1
|
Ma M, Huang C, Yang M, He D, Pei Y, Kang Y, Li W, Lei C, Xiao X. Ultra-Low Power Consumption Artificial Photoelectric Synapses Based on Lewis Acid Doped WSe 2 for Neuromorphic Computing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406402. [PMID: 39434458 DOI: 10.1002/smll.202406402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/22/2024] [Indexed: 10/23/2024]
Abstract
Capitalizing on the extensive spectral capacity and minimal crosstalk properties inherent in optical signals, photoelectric synapses are poised to assume a pivotal stance in the realm of neuromorphic computation. Herein, a photoelectric synapse based on Lewis acid-doped semiconducting tungsten diselenide (WSe2) is introduced, exhibiting tunable short-term and long-term plasticity. The device consumes a mere 0.1 fJ per synaptic operation, which is lower than the energy required by a single synaptic event observed in the human brain. Furthermore, these devices demonstrate high-pass filtering capabilities, highlighting their potential in image-sharpening applications. In particular, by synergistically modulating the photoconductivity and electrical gate bias, versatile logic capabilities are demonstrated within a single device, enabling it to flexibly perform both Boolean AND and OR gate operations. This work demonstrates a viable approach for Lewis acid-treated TMDs to realize multifunctional photoelectric synapses for neuromorphic computing.
Collapse
Affiliation(s)
- Mingjun Ma
- The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Chaoning Huang
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Mingyu Yang
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Dong He
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Yongfeng Pei
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Yufan Kang
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Wenqing Li
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Cheng Lei
- The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiangheng Xiao
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Wang S, Ye F, Wang J, Ding R, Peng M, Li JT, Luan Y, Liao J, Guo ZH. Unusual Cross-Conjugation in Cyclic Dipeptide-Based Building Blocks for Donor-Acceptor Semiconducting Conjugated Polymers. Angew Chem Int Ed Engl 2024:e202413782. [PMID: 39193821 DOI: 10.1002/anie.202413782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Cross conjugation, though prevalent in many organic compounds, is typically considered less effective for electron delocalization compared to linear conjugation. Consequently, it is rarely used as the backbone structure for semiconducting conjugated polymers. In this study, we designed and synthesized a novel building block, TIDP, which features a central cyclic dipeptide with cross conjugation characteristics. Strong intramolecular hydrogen bonding interactions confer TIDP with a highly rigid and coplanar conformation. Importantly, theoretical calculations reveal that π electrons are well delocalized across the entire structure, despite its low aromaticity. Conjugated polymers incorporating TIDP exhibit high charge carrier mobilities, demonstrating the effective π electrons delocalization of this innovative building block. Our findings show that with rational design, cross conjugation can achieve effective π electrons delocalization, providing a valuable approach for developing high-performance conjugated polymers for organic electronic materials.
Collapse
Affiliation(s)
- Sijing Wang
- State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Feng Ye
- State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Jingyi Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Riqing Ding
- State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Meishan Peng
- State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Jia-Tong Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Yidan Luan
- State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Jiaqiang Liao
- State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Zi-Hao Guo
- State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| |
Collapse
|
3
|
Guo F, Liu Y, Zhang M, Yu W, Li S, Zhang B, Hu B, Li S, Sun A, Jiang J, Hao L. VO 2/MoO 3 Heterojunctions Artificial Optoelectronic Synapse Devices for Near-Infrared Optical Communication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310767. [PMID: 38456772 DOI: 10.1002/smll.202310767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Artificial optoelectronic synapses (OES) have attracted extensive attention in brain-inspired information processing and neuromorphic computing. However, OES at near-infrared wavelengths have rarely been reported, seriously limiting the application in modern optical communication. Herein, high-performance near-infrared OES devices based on VO2/MoO3 heterojunctions are presented. The textured MoO3 films are deposited on the sputtered VO2 film by using the glancing-angle deposition technique to form a heterojunction device. Through tuning the oxygen defects in the VO2 film, the fabricated VO2/MoO3 heterojunction exhibits versatile electrical synaptic functions. Benefiting from the highly efficient light harvesting and the unique interface effect, the photonic synaptic characteristics, mainly including the short/long-term plasticity and learning experience behavior are successfully realized at the O (1342 nm) and C (1550 nm) optical communication wavebands. Moreover, a single OES device can output messages accurately by converting light signals of the Morse code to distinct synaptic currents. More importantly, a 3 × 3 artificial OES array is constructed to demonstrate the impressive image perceiving and learning capabilities. This work not only indicates the feasibility of defect and interface engineering in modulating the synaptic plasticity of OES devices, but also provides effective strategies to develop advanced artificial neuromorphic visual systems for next-generation optical communication systems.
