1
|
Xiong W, Gutekunst WR. Ring-Opening Metathesis Polymerization of 1,2-Dihydroazete Derivatives. Angew Chem Int Ed Engl 2025; 64:e202416124. [PMID: 39578228 DOI: 10.1002/anie.202416124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Fischer carbenes have recently found great utility in the construction of degradable metathesis materials, but investigations have been limited to oxygen-containing enol ether monomers. Here, the ring-opening metathesis polymerization of 1,2-dihydroazetes is reported. The polymerization proceeds regioselectively, and the resulting molecular weights are targetable by adjusting the Grubbs initiator loading. Under acidic conditions, the resulting polymers degrade into 3-aminopropanal derivatives through hydrolysis of the recurring enamide motifs in the polymer backbone. Additionally, the underlying kinetics and thermodynamics of the polymerization were studied through DFT calculations to elucidate the origins of metathesis regioselectivity. This work further expands the suite of monomers available to generate degradable metathesis materials and provides a flexible platform for target applications.
Collapse
Affiliation(s)
- Wei Xiong
- Department School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Will R Gutekunst
- Department School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| |
Collapse
|
2
|
Mandal A, Ahmed I, Kilbinger AFM. Catalytic Syntheses of Thiol-End-Functionalized ROMP Polymers. ACS Macro Lett 2024; 13:1627-1633. [PMID: 39535171 DOI: 10.1021/acsmacrolett.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Thiol-functionalized polymers have become a crucial class of materials due to their distinct chemical properties and versatile reactivity, leading to a broad spectrum of applications. Herein, we report the straightforward syntheses of a wide range of thiol-end-functionalized ring-opening metathesis polymerization (ROMP) polymers exploiting our previously reported catalytic ROMP mechanisms using suitable chain transfer agents. All the synthesized polymers were characterized via SEC, 1H NMR spectroscopy and MALDI-ToF mass spectrometry techniques. Furthermore, the existence of thiol groups on the polymer chains was verified through the well-established thiol coating reaction on gold nanoparticle surfaces. We believe this method of synthesizing thiol-end-functionalized ROMP polymers (using a reduced amount of ruthenium metal compared to conventional living ROMP) will be of great importance to materials science and biochemical research.
Collapse
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Ijaj Ahmed
- Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
3
|
Mandal I, Kilbinger AFM. Mechanistic Insights into the cis-Selective Catalytic Ring-Opening Metathesis Polymerization. J Am Chem Soc 2024; 146:32072-32079. [PMID: 39520361 DOI: 10.1021/jacs.4c13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cis-selective ring-opening metathesis polymerization (ROMP) with the commercial Grubbs "nitrato catalyst" has shown promise for synthesizing stereoregular materials, but it comes with the drawback of losing control over the molecular weight due to the poor initiation rate of the catalyst and the need for stoichiometric ruthenium complex loading. To address these issues, we developed a chain transfer polymerization method that allows for the catalytic synthesis of polymers while controlling the degree of polymerization. This allowed us to produce shorter polymers with exceptional chain-end control. Analysis of the polymers revealed a novel double monomer addition mechanism for this catalyst. MALDI-ToF mass spectrometric measurements showed that when using small monomers like norbornene, the polymer chains contained only odd numbers of monomers. In contrast, the polymerization of norbornene-imide-type monomers shows a major distribution with odd numbers of monomers along with a minor distribution of even numbers. This unique distribution of polymer chain types had not been previously observed in ROMP. We explain this phenomenon by the chiral nature of the catalyst that yields two isomeric catalytic species with dissimilar reactivities toward monomer and chain transfer agents.
