1
|
Xiang L, Wang J, Matler A, Ye Q. Structure-constraint induced increase in Lewis acidity of tris( ortho-carboranyl)borane and selective complexation with Bestmann ylides. Chem Sci 2024:d4sc06144f. [PMID: 39397822 PMCID: PMC11465496 DOI: 10.1039/d4sc06144f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
The Lewis acidity of tris(ortho-carboranyl)borane has been slightly increased by mimicking the structural evolution from triarylborane to 9-aryl-9-borafluorene. The o-carborane-based analogue (C2B10H10)2B(C2B10H11), obtained via salt elimination between LiC2B10H11 and (C2B10H10)2BBr, has been fully characterized. Gutmann-Beckett and computational fluoride/hydride ion affinity (FIA/HIA) studies have confirmed the increase in Lewis acidity, which is attributable to structural constraint imposed by the CC-coupling between two carboranyl groups. Selective complexation of (C2B10H10)2B(C2B10H11) with Bestmann ylides R3PCCO (R = Ph, Cy) has been achieved, enabling further conversion into the zwitterionic phospholium salt through NHC-catalyzed proton transfer.
Collapse
Affiliation(s)
- Libo Xiang
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Junyi Wang
- Department of Chemistry, Southern University of Science and Technology 518055 Shenzhen P. R. China
| | - Alexander Matler
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Qing Ye
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
2
|
Karnbrock SBH, Golz C, Alcarazo M. P(V)-bis(amidophenolate) ligand cooperation: stoichiometric CO-bond cleavage in aldehydes and ketones. Chem Commun (Camb) 2024; 60:6745-6748. [PMID: 38864327 DOI: 10.1039/d4cc02202e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The cooperation between a geometrically constrained, highly electrophilic phosphorus(V) center, and an electronically rich tetradentate bis(amidophenolate) ligand enables the cleavage of the CO bond from typical aldehydes and ketones delivering iminio phosphoramidate species. The amphiphilic nature of these products, which is demonstrated through their reaction with typical Lewis acids and bases, enables their use as a mild source of silylium cations from silanes, allowing the selective reductive coupling of aldehydes to ethers under catalytic conditions.
Collapse
Affiliation(s)
- Simon B H Karnbrock
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.
| | - Christopher Golz
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.
| | - Manuel Alcarazo
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.
| |
Collapse
|
3
|
Mosquera J, Bismuto A. Highlights from the 57th Bürgenstock Conference on Stereochemistry 2024. Chem Sci 2024; 15:9392-9396. [PMID: 38939160 PMCID: PMC11205270 DOI: 10.1039/d4sc90102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Herein, we share an overview of the scientific highlights from speakers at the latest edition of the longstanding Bürgenstock Conference.
Collapse
Affiliation(s)
- Jesús Mosquera
- Universidade da Coruña, CICA - Centro Interdisciplinar de Química e Bioloxía Rúa as Carballeiras 15071 A Coruña Spain
| | - Alessandro Bismuto
- Institute of Inorganic Chemistry, University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
4
|
Lehtonen A. Metal Complexes of Redox Non-Innocent Ligand N, N'-Bis(3,5-di- tertbutyl-2-hydroxy-phenyl)-1,2-phenylenediamine. Molecules 2024; 29:1088. [PMID: 38474599 DOI: 10.3390/molecules29051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Redox non-innocent ligands react with metal precursors to form complexes where the oxidation states of the ligand and thus the metal atom cannot be easily defined. A well-known example of such ligands is bis(o-aminophenol) N,N'-bis(3,5-di-tertbutyl-2-hydroxy-phenyl)-1,2-phenylenediamine, previously developed by the Wieghardt group, which has a potentially tetradentate coordination mode and four distinct protonation states, whereas its electrochemical behavior allows for five distinct oxidation states. This rich redox chemistry, as well as the ability to coordinate to various transition metals, has been utilized in the syntheses of metal complexes with M2L, ML and ML2 stoichiometries, sometimes supported with other ligands. Different oxidation states of the ligand can adopt different coordination modes. For example, in the fully oxidized form, two N donors are sp2-hybridized, which makes the ligand planar, whereas in the fully reduced form, the sp3-hybridized N donors allow the formation of more flexible chelate structures. In general, the metal can be reduced during complexation, but redox processes of the isolated complexes typically occur on the ligand. Combination of this non-innocent ligand with redox-active transition metals may lead to complexes with interesting magnetic, electrochemical, photonic and catalytic properties.
Collapse
Affiliation(s)
- Ari Lehtonen
- Intelligent Materials Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
5
|
Hannah TJ, Chitnis SS. Ligand-enforced geometric constraints and associated reactivity in p-block compounds. Chem Soc Rev 2024; 53:764-792. [PMID: 38099873 DOI: 10.1039/d3cs00765k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The geometry at an element centre can generally be predicted based on the number of electron pairs around it using valence shell electron pair repulsion (VSEPR) theory. Strategies to distort p-block compounds away from these predicted geometries have gained considerable interest due to the unique structural outcomes, spectroscopic properties or reactivity patterns engendered by such distortion. This review presents an up-to-date group-wise summary of this exciting and rapidly growing field with a focus on understanding how the ligand employed unlocks structural features, which in turn influences the associated reactivity. Relevant geometrically constrained compounds from groups 13-16 are discussed, along with selected stoichiometric and catalytic reactions. Several areas for advancement in this field are also discussed. Collectively, this review advances the notion of geometric tuning as an important lever, alongside electronic and steric tuning, in controlling bonding and reactivity at p-block centres.