Collapse
Affiliation(s)
- Fuhai Guo
- College of Science, China University of Petroleum, Qingdao, Shandong, 266580, China
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Yunjie Liu
- College of Science, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Mingcong Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Weizhuo Yu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Siqi Li
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Bo Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Bing Hu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Shuangshuang Li
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Ankai Sun
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Jianyu Jiang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Lanzhong Hao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| |
Collapse
|
4
|
Li S, Gao L, Liu C, Guo H, Yu J. Biomimetic Neuromorphic Sensory System via Electrolyte Gated Transistors. SENSORS (BASEL, SWITZERLAND) 2024; 24:4915. [PMID: 39123962 PMCID: PMC11314768 DOI: 10.3390/s24154915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Biomimetic neuromorphic sensing systems, inspired by the structure and function of biological neural networks, represent a major advancement in the field of sensing technology and artificial intelligence. This review paper focuses on the development and application of electrolyte gated transistors (EGTs) as the core components (synapses and neuros) of these neuromorphic systems. EGTs offer unique advantages, including low operating voltage, high transconductance, and biocompatibility, making them ideal for integrating with sensors, interfacing with biological tissues, and mimicking neural processes. Major advances in the use of EGTs for neuromorphic sensory applications such as tactile sensors, visual neuromorphic systems, chemical neuromorphic systems, and multimode neuromorphic systems are carefully discussed. Furthermore, the challenges and future directions of the field are explored, highlighting the potential of EGT-based biomimetic systems to revolutionize neuromorphic prosthetics, robotics, and human-machine interfaces. Through a comprehensive analysis of the latest research, this review is intended to provide a detailed understanding of the current status and future prospects of biomimetic neuromorphic sensory systems via EGT sensing and integrated technologies.
Collapse
Affiliation(s)
| | | | | | | | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
5
|
Wei H, Gong J, Liu J, He G, Ni Y, Fu C, Yang L, Guo J, Xu Z, Xu W. Thermally and Mechanically Stable Perovskite Artificial Synapse as Tuned by Phase Engineering for Efferent Neuromuscular Control. NANO LETTERS 2024. [PMID: 39023921 DOI: 10.1021/acs.nanolett.4c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The doping of perovskites with mixed cations and mixed halides is an effective strategy to optimize phase stability. In this study, we introduce a cubic black phase perovskite CsyFA(1-y)Pb(BrxI(1-x))3 artificial synapse, using phase engineering by adjusting the cesium-bromide content. Low-bromine mixed perovskites are suitable to improve the electric pulse excitation sensitivity and stability of the device. Specifically, the low-bromine and low-cesium mixed perovskite (x = 0.15, y = 0.22) annealed at 373 K allows the device to maintain logic response even after 1000 mechanical flex/flat cycles. The device also shows good thermal stability up to temperatures of 333 K. We have demonstrated reflex-arc behavior with MCMHP synaptic units, capable of making sensory warnings at high frequency. This compositionally engineered, dual-mixed perovskite synaptic device provides significant potential for perceptual soft neurorobotic systems and prostheses.
Collapse
Affiliation(s)
| | - Jiangdong Gong
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jiaqi Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, People's Republic of China
| | | | - Yao Ni
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | | | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiahao Guo
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, People's Republic of China
| | - Zhipeng Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, People's Republic of China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
6
|
Xu Y, Xu X, Huang Y, Tian Y, Cheng M, Deng J, Xie Y, Zhang Y, Zhang P, Wang X, Wang Z, Li M, Li L, Liu M. Gate-Tunable Positive and Negative Photoconductance in Near-Infrared Organic Heterostructures for In-Sensor Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402903. [PMID: 38710094 DOI: 10.1002/adma.202402903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Indexed: 05/08/2024]
Abstract
The rapid growth of sensor data in the artificial intelligence often causes significant reductions in processing speed and power efficiency. Addressing this challenge, in-sensor computing is introduced as an advanced sensor architecture that simultaneously senses, memorizes, and processes images at the sensor level. However, this is rarely reported for organic semiconductors that possess inherent flexibility and tunable bandgap. Herein, an organic heterostructure that exhibits a robust photoresponse to near-infrared (NIR) light is introduced, making it ideal for in-sensor computing applications. This heterostructure, consisting of partially overlapping p-type and n-type organic thin films, is compatible with conventional photolithography techniques, allowing for high integration density of up to 520 devices cm-2 with a 5 µm channel length. Importantly, by modulating gate voltage, both positive and negative photoresponses to NIR light (1050 nm) are attained, which establishes a linear correlation between responsivity and gate voltage and consequently enables real-time matrix multiplication within the sensor. As a result, this organic heterostructure facilitates efficient and precise NIR in-sensor computing, including image processing and nondestructive reading and classification, achieving a recognition accuracy of 97.06%. This work serves as a foundation for the development of reconfigurable and multifunctional NIR neuromorphic vision systems.