Collapse
Affiliation(s)
- Indradip Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Andreas F M Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
4
|
Mandal I, Kilbinger AFM. A Versatile Reversible, Degenerative Chain Transfer Mechanism for the Catalytic Living Ring-Opening Metathesis Polymerization. Angew Chem Int Ed Engl 2024; 63:e202409781. [PMID: 38979659 DOI: 10.1002/anie.202409781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Most metathesis polymers based on norbornene derivatives carry a vinyl end group. Here we show that these vinyl end groups readily undergo a degenerative exchange of the terminal methylene unit in the presence of sub-stoichiometric amounts of a propagating metathesis polymer carrying a Grubbs ruthenium complex. We show that this degenerative exchange can be exploited in synthesizing ROMP polymers in a catalytic living fashion. Chain transfer agents based on styrene, or monosubstituted conjugated 1,3 diene derivatives are used as initiating sites for the catalytic living polymerization. Suitable derivatives of these chain transfer agents not only allow the linear living growth of polymers but also the synthesis of block copolymers from macro-initiators or star polymers from multi-functional chain transfer agents. This reversible exchange mechanism offers a cheaper, greener, and more sustainable alternative for the synthesis of living ROMP polymers compared to the classical synthetic route.
Collapse
Affiliation(s)
- Indradip Mandal
- Department of Chemistry, University of Fribourg, CH-1700, Fribourg, Switzerland
| | | |
Collapse
|
5
|
Fei L, Hölzel H, Wang Z, Hillers-Bendtsen AE, Aslam AS, Shamsabadi M, Tan J, Mikkelsen KV, Wang C, Moth-Poulsen K. Two-way photoswitching norbornadiene derivatives for solar energy storage. Chem Sci 2024:d4sc04247f. [PMID: 39421198 PMCID: PMC11474437 DOI: 10.1039/d4sc04247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Molecular photoswitches of norbornadiene (NBD) derivatives have been effectively applied in molecular solar-thermal energy storage (MOST) by photoisomerization of NBD to a quadricyclane (QC) state. However, a challenge of the NBD-based MOST system is the lack of a reversible two-way photoswitching process, limiting conversion from QC to thermal and catalytic methods. Here we design a series of NBD derivatives with a combination of acceptor and donor units to achieve two-way photoswitching, which can optically release energy by back-conversion from QC to NBD. Highly efficient photoconversion yields from NBD to QC and QC to NBD are up to 99% and 82%, respectively. The energy storage density of two-way photoswitching NBD is up to 312 J g-1 and optically controlled two-way photoswitching devices are demonstrated for the first time both in flow and in thin films, which illustrate a promising approach for fast and robust energy release in both solution and solid state.
Collapse
Affiliation(s)
- Liang Fei
- College of Textile Science and Engineering, Jiangnan University 1800 Lihu Road 214122 Wuxi China
| | - Helen Hölzel
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE Eduard Maristany 10-14 08019 Barcelona Spain
| | - Zhihang Wang
- School of Engineering, College of Science and Engineering, University of Derby Markeaton Street Derby DE22 3AW UK
| | | | - Adil S Aslam
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 41296 Sweden
| | - Monika Shamsabadi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 41296 Sweden
| | - Jialing Tan
- College of Textile Science and Engineering, Jiangnan University 1800 Lihu Road 214122 Wuxi China
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University 1800 Lihu Road 214122 Wuxi China
| | - Kasper Moth-Poulsen
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE Eduard Maristany 10-14 08019 Barcelona Spain
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 41296 Sweden
- The Institute of Materials Science of Barcelona, ICMAB-CSIC Bellaterra 08193 Barcelona Spain
- Catalan Institution for Research & Advanced Studies, ICREA Pg. Lluís Companys 23 Barcelona Spain
| |
Collapse
|
6
|
Clarke BR, Witt CL, Ilton M, Crosby AJ, Watkins JJ, Tew GN. Bottlebrush Networks: A Primer for Advanced Architectures. Angew Chem Int Ed Engl 2024; 63:e202318220. [PMID: 38588310 PMCID: PMC11634236 DOI: 10.1002/anie.202318220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Bottlebrush networks (BBNs) are an exciting new class of materials with interesting physical properties derived from their unique architecture. While great strides have been made in our fundamental understanding of bottlebrush polymers and networks, an interdisciplinary approach is necessary for the field to accelerate advancements. This review aims to act as a primer to BBN chemistry and physics for both new and current members of the community. In addition to providing an overview of contemporary BBN synthetic methods, we developed a workflow and desktop application (LengthScale), enabling bottlebrush physics to be more approachable. We conclude by addressing several topical issues and asking a series of pointed questions to stimulate conversation within the community.
