1
|
Hou P, Xie L, Zhang L, Du X, Zhao D, Wang Y, Yang N, Wang D. Anisotropic Hollow Structure with Chemotaxis Enabling Intratumoral Autonomic Therapy. Angew Chem Int Ed Engl 2025; 64:e202414370. [PMID: 39441561 DOI: 10.1002/anie.202414370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Effective intratumoral drug penetration is pivotal for successful cancer treatment. However, due to the disrupted capillary networks and poor perfusion in solid tumors, there exist challenges to realize autonomous directional drug penetration and controlled drug release within the tumor. Considering the specificity of glucose within tumor tissue, we draw inspiration from nature and engineer asymmetrical hollow structures exhibiting chemotaxis towards high glucose levels. By incorporating multiple shells into these structures, we enhance the local chemical concentration gradients, thereby improving cellular uptake and precise targeting. The advantages of anisotropic hollow multishell structure (a-HoMS) can be reflected from the diffusion coefficient and directivity, which increase by 73.4 % and 273 % respectively compared to conventional isotropic hollow spheres, achieving the most linear movement while ensuring the speed of movement. Furthermore, the multi-level porosity and temporal-spatial order of a-HoMS enable sequential drug delivery that inhibits angiogenesis with inducing cell apoptosis. After the eradication of localized tumor cells, the a-HoMS can automatically migrate to the alive tumor cells under the glucose gradient, inducing another cycle of drug delivery and chemotaxis, resulting in excellent antitumor efficacy. These anisotropic HoMS demonstrate intelligence, adaptability, and precision in tumor therapy, providing valuable insights for programmable treatment within tissues.
Collapse
Affiliation(s)
- Ping Hou
- State Key Laboratory of Biochemical Engineering Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 10049, P. R. China
| | - Lingeng Xie
- Department of General Dentistry II, Peking University School and Hospital of Stomatology National Center for Stomatology & National Clinical Research Center for Oral Diseases National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Beijing, 100081, P. R. China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, P. R. China
| | - Ludan Zhang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology National Center for Stomatology & National Clinical Research Center for Oral Diseases National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Beijing, 100081, P. R. China
- First Clinical Division, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, P. R. China
| | - Xin Du
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China
| | - Yuguang Wang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology National Center for Stomatology & National Clinical Research Center for Oral Diseases National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Beijing, 100081, P. R. China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 10049, P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 10049, P. R. China
- College of Chemistry and Environment Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, P. R. China
| |
Collapse
|
2
|
Qin YS, Yi J, Chen YJ, Zhang W, Tang SF. Recent Advances in Micro/Nanomotor for the Therapy and Diagnosis of Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39648908 DOI: 10.1021/acsami.4c15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Atherosclerotic cardiovascular disease poses a significant global public health threat with a high incidence that can result in severe mortality and disability. The lack of targeted effects from traditional therapeutic drugs on atherosclerosis may cause damage to other organs and tissues, necessitating the need for a more focused approach to address this dilemma. Micro/nanomotors are self-propelled micro/nanoscale devices capable of converting external energy into autonomous movement, which offers advantages in enhancing penetration depth and retention while increasing contact area with abnormal sites, such as atherosclerotic plaque, inflammation, and thrombosis, within blood vessel walls. Recent studies have demonstrated the crucial role micro/nanomotors play in treating atherosclerotic cardiovascular disease. Hence, this review highlights the recent progress of micro/nanomotor technology in atherosclerotic cardiovascular disease, including the effective promotion of micro/nanomotors in the circulatory system, overcoming hemorheological barriers, targeting the atherosclerotic plaque microenvironment, and targeting intracellular drug delivery, to facilitate atherosclerotic plaque localization and therapy. Furthermore, we also describe the potential application of micro/nanomotors in the imaging of vulnerable plaque. Finally, we discuss key challenges and prospects for treating atherosclerotic cardiovascular disease while emphasizing the importance of designing individualized management strategies specific to its causes and microenvironmental factors.