Collapse
Affiliation(s)
- Yunqi Xu
- Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolu Xu
- Global Health Drug Discovery Institute, Beijing, 100192, China
| | - Ying Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ye Tian
- Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Miao Cheng
- Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Junyang Deng
- Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yifan Xie
- Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yanqin Zhang
- Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Panpan Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinhua Wang
- Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Mengmeng Li
- Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Li
- Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Ming Liu
- Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|
7
|
Liu X, Dai S, Zhao W, Zhang J, Guo Z, Wu Y, Xu Y, Sun T, Li L, Guo P, Yang J, Hu H, Zhou J, Zhou P, Huang J. All-Photolithography Fabrication of Ion-Gated Flexible Organic Transistor Array for Multimode Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312473. [PMID: 38385598 DOI: 10.1002/adma.202312473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Organic ion-gated transistors (OIGTs) demonstrate commendable performance for versatile neuromorphic systems. However, due to the fragility of organic materials to organic solvents, efficient and reliable all-photolithography methods for scalable manufacturing of high-density OIGT arrays with multimode neuromorphic functions are still missing, especially when all active layers are patterned in high-density. Here, a flexible high-density (9662 devices per cm2) OIGT array with high yield and minimal device-to-device variation is fabricated by a modified all-photolithography method. The unencapsulated flexible array can withstand 1000 times' bending at a radius of 1 mm, and 3 months' storage test in air, without obvious performance degradation. More interesting, the OIGTs can be configured between volatile and nonvolatile modes, suitable for constructing reservoir computing systems to achieve high accuracy in classifying handwritten digits with low training costs. This work proposes a promising design of organic and flexible electronics for affordable neuromorphic systems, encompassing both array and algorithm aspects.
Collapse
Affiliation(s)
- Xu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Shilei Dai
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Weidong Zhao
- School of Electronic and Information Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Junyao Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Ziyi Guo
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yue Wu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yutong Xu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Tongrui Sun
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Li Li
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Pu Guo
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Jie Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Junhe Zhou
- School of Electronic and Information Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Peng Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, P. R. China
| | - Jia Huang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
8
|
Chen H, Cai Y, Han Y, Huang H. Towards Artificial Visual Sensory System: Organic Optoelectronic Synaptic Materials and Devices. Angew Chem Int Ed Engl 2024; 63:e202313634. [PMID: 37783656 DOI: 10.1002/anie.202313634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Developing an artificial visual sensory system requires optoelectronic materials and devices that can mimic the behavior of biological synapses. Organic/polymeric semiconductors have emerged as promising candidates for optoelectronic synapses due to their tunable optoelectronic properties, mechanic flexibility, and biological compatibility. In this review, we discuss the recent progress in organic optoelectronic synaptic materials and devices, including their design principles, working mechanisms, and applications. We also highlight the challenges and opportunities in this field and provide insights into potential applications of these materials and devices in next-generation artificial visual systems. By leveraging the advances in organic optoelectronic materials and devices, we can envision its future development in artificial intelligence.