Collapse
Affiliation(s)
- Brandon R. Clarke
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Connor L. Witt
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA 91711, United States
| | - Alfred J. Crosby
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - James J. Watkins
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Abdellatif M, Nomura K. Synthesis of Polyesters Containing Long Aliphatic Methylene Units by ADMET Polymerization and Synthesis of ABA-Triblock Copolymers by One-Pot End Modification and Subsequent Living Ring-Opening Polymerization. ACS OMEGA 2024; 9:9109-9122. [PMID: 38434832 PMCID: PMC10906047 DOI: 10.1021/acsomega.3c07858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The synthesis of high-molecular-weight (Mn up to 62,000 g/mol) polyesters has been achieved by acyclic diene metathesis (ADMET) polymerization of α,ω-dienes prepared from biobased bis(undec-10-enoate) and diols [ethylene glycol (M1), propylene glycol (M2), 1,9-nonanediol (M3), 1,4-benzenedimethanol (M4), and hydroquinone (M5)] using ruthenium-carbene catalysts. Replacement of the solvent during the ADMET polymerization was effective for obtainment of the high-molecular-weight polymers (expressed as P1-P5). The melting temperatures (Tm) in the resultant polyesters were dependent upon the diol (middle) segment employed, and the polymer prepared from M5 exceeded 100 °C (a Tm value of 122.5 °C). The polymerization of M3 and M4 in the presence of 1,4-cis-diacetoxy-2-butene (DAB, as the chain transfer agent) afforded the telechelic polyesters [P3(OAc)2 and P4(OAc)2, respectively] containing acetoxy end groups exclusively. The resultant polymers containing hydroxy group termini [P3(OH)2 and P4(OH)2], prepared by the selective deprotection of the acetoxy end groups, were treated with AlEt3 followed by addition of ε-caprolactone to afford the ABA-type triblock copolymers exclusively, through a living ring-opening polymerization. The depolymerization (hydrolysis) under basic conditions (NaOH aqueous solution) of P3 was explored.
Collapse
Affiliation(s)
- Mohamed
Mehawed Abdellatif
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
- Chemistry
of Tanning Materials and Leather Technology Department, Chemical Industries Research Institute, National Research
Centre, 33 El Buhouth
St., Dokki, Giza BP 12622, Egypt
| | - Kotohiro Nomura
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
8
|
An T, Ryu H, Choi TL. Living Alternating Ring-Opening Metathesis Copolymerization of 2,3-Dihydrofuran to Provide Completely Degradable Polymers. Angew Chem Int Ed Engl 2023; 62:e202309632. [PMID: 37789610 DOI: 10.1002/anie.202309632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023]
Abstract
2,3-Dihydrofuran (DHF) has recently been gaining significant attention as a comonomer in metathesis polymerization, thanks to its ability to provide the resultant polymer backbones with stimuli-responsive degradability. In this report, we present living alternating copolymerization of DHF with less reactive endo-tricyclo[4.2.2.02,5 ]deca-3,9-dienes (TDs) and endo-oxonorbornenes (oxoNBs). By carefully controlling the reactivity of both the Ru initiators and the monomers, we have achieved outstanding A, B-alternation (up to 98 %) under near stoichiometric DHF loading conditions. Notably, we have also found that the use of a more sterically hindered Ru initiator helps to attain polymer backbones with higher DHF incorporation and superior A, B-alternation. While preserving the living characteristics of DHF copolymerization, as evidenced by controlled molecular weights (up to 73.9 kDa), narrow dispersities (down to 1.05), and block copolymer formation, our DHF copolymers could be broken down to a single repeat unit level under acidic conditions. 1 H NMR analysis of the model copolymer revealed that after 24 hours of degradation, up to 80 % of the initial polymer was transformed into a single small molecule product, and after purification, up to 66 % of the degradation product was retrieved. This study provides a versatile approach to improve the alternation and degradability of DHF copolymers.