Collapse
Affiliation(s)
- Yu-Sheng Qin
- Department of Laboratory Medicine, Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People's Hospital), Liuzhou People's Hospital, Liuzhou 545006, China
| | - Juan Yi
- Department of Laboratory Medicine, Liuzhou Traditional Chinese Medical Hospital, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou 545006, China
| | - Yan-Jun Chen
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wei Zhang
- Department of Radiology, Liuzhou People's Hospital, Liuzhou 545006, China
| | - Shi-Fu Tang
- Department of Laboratory Medicine, Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People's Hospital), Liuzhou People's Hospital, Liuzhou 545006, China
| |
Collapse
|
3
|
Hu Z, Tan H, Ye Y, Xu W, Gao J, Liu L, Zhang L, Jiang J, Tian H, Peng F, Tu Y. NIR-Actuated Ferroptosis Nanomotor for Enhanced Tumor Penetration and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412227. [PMID: 39370589 DOI: 10.1002/adma.202412227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Ferroptosis nano-inducers have drawn considerable attention in the treatment of malignant tumors. However, low intratumoral hydrogen peroxide level and complex biological barriers hinder the ability of nanomedicines to generate sufficient reactive oxygen species (ROS) and achieve tumor penetration. Here a near-infrared (NIR)-driven ROS self-supplying nanomotor is successfully designed for synergistic tumor chemodynamic therapy (CDT) and photothermal therapy (PTT). Janus nanomotor is created by the asymmetrical modification of polydopamine (PDA) with zinc peroxide (ZnO2) and subsequent ferrous ion (Fe2+) chelation via the polyphenol groups from the PDA, here refer as ZnO2@PDA-Fe (Z@P-F). ZnO2 is capable of slowly releasing hydrogen peroxide (H2O2) into an acidic tumor microenvironment (TME) providing sufficient ingredients for the Fenton reaction necessary for ferroptosis. Upon NIR laser irradiation, the loaded Fe2+ is released and a thermal gradient is simultaneously formed owing to the asymmetric PDA coating, thus endowing the nanomotor with self-thermophoresis based enhanced diffusion for subsequent lysosomal escape and tumor penetration. Therefore, the release of ferrous ions (Fe2+), self-supplied H2O2, and self-thermophoresis of nanomotors with NIR actuation further improve the synergistic CDT/PTT efficacy, showing great potential for active tumor therapy.
Collapse
Affiliation(s)
- Ziwei Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haixin Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenxin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lishan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Fusi AD, Li Y, Tholen MME, Cieraad M, Albertazzi L, Padial TP, van Hest JCM, Abdelmohsen LKEA. Enzymatically-induced dynamic assemblies from surface functional stomatocyte nanoreactors. J Mater Chem B 2024; 12:11389-11401. [PMID: 39392374 PMCID: PMC11469296 DOI: 10.1039/d4tb01320d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Collective behavior has become a recent topic of investigation in systems chemistry. In pursuing this phenomenon, we present polymersome stomatocytes loaded with the enzyme urease, which show basic stigmergy-based communication and are capable of signal production, reception, and response by clustering with surface complementary binding partners. The collective behavior is transient and based on the widely known pH-sensitive non-covalent interactions between nitrilotriacetic acid (NTA) and histidine (His) moieties attached to the surface of urease-loaded and empty stomacytes, respectively. Upon the addition of the substrate urea, the urease stomatocytes are able to increase the environmental pH, allowing the NTA units to interact with the surface histidines on the complementary species, triggering the formation of transient clusters. The stomatocytes display a maximum clustering interaction at a pH between 6.3 and 7.3, and interparticle repulsive behavior outside this range. This leads to oscillating behavior, as the aggregates disassemble when the pH increases due to high local urease activity. After bulk pH conditions are restored, clustering can take place again. Within the detectable region of dynamic light scattering, individual stomatocytes can aggregate to agglomerates with 10 times their volume. Understanding and designing population behavior of active colloids can facilitate the execution of cooperative tasks, which are not feasible for individual colloids.