Collapse
Affiliation(s)
- Hao Chen
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunhao Cai
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yinghui Han
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Guo Z, Zhang J, Yang B, Li L, Liu X, Xu Y, Wu Y, Guo P, Sun T, Dai S, Liang H, Wang J, Zou Y, Xiong L, Huang J. Organic High-Temperature Synaptic Phototransistors for Energy-Efficient Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310155. [PMID: 38100140 DOI: 10.1002/adma.202310155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Organic optoelectronic synaptic devices that can reliably operate in high-temperature environments (i.e., beyond 121°C) or remain stable after high-temperature treatments have significant potential in biomedical electronics and bionic robotic engineering. However, it is challenging to acquire this type of organic devices considering the thermal instability of conventional organic materials and the degradation of photoresponse mechanisms at high temperatures. Here, high-temperature synaptic phototransistors (HTSPs) based on thermally stable semiconductor polymer blends as the photosensitive layer are developed, successfully simulating fundamental optical-modulated synaptic characteristics at a wide operating temperature range from room temperature to 220°C. Robust optoelectronic performance can be observed in HTSPs even after experiencing 750 h of the double 85 testing due to the enhanced operational reliability. Using HTSPs, Morse-code optical decoding scheme and the visual object recognition capability are also verified at elevated temperatures. Furthermore, flexible HTSPs are fabricated, demonstrating an ultralow power consumption of 12.3 aJ per synaptic event at a low operating voltage of -0.05 mV. Overall, the conundrum of achieving reliable optical-modulated neuromorphic applications while balancing low power consumption can be effectively addressed. This research opens up a simple but effective avenue for the development of high-temperature and energy-efficient wearable optoelectronic devices in neuromorphic computing applications.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Junyao Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Ben Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Li Li
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yutong Xu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yue Wu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Pu Guo
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Tongrui Sun
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Shilei Dai
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Haixia Liang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Jun Wang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yidong Zou
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200434, P. R. China
| | - Jia Huang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200434, P. R. China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
10
|
Dong X, Chen C, Pan K, Li Y, Zhang Z, He Z, Liu B, Zhou Z, Wu Y, Zhang D, Sun H, Qian X, Xu M, Huang W, Liu J. Nearly Panoramic Neuromorphic Vision with Transparent Photosynapses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303944. [PMID: 37635198 PMCID: PMC10602561 DOI: 10.1002/advs.202303944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Neuromorphic vision based on photonic synapses has the ability to mimic sensitivity, adaptivity, and sophistication of bio-visual systems. Significant advances in artificial photosynapses are achieved recently. However, conventional photosyanptic devices normally employ opaque metal conductors and vertical device configuration, performing a limited hemispherical field of view. Here, a transparent planar photonic synapse (TPPS) is presented that offers dual-side photosensitive capability for nearly panoramic neuromorphic vision. The TPPS consisting of all two dimensional (2D) carbon-based derivatives exhibits ultra-broadband photodetecting (365-970 nm) and ≈360° omnidirectional viewing angle. With its intrinsic persistent photoconductivity effect, the detector possesses bio-synaptic behaviors such as short/long-term memory, experience learning, light adaptation, and a 171% pair-pulse-facilitation index, enabling the synapse array to achieve image recognition enhancement (92%) and moving object detection.
Collapse
Affiliation(s)
- Xuemei Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| | - Chen Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| | - Keyuan Pan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| | - Yinxiang Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| | - Zicheng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| | - Zixi He
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| | - Bin Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| | - Zhe Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| | - Yueyue Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| | - Dengfeng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| | - Hongchao Sun
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| | - Xinkai Qian
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| | - Min Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)30 South Puzhu RoadNanjing211816China
| |
Collapse
|
11
|
Jiang L, Yang L, Wu X, Wang X, Zheng L, Xu W, Qiu L. Helical Nanofiber Photoelectric Synaptic Devices for an Artificial Vision Nervous System. NANO LETTERS 2023; 23:8146-8154. [PMID: 37579217 DOI: 10.1021/acs.nanolett.3c02266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Inspired by the helical structure and the resultant exquisite functions of biomolecules, helical polymers have received increasing attention. Here, a series of poly(3-hexylthiophene)-block-poly(phenyl isocyanide) (P3HT-b-PPI) copolymers were prepared using a simple one-pot living polymerization method. Interestingly, the P3HT80-b-PPI30 films were found to have a helical nanofiber structure. The corresponding device has superior optoelectronic properties, such as a broadened spectral response range from the visible band to the deep ultraviolet (DUV) and an approximately 5-fold longer carrier decay time after DUV light stimulation. An energy consumption of 1.44 fJ per synaptic event was obtained, which is the lowest energy consumption achieved so far with DUV light stimulation. The encryption and decryption of images are implemented using an array of devices. Finally, a photoreceptor neural pathway was constructed to achieve early warning for the recognition of the display of harmful light. This research provides an effective strategy for the development of a novel optoelectronic synaptic device.
Collapse
Affiliation(s)
- Longlong Jiang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiaocheng Wu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|