Collapse
Affiliation(s)
- Taeyang An
- Department of Chemistry, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hanseul Ryu
- Department of Chemistry, Seoul National University, 08826, Seoul, Republic of Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
9
|
Mandal A, Kilbinger AFM. Catalytic Living ROMP: Synthesis of Degradable Star Polymers. ACS Macro Lett 2023; 12:1372-1378. [PMID: 37748103 DOI: 10.1021/acsmacrolett.3c00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Star polymers have attracted considerable attention over the past few years due to their distinctive physical and chemical attributes that are different from conventional linear polymers. Here, we present a one-pot synthesis of narrowly dispersed and degradable homoarm and miktoarm star polymers exploiting the catalytic living ring-opening metathesis polymerization (ROMP) mechanism. Several complex polymeric architectures (such as A3-, A4-, A6-, A2B-, A3B-, and AB2-type star polymers) were synthesized quite straightforwardly by using appropriate vinyl ether chain transfer agents. SEC, 1H NMR, and DOSY NMR spectroscopy were employed to analyze and characterize all of the synthesized polymers. We believe that this sustainable and environmentally friendly synthesis of star polymers could become an important synthetic tool for polymer engineers working on supramolecular, industrial or biomedical applications.
Collapse
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
10
|
Mandal A, Pal S, Kilbinger AFM. Controlled Ring Opening Metathesis Polymerization of a New Monomer: On Switching the Solvent-Water-Soluble Homopolymers to Degradable Copolymers. Macromol Rapid Commun 2023; 44:e2300218. [PMID: 37435988 DOI: 10.1002/marc.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023]
Abstract
A new heterocyclic monomer is developed via simple Diels-Alder reaction which is reluctant to polymerize in dichloromethane (DCM) whereas undergoes facile polymerization in tetrahydrofuran with excellent control over molecular weight (Mn ) and dispersities (Đ) using Grubbs' third generation catalyst (G3). The deprotection of the tert-butoxycarbonyl group from the polymeric backbone yielded a water-soluble ring opening metathesis polymerization (ROMP) polymer easily. Moreover, in DCM this new monomer copolymerizes with 2,3-dihydrofuran under catalytic living ROMP conditions to give backbone degradable polymers. All the synthesized polymers are characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. It is believed that this new route to water soluble ROMP homopolymers as well as the cost-effective and environmentally friendly route to degradable copolymers and block-copolymers could find applications in biomedicine in the near future.
Collapse
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Subhajit Pal
- Department of Chemistry, University of Fribourg, Fribourg, CH-1700, Switzerland
| | | |
Collapse
|
11
|
Mandal A, Kilbinger AFM. Catalytic living ROMP: block copolymers from macro-chain transfer agents. Polym Chem 2023; 14:2797-2802. [PMID: 37325179 PMCID: PMC10262279 DOI: 10.1039/d3py00387f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Vinyl ether based macro-chain transfer agents (m-CTAs) are used to produce different di or tri-block copolymers under catalytic living ROMP conditions. Polystyrene (PS) vinyl ether m-CTA and polycaprolactone (PCL) or polylactide vinyl ether (PLA) m-CTAs are synthesized straightforwardly via ATRP and ROP respectively. Regioselectivity as well as the high metathesis activity of these m-CTAs enabled us to synthesise a range of metathesis-based A-B diblock copolymers with controlled dispersities (Đ < 1.4). In this manner, PS-ROMP (here, ROMP refers to a poly(MNI-co-DHF) block), PCL-ROMP and PLA-ROMP were synthesized using substoichiometric amounts of ruthenium complex in a living fashion. Also, a more complex PEG-PCL-ROMP tri-block terpolymer was obtained catalytically. All block copolymers were characterized by SEC and DOSY NMR spectroscopy. We believe that this methodology of using macro-chain transfer agents to prepare degradable ROMP polymers under catalytic living ROMP conditions will find applications in biomedicine.
Collapse
Affiliation(s)
- Ankita Mandal
- Department of chemistry, University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Andreas F M Kilbinger
- Department of chemistry, University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|