Collapse
Affiliation(s)
- Alexander D Fusi
- Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Yudong Li
- Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Marrit M E Tholen
- Faculty of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marlo Cieraad
- Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Lorenzo Albertazzi
- Faculty of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Tania Patiño Padial
- Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Loai K E A Abdelmohsen
- Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
5
|
Zhang Z, Wang L, Si W. Electroosmotic Flow-Driven DNA-CNT Nanomotor via Tunable Surface-Charged Nanopore Array. J Phys Chem Lett 2024; 15:10950-10957. [PMID: 39451148 DOI: 10.1021/acs.jpclett.4c02815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Nanomotors are usually designed to work in liquid media and carry cargo; they exhibit excellent potential for biosensing and disease treatment applications due to their small size. Graphene and carbon nanotubes (CNTs) are crucial components of rotary nanomotors because of excellent mechanical properties and adaptability to the human body. Herein, we introduce a DNA-CNT-based nanomotor that achieves its rotational control through an array of nanopores with tunable surface charges. The findings demonstrate that by adjusting the surface charge density of the nanopores and the direction of electric field, a DNA strand can be sequentially captured by the nanopores, thereby rotating the connected CNT. The transition from a four-nanopore array to a six-nanopore array reveals that reducing the step angle to 60° significantly enhances the rotational stability of the nanomotor and reduces random fluctuations caused by Brownian motion. This method improves the control stability of the nanomotor, providing robust support for future applications in nanoscale manipulation.
Collapse
Affiliation(s)
- Zhen Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Liwei Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| |
Collapse
|
6
|
Yi X, Guo L, Zeng Q, Huang S, Wen D, Wang C, Kou Y, Zhang M, Li H, Wen L, Chen G. Magnetic/Acoustic Dual-Controlled Microrobot Overcoming Oto-Biological Barrier for On-Demand Multidrug Delivery against Hearing Loss. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401369. [PMID: 39016116 DOI: 10.1002/smll.202401369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Multidrug combination therapy in the inner ear faces diverse challenges due to the distinct physicochemical properties of drugs and the difficulties of overcoming the oto-biologic barrier. Although nanomedicine platforms offer potential solutions to multidrug delivery, the access of drugs to the inner ear remains limited. Micro/nanomachines, capable of delivering cargo actively, are promising tools for overcoming bio-barriers. Herein, a novel microrobot-based strategy to penetrate the round window membrane (RWM) is presented and multidrug in on-demand manner is delivered. The tube-type microrobot (TTMR) is constructed using the template-assisted layer-by-layer (LbL) assembly of chitosan/ferroferric oxide/silicon dioxide (CS/Fe3O4/SiO2) and loaded with anti-ototoxic drugs (curcumin, CUR and tanshinone IIA, TSA) and perfluorohexane (PFH). Fe3O4 provides magnetic actuation, while PFH ensures acoustic propulsion. Upon ultrasound stimulation, the vaporization of PFH enables a microshotgun-like behavior, propelling the drugs through barriers and driving them into the inner ear. Notably, the proportion of drugs entering the inner ear can be precisely controlled by varying the feeding ratios. Furthermore, in vivo studies demonstrate that the drug-loaded microrobot exhibits superior protective effects and excellent biosafety toward cisplatin (CDDP)-induced hearing loss. Overall, the microrobot-based strategy provides a promising direction for on-demand multidrug delivery for ear diseases.
