, Chang SC. Utilizing a Disposable Sensor with Polyaniline-Doped Multi-Walled Carbon Nanotubes to Enable Dopamine Detection in Ex Vivo Mouse Brain Tissue Homogenates. BIOSENSORS 2024; 14:262. [PMID: 38920566 PMCID: PMC11201478 DOI: 10.3390/bios14060262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
Disposable sensors are inexpensive, user-friendly sensing tools designed for rapid single-point measurements of a target. Disposable sensors have become more and more essential as diagnostic tools due to the growing demand for quick, easy-to-access, and reliable information related to the target. Dopamine (DA), a prevalent catecholamine neurotransmitter in the human brain, is associated with central nervous system activities and directly promotes neuronal communication. For the sensitive and selective estimation of DA, an enzyme-free amperometric sensor based on polyaniline-doped multi-walled carbon nanotubes (PANI-MWCNTs) drop-coated disposable screen-printed carbon electrodes (SPCEs) was fabricated. This PANI-MWCNTs-2/SPCE sensor boasts exceptional accuracy and sensitivity when working directly with ex vivo mouse brain homogenates. The sensor exhibited a detection limit of 0.05 μM (S/N = 3), and a wide linear range from 1.0 to 200 μM. The sensor's high selectivity to DA amidst other endogenous interferents was recognized. Since the constructed sensor is enzyme-free yet biocompatible, it exhibited high stability in DA detection using ex vivo mouse brain homogenates extracted from both Parkinson's disease and control mice models. This research thus presents new insights into understanding DA release dynamics at the tissue level in both of these models.
Collapse
Affiliation(s)
- Thenmozhi Rajarathinam
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea;
| | - Sivaguru Jayaraman
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jaeheon Seol
- BIT Convergence-Based Innovative Drug Development Targeting Metainflammation, Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (J.S.); (J.L.)
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaewon Lee
- BIT Convergence-Based Innovative Drug Development Targeting Metainflammation, Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (J.S.); (J.L.)
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
2
|
Dunham KE, Venton BJ. Electrochemical and biosensor techniques to monitor neurotransmitter changes with depression. Anal Bioanal Chem 2024; 416:2301-2318. [PMID: 38289354 PMCID: PMC10950978 DOI: 10.1007/s00216-024-05136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024]
Abstract
Depression is a common mental illness. However, its current treatments, like selective serotonin reuptake inhibitors (SSRIs) and micro-dosing ketamine, are extremely variable between patients and not well understood. Three neurotransmitters: serotonin, histamine, and glutamate, have been proposed to be key mediators of depression. This review focuses on analytical methods to quantify these neurotransmitters to better understand neurological mechanisms of depression and how they are altered during treatment. To quantitatively measure serotonin and histamine, electrochemical techniques such as chronoamperometry and fast-scan cyclic voltammetry (FSCV) have been improved to study how specific molecular targets, like transporters and receptors, change with antidepressants and inflammation. Specifically, these studies show that different SSRIs have unique effects on serotonin reuptake and release. Histamine is normally elevated during stress, and a new inflammation hypothesis of depression links histamine and cytokine release. Electrochemical measurements revealed that stress increases histamine, decreases serotonin, and leads to changes in cytokines, like interleukin-6. Biosensors can also measure non-electroactive neurotransmitters, including glutamate and cytokines. In particular, new genetic sensors have shown how glutamate changes with chronic stress, as well as with ketamine treatment. These techniques have been used to characterize how ketamine changes glutamate and serotonin, and to understand how it is different from SSRIs. This review briefly outlines how these electrochemical techniques work, but primarily highlights how they have been used to understand the mechanisms of depression. Future studies should explore multiplexing techniques and personalized medicine using biomarkers in order to investigate multi-analyte changes to antidepressants.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
3
|
Liu R, Zhang S, Zeng H, Gao N, Yin Y, Zhang M, Mao L. A Potentiometric Dual-Channel Microsensor Reveals that Fluctuation of H 2 S is Less pH-Dependent During Spreading Depolarization in the Rat Brain. Angew Chem Int Ed Engl 2024; 63:e202318973. [PMID: 38272831 DOI: 10.1002/anie.202318973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Spreading depolarization (SD) is one of the most common neuropathologic phenomena in the nervous system, relating to numerous diseases. However, real-time monitoring the rapid chemical changes during SD to probe the molecular mechanism remains a great challenge. We develop a potentiometric dual-channel microsensor for simultaneous monitoring of H2 S and pH featuring excellent selectivity and spatiotemporal resolution. Using this microsensor we first observe real time changes of H2 S and pH in the rat brain induced by SD. This changes of H2 S are completely suppressed when the rat pre-treats with aminooxyacetic acid (AOAA), a blocker to inhibit the H2 S-producing enzyme, indicating H2 S fluctuation might be related to enzyme-dependent pathway during SD and less pH-dependent. This study provides a new perspective for studying the function of H2 S and the molecular basis of SD-associated diseases.