Collapse
Affiliation(s)
- Tyler J Hannah
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada.
| | - Saurabh S Chitnis
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
6
|
Wang Z, Luo W, Li ZW, Yin K, Wei M, Li L. Synthesis of Bench-stable Polycyclic Organophosphorus Heterocycles via Staudinger-type Annulations of ortho-Azidophenols. Chemistry 2023:e202302834. [PMID: 38141178 DOI: 10.1002/chem.202302834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
The formation of a five- or six-membered ring is known to stabilize unstable molecular structures such as hemiacetals. This idea can also be extended to stabilize other high-coordinated p-block element species. Herein, we synthesized two novel polycyclic organophosphorus heterocycles via Staudinger-type annulations. Reactions of either ortho-phosphinoarenesulfonyl fluorides 1 or ortho-phosphinobenzoic acid methyl esters 4 with ortho-azidophenols 2 gave rise to penta-coordinated P(V) heterocycles, benzo-benzo-1,2,3-thiazaphospholo-1,3,2-oxazaphosphole (B-B-TAP-OAP) 3 and benzo-benzo-1,2-azaphospholo-1,3,2-oxazaphosphol-12-one (B-B-AP-OAP) 5 in satisfactory yields. It is remarkable that heterocycles 3 and 5 are both bench-stable and exhibit considerable stability in a 10 % aqueous tetrahydrofuran solution. Preliminary computational studies disclosed that the formation of nitrogen gas is the key driving force for the annulations. In addition, the formation of a strong Si-F bond is another contributor to the annulation of 1 and 2.
Collapse
Affiliation(s)
- Zhenguo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wenjun Luo
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhi-Wei Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Keshu Yin
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Mingjie Wei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Le Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
7
|
Yadav R, Janßen P, Schorpp M, Greb L. Calix[4]pyrrolato-germane-(thf) 2: Unlocking the Anti-van't Hoff-Le Bel Reactivity of Germanium(IV) by Ligand Dissociation. J Am Chem Soc 2023; 145:17746-17754. [PMID: 37549106 PMCID: PMC10436272 DOI: 10.1021/jacs.3c04424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 08/09/2023]
Abstract
Anti-van't Hoff-Le Bel configured p-block element species possess intrinsically high reactivity and are thus challenging to isolate. Consequently, numerous elements in this configuration, including square-planar germanium(IV), remain unexplored. Herein, we follow a concept to reach anti-van't Hoff-Le Bel reactivity by ligand dissociation from a rigid calix[4]pyrrole germane in its bis(thf) adduct. While the macrocyclic ligand assures square-planar coordination in the uncomplexed form, the labile thf donors provide robustness for isolation on a multigram scale. Unique properties of a low-lying acceptor orbital imparted to germanium(IV) can be verified, e.g., by isolating an elusive anionic hydrido germanate and exploiting it for challenging bond activations. Aldehydes, water, alcohol, and a CN triple bond are activated for the first time by germanium-ligand cooperativity. Unexpected behaviors against fluoride ion donors disclose critical interferences of a putative redox-coupled fluoride ion transfer during the experimental determination of Lewis acidity. Overall, we showcase how ligand lability grants access to the uncharted chemistry of anti-van't Hoff-Le Bel germanium(IV) and line up this element as a member in the emerging class of structurally constrained p-block elements.
Collapse
Affiliation(s)
| | | | | | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
8
|
Smith J, Gabbaï FP. Are Ar 3SbCl 2 Species Lewis Acidic? Exploration of the Concept and Pnictogen Bond Catalysis Using a Geometrically Constrained Example. Organometallics 2023; 42:240-245. [PMID: 38333362 PMCID: PMC10848295 DOI: 10.1021/acs.organomet.2c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 02/01/2023]
Abstract
As part of our investigations into the Lewis acidic behavior of antimony derivatives, we have decided to study the properties of 5-phenyl-5,5-dichloro-λ5-dibenzostibole (1), a dichlorostiborane with an antimony atom confined to a five-membered heterocycle. Our work shows that the resulting geometrical constraints elevate the Lewis acidity of the antimony atom, as confirmed by the crystal structure of 1-THF and the solution study of the interaction of 1 with Ph3PO. The enhanced Lewis acidic properties of 1, which exceed those of simple dichlorostiboranes such as Ph3SbCl2, also become manifest in pnictogen bonding catalysis experiments involving the reductions of imines with Hantzsch ester. The influence of geometrical constraints in the chemistry of this compound is also supported by a computational activation strain analysis as well as by an energy decomposition analysis of a model Me3PO adduct.
Collapse
Affiliation(s)
- Jesse
E. Smith
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - François P. Gabbaï
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
9
|
Chulsky K, Malahov I, Bawari D, Dobrovetsky R. Metallomimetic Chemistry of a Cationic, Geometrically Constrained Phosphine in the Catalytic Hydrodefluorination and Amination of Ar-F Bonds. J Am Chem Soc 2023; 145:3786-3794. [PMID: 36738474 PMCID: PMC9936586 DOI: 10.1021/jacs.2c13318] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synthesis, isolation, and reactivity of a cationic, geometrically constrained σ3-P compound in the hexaphenyl-carbodiphosphoranyl-based pincer-type ligand (1+) are reported. 1+ reacts with electron-poor fluoroarenes via an oxidative addition-type reaction of the C-F bond to the PIII-center, yielding new fluorophosphorane-type species (PV). This reactivity of 1+ was used in the catalytic hydrodefluorination of Ar-F bonds with PhSiH3, and in a catalytic C-N bond-forming cross-coupling reactions between fluoroarenes and aminosilanes. Importantly, 1+ in these catalytic reactions closely mimics the mode of action of the transition metal-based catalysts.
Collapse
|