Collapse
Affiliation(s)
- Xinyang Yi
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lifang Guo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Qi Zeng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Suling Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Dingsheng Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Chu Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yuwei Kou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Ming Zhang
- Guangdong Sunho Pharmaceutical Co. Ltd, Zhongshan, 528437, P. R. China
| | - Huaan Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Gang Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
7
|
Yu Y, Liang L, Sun T, Lu H, Yang P, Li J, Pang Q, Zeng J, Shi P, Li J, Lu Y. Micro/Nanomotor-Driven Intelligent Targeted Delivery Systems: Dynamics Sources and Frontier Applications. Adv Healthc Mater 2024; 13:e2400163. [PMID: 39075811 DOI: 10.1002/adhm.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Micro/nanomotors represent a promising class of drug delivery carriers capable of converting surrounding chemical or external energy into mechanical power, enabling autonomous movement. Their distinct autonomous propulsive force distinguishes them from other carriers, offering significant potential for enhancing drug penetration across cellular and tissue barriers. A comprehensive understanding of micro/nanomotor dynamics with various power sources is crucial to facilitate their transition from proof-of-concept to clinical application. In this review, micro/nanomotors are categorized into three classes based on their energy sources: endogenously stimulated, exogenously stimulated, and live cell-driven. The review summarizes the mechanisms governing micro/nanomotor movements under these energy sources and explores factors influencing autonomous motion. Furthermore, it discusses methods for controlling micro/nanomotor movement, encompassing aspects related to their structure, composition, and environmental factors. The remarkable propulsive force exhibited by micro/nanomotors makes them valuable for significant biomedical applications, including tumor therapy, bio-detection, bacterial infection therapy, inflammation therapy, gastrointestinal disease therapy, and environmental remediation. Finally, the review addresses the challenges and prospects for the application of micro/nanomotors. Overall, this review emphasizes the transformative potential of micro/nanomotors in overcoming biological barriers and enhancing therapeutic efficacy, highlighting their promising clinical applications across various biomedical fields.
Collapse
Affiliation(s)
- Yue Yu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ling Liang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ting Sun
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Haiying Lu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Pushan Yang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jinrong Li
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Qinjiao Pang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jia Zeng
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yongping Lu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| |
Collapse
|
8
|
Wang J, Liu J, Sümbelli Y, Shao J, Shi X, van Hest JCM. Nanogel-based nitric oxide-driven nanomotor for deep tissue penetration and enhanced tumor therapy. J Control Release 2024; 372:59-68. [PMID: 38866242 DOI: 10.1016/j.jconrel.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Antitumor agents often lack effective penetration and accumulation to achieve high therapeutic efficacy in treating solid tumors. Nanomotor-based nanomaterials offer a potential solution to address this obstacle. Among them, nitric oxide (NO) based nanomotors have garnered attention for their potential applications in nanomedicine. However, there widespread clinical adoption has been hindered by their complex preparation processes. To address this limitation, we have developed a NO-driven nanomotor utilizing a convenient and scalable nanogel preparation procedure. These nanomotors, loaded with the fluorescent probe / sonosensitizer chlorin e6 (Ce6), were specifically engineered for sonodynamic therapy. Through comprehensive in vitro investigations using both 2D and 3D cell models, as well as in vivo analysis of Ce6 fluorescent signal distribution in solid tumor models, we observed that the self-propulsion of these nanomotors significantly enhances cellular uptake and tumor penetration, particularly in solid tumors. This phenomenon enables efficient access to challenging tumor regions and, in some cases, results in complete tumor coverage. Notably, our nanomotors have demonstrated long-term in vivo biosafety. This study presents an effective approach to enhancing drug penetration and improving therapeutic efficacy in tumor treatment, with potential clinical relevance for future applications.