Collapse
Affiliation(s)
- Rantong Liu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
- College of Petroleum and Environment Engineering, Yan'an University, Shaanxi Yan'an, 716000, China
| | - Shuai Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Hui Zeng
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Nan Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yongyue Yin
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Meining Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
4
|
Lu J, Zhuang X, Wei H, Liu R, Ji W, Yu P, Ma W, Mao L. Enzymatic Galvanic Redox Potentiometry for In Vivo Biosensing. Anal Chem 2024; 96:3672-3678. [PMID: 38361229 DOI: 10.1021/acs.analchem.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Redox potentiometry has emerged as a new platform for in vivo sensing, with improved neuronal compatibility and strong tolerance against sensitivity variation caused by protein fouling. Although enzymes show great possibilities in the fabrication of selective redox potentiometry, the fabrication of an enzyme electrode to output open-circuit voltage (EOC) with fast response remains challenging. Herein, we report a concept of novel enzymatic galvanic redox potentiometry (GRP) with improved time response coupling the merits of the high selectivity of enzyme electrodes with the excellent biocompatibility and reliability of GRP sensors. With a glucose biosensor as an illustration, we use flavin adenine dinucleotide-dependent glucose dehydrogenase as the recognition element and carbon black as the potential relay station to improve the response time. We find that the enzymatic GRP biosensor rapidly responds to glucose with a good linear relationship between EOC and the logarithm of glucose concentration within a range from 100 μM to 2.65 mM. The GRP biosensor shows high selectivity over O2 and coexisting neurochemicals, good reversibility, and sensitivity and can in vivo monitor glucose dynamics in rat brain. We believe that this study will pave a new platform for the in vivo potentiometric biosensing of chemical events with high reliability.
Collapse
Affiliation(s)
- Jiaojiao Lu
- College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| | - Ran Liu
- College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| |
Collapse
|
5
|
Xu X, Zuo Y, Chen S, Hatami A, Gu H. Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals. BIOSENSORS 2024; 14:125. [PMID: 38534232 DOI: 10.3390/bios14030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Neurochemicals, crucial for nervous system function, influence vital bodily processes and their fluctuations are linked to neurodegenerative diseases and mental health conditions. Monitoring these compounds is pivotal, yet the intricate nature of the central nervous system poses challenges. Researchers have devised methods, notably electrochemical sensing with micro-nanoscale electrodes, offering high-resolution monitoring despite low concentrations and rapid changes. Implantable sensors enable precise detection in brain tissues with minimal damage, while microdialysis-coupled platforms allow in vivo sampling and subsequent in vitro analysis, addressing the selectivity issues seen in other methods. While lacking temporal resolution, techniques like HPLC and CE complement electrochemical sensing's selectivity, particularly for structurally similar neurochemicals. This review covers essential neurochemicals and explores miniaturized electrochemical sensors for brain analysis, emphasizing microdialysis integration. It discusses the pros and cons of these techniques, forecasting electrochemical sensing's future in neuroscience research. Overall, this comprehensive review outlines the evolution, strengths, and potential applications of electrochemical sensing in the study of neurochemicals, offering insights into future advancements in the field.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yimei Zuo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Amir Hatami
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
6
|
Chen J, Ding X, Zhang D. Challenges and strategies faced in the electrochemical biosensing analysis of neurochemicals in vivo: A review. Talanta 2024; 266:124933. [PMID: 37506520 DOI: 10.1016/j.talanta.2023.124933] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Our brain is an intricate neuromodulatory network, and various neurochemicals, including neurotransmitters, neuromodulators, gases, ions, and energy metabolites, play important roles in regulating normal brain function. Abnormal release or imbalance of these substances will lead to various diseases such as Parkinson's and Alzheimer's diseases, therefore, in situ and real-time analysis of neurochemical interactions in pathophysiological conditions is beneficial to facilitate our understanding of brain function. Implantable electrochemical biosensors are capable of monitoring neurochemical signals in real time in extracellular fluid of specific brain regions because they can provide excellent temporal and spatial resolution. However, in vivo electrochemical biosensing analysis mainly faces the following challenges: First, foreign body reactions induced by microelectrode implantation, non-specific adsorption of proteins and redox products, and aggregation of glial cells, which will cause irreversible degradation of performance such as stability and sensitivity of the microsensor and eventually lead to signal loss; Second, various neurochemicals coexist in the complex brain environment, and electroactive substances with similar formal potentials interfere with each other. Therefore, it is a great challenge to design recognition molecules and tailor functional surfaces to develop in vivo electrochemical biosensors with high selectivity. Here, we take the above challenges as a starting point and detail the basic design principles for improving in vivo stability, selectivity and sensitivity of microsensors through some specific functionalized surface strategies as case studies. At the same time, we summarize surface modification strategies for in vivo electrochemical biosensing analysis of some important neurochemicals for researchers' reference. In addition, we also focus on the electrochemical detection of low basal concentrations of neurochemicals in vivo via amperometric waveform techniques, as well as the stability and biocompatibility of reference electrodes during long-term sensing, and provide an outlook on the future direction of in vivo electrochemical neurosensing.