Collapse
Affiliation(s)
- Jianhong Wang
- Bio-Organic Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Junjie Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering Donghua University, 201620 Shanghai, PR China
| | - Yiǧitcan Sümbelli
- Bio-Organic Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Jingxin Shao
- Bio-Organic Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering Donghua University, 201620 Shanghai, PR China.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands.
| |
Collapse
|
9
|
Tang S, Tang D, Zhou H, Li Y, Zhou D, Peng X, Ren C, Su Y, Zhang S, Zheng H, Wan F, Yoo J, Han H, Ma X, Gao W, Wu S. Bacterial outer membrane vesicle nanorobot. Proc Natl Acad Sci U S A 2024; 121:e2403460121. [PMID: 39008666 PMCID: PMC11287275 DOI: 10.1073/pnas.2403460121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
Autonomous nanorobots represent an advanced tool for precision therapy to improve therapeutic efficacy. However, current nanorobotic designs primarily rely on inorganic materials with compromised biocompatibility and limited biological functions. Here, we introduce enzyme-powered bacterial outer membrane vesicle (OMV) nanorobots. The immobilized urease on the OMV membrane catalyzes the decomposition of bioavailable urea, generating effective propulsion for nanorobots. This OMV nanorobot preserves the unique features of OMVs, including intrinsic biocompatibility, immunogenicity, versatile surface bioengineering for desired biofunctionalities, capability of cargo loading and protection. We present OMV-based nanorobots designed for effective tumor therapy by leveraging the membrane properties of OMVs. These involve surface bioengineering of robotic body with cell-penetrating peptide for tumor targeting and penetration, which is further enhanced by active propulsion of nanorobots. Additionally, OMV nanorobots can effectively safeguard the loaded gene silencing tool, small interfering RNA (siRNA), from enzymatic degradation. Through systematic in vitro and in vivo studies using a rodent model, we demonstrate that these OMV nanorobots substantially enhanced siRNA delivery and immune stimulation, resulting in the utmost effectiveness in tumor suppression when juxtaposed with static groups, particularly evident in the orthotopic bladder tumor model. This OMV nanorobot opens an inspiring avenue to design advanced medical robots with expanded versatility and adaptability, broadening their operation scope in practical biomedical domains.
Collapse
Affiliation(s)
- Songsong Tang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Daitian Tang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen518116, People’s Republic of China
- Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou515000, People’s Republic of China
| | - Houhong Zhou
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- Department of General Surgery, Shenzhen Samii Medical Center, Shenzhen518118, People’s Republic of China
| | - Yangyang Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Dewang Zhou
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Xiqi Peng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen518116, People’s Republic of China
- Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou515000, People’s Republic of China
| | - Chunyu Ren
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Yilin Su
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou515000, People’s Republic of China
| | - Shaohua Zhang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen518116, People’s Republic of China
| | - Haoxiang Zheng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen518116, People’s Republic of China
| | - Fangchen Wan
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Jounghyun Yoo
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Song Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen518116, People’s Republic of China
- Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou515000, People’s Republic of China
| |
Collapse
|
10
|
Ramos Docampo MA. Magnetic motors in interphases: Motion control and integration in soft robots. Biointerphases 2024; 19:048502. [PMID: 38994898 DOI: 10.1116/6.0003637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Magnetic motors are a class of out-of-equilibrium particles that exhibit controlled and fast motion overcoming Brownian fluctuations by harnessing external magnetic fields. The advances in this field resulted in motors that have been used for different applications, such as biomedicine or environmental remediation. In this Perspective, an overview of the recent advancements of magnetic motors is provided, with a special focus on controlled motion. This aspect extends from trapping, steering, and guidance to organized motor grouping and degrouping, which is known as swarm control. Further, the integration of magnetic motors in soft robots to actuate their motion is also discussed. Finally, some remarks and perspectives of the field are outlined.