Collapse
Affiliation(s)
- Jiatao Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiuting Ding
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
7
|
Xia M, Agca BN, Yoshida T, Choi J, Amjad U, Bose K, Keren N, Zukerman S, Cima MJ, Graybiel AM, Schwerdt HN. Scalable, flexible carbon fiber electrode thread arrays for three-dimensional probing of neurochemical activity in deep brain structures of rodents. Biosens Bioelectron 2023; 241:115625. [PMID: 37708685 PMCID: PMC10591823 DOI: 10.1016/j.bios.2023.115625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/16/2023]
Abstract
We developed a flexible "electrode-thread" array for recording dopamine neurochemicals from a lateral distribution of subcortical targets (up to 16) transverse to the axis of insertion. Ultrathin (∼10 μm diameter) carbon fiber (CF) electrode-threads (CFETs) are clustered into a tight bundle to introduce them into the brain from a single-entry point. The individual CFETs splay laterally in deep brain tissue during insertion due to their innate flexibility. This spatial redistribution allows navigation of the CFETs towards deep brain targets spreading horizontally from the axis of insertion. Commercial "linear" arrays provide single-entry insertion but only allow measurements along the axis of insertion. Horizontally configured arrays inflict separate penetrations for each individual channel. We tested functional performance of our CFET arrays in vivo for recording dopamine and for providing lateral spread to multiple distributed sites in the rat striatum. Spatial spread was further characterized in agar brain phantoms as a function of insertion depth. We also developed protocols to slice the embedded CFETs within fixed brain tissue using standard histology. This method allowed extraction of the precise spatial coordinates of the implanted CFETs and their recording sites as integrated with immunohistochemical staining for surrounding anatomical, cytological, and protein expression labels. Our CFET array has the potential to unlock a wide range of applications, from uncovering the role of neuromodulators in synaptic plasticity, to addressing critical safety barriers in clinical translation towards diagnostic and adaptive treatment in Parkinson's disease and major mood disorders.
Collapse
Affiliation(s)
- Mingyi Xia
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Busra Nur Agca
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Jiwon Choi
- Department of Bioengineering, University of Pittsburgh, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Usamma Amjad
- Department of Bioengineering, University of Pittsburgh, USA
| | - Kade Bose
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Nikol Keren
- Department of Bioengineering, University of Pittsburgh, USA
| | | | - Michael J Cima
- Koch Institute for Integrative Cancer Research and Department of Materials Science, Massachusetts Institute of Technology, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Helen N Schwerdt
- Department of Bioengineering, University of Pittsburgh, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
8
|
Shin M, Venton BJ. Fast-Scan Cyclic Voltammetry (FSCV) Reveals Behaviorally Evoked Dopamine Release by Sugar Feeding in the Adult Drosophila Mushroom Body. Angew Chem Int Ed Engl 2022; 61:e202207399. [PMID: 35989453 PMCID: PMC9613606 DOI: 10.1002/anie.202207399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 01/12/2023]
Abstract
Drosophila melanogaster, the fruit fly, is an excellent model organism for studying dopaminergic mechanisms and simple behaviors, but methods to measure dopamine during behavior are needed. Here, we developed fast-scan cyclic voltammetry (FSCV) to track in vivo dopamine during sugar feeding. First, we employed acetylcholine stimulation to evaluate the feasibility of in vivo measurements in an awake fly. Next, we tested sugar feeding by placing sucrose solution near the fly proboscis. In the mushroom body medial tip, 1 pmol acetylcholine and sugar feeding released 0.49±0.04 μM and 0.31±0.06 μM dopamine, respectively but sugar-evoked release lasted longer than with acetylcholine. Administering the dopamine transporter inhibitor nisoxetine or D2 receptor antagonist flupentixol significantly increased sugar-evoked dopamine. This study develops FSCV to measure behaviorally evoked release in fly, enabling Drosophila studies of neurochemical control of reward, learning, and memory behaviors.
Collapse
Affiliation(s)
- Mimi Shin
- Department of ChemistryUniversity of VirginiaPO Box 400319CharlottesvilleVA 22901USA
| | - B. Jill Venton
- Department of ChemistryUniversity of VirginiaPO Box 400319CharlottesvilleVA 22901USA
| |
Collapse
|