Collapse
Affiliation(s)
- Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
11
|
Wang J, Wu H, Zhu X, Zwolsman R, Hofstraat SRJ, Li Y, Luo Y, Joosten RRM, Friedrich H, Cao S, Abdelmohsen LKEA, Shao J, van Hest JCM. Ultrafast light-activated polymeric nanomotors. Nat Commun 2024; 15:4878. [PMID: 38849362 PMCID: PMC11161643 DOI: 10.1038/s41467-024-49217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
Synthetic micro/nanomotors have been extensively exploited over the past decade to achieve active transportation. This interest is a result of their broad range of potential applications, from environmental remediation to nanomedicine. Nevertheless, it still remains a challenge to build a fast-moving biodegradable polymeric nanomotor. Here we present a light-propelled nanomotor by introducing gold nanoparticles (Au NP) onto biodegradable bowl-shaped polymersomes (stomatocytes) via electrostatic and hydrogen bond interactions. These biodegradable nanomotors show controllable motion and remarkable velocities of up to 125 μm s-1. This unique behavior is explained via a thorough three-dimensional characterization of the nanomotor, particularly the size and the spatial distribution of Au NP, with cryogenic transmission electron microscopy (cryo-TEM) and cryo-electron tomography (cryo-ET). Our in-depth quantitative 3D analysis reveals that the motile features of these nanomotors are caused by the nonuniform distribution of Au NPs on the outer surface of the stomatocyte along the z-axial direction. Their excellent motile features are exploited for active cargo delivery into living cells. This study provides a new approach to develop robust, biodegradable soft nanomotors with application potential in biomedicine.
Collapse
Affiliation(s)
- Jianhong Wang
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Hanglong Wu
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Xiaowei Zhu
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
| | - Robby Zwolsman
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Stijn R J Hofstraat
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yudong Li
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yingtong Luo
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Rick R M Joosten
- Laboratory of Physical Chemistry, Department of Chemical Engineering & Chemistry, Center for Multiscale Electron Microscopy and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering & Chemistry, Center for Multiscale Electron Microscopy and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Shoupeng Cao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Jingxin Shao
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
12
|
Lyu Z, Yao L, Wang Z, Qian C, Wang Z, Li J, Liu C, Wang Y, Chen Q. Nanoscopic Imaging of Self-Propelled Ultrasmall Catalytic Nanomotors. ACS NANO 2024; 18:14231-14243. [PMID: 38781460 DOI: 10.1021/acsnano.3c12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Ultrasmall nanomotors (<100 nm) are highly desirable nanomachines for their size-specific advantages over their larger counterparts in applications spanning nanomedicine, directed assembly, active sensing, and environmental remediation. While there are extensive studies on motors larger than 100 nm, the design and understanding of ultrasmall nanomotors have been scant due to the lack of high-resolution imaging of their propelled motions with orientation and shape details resolved. Here, we report the imaging of the propelled motions of catalytically powered ultrasmall nanomotors─hundreds of them─at the nanometer resolution using liquid-phase transmission electron microscopy. These nanomotors are Pt nanoparticles of asymmetric shapes ("tadpoles" and "boomerangs"), which are colloidally synthesized and observed to be fueled by the catalyzed decomposition of NaBH4 in solution. Statistical analysis of the orientation and position trajectories of fueled and unfueled motors, coupled with finite element simulation, reveals that the shape asymmetry alone is sufficient to induce local chemical concentration gradient and self-diffusiophoresis to act against random Brownian motion. Our work elucidates the colloidal design and fundamental forces involved in the motions of ultrasmall nanomotors, which hold promise as active nanomachines to perform tasks in confined environments such as drug delivery and chemical sensing.
Collapse
Affiliation(s)
- Zhiheng Lyu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana ,Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lehan Yao
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana ,Illinois 61801, United States
| | - Zhisheng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road ,Hong Kong SAR, China
| | - Chang Qian
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana ,Illinois 61801, United States
| | - Zuochen Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana ,Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jiahui Li
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana ,Illinois 61801, United States
| | - Chang Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana ,Illinois 61801, United States
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road ,Hong Kong SAR, China
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana ,Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana ,Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana ,Illinois 61801, United States
| |
Collapse
|
13
|
Ye J, Fan Y, She Y, Shi J, Yang Y, Yuan X, Li R, Han J, Liu L, Kang Y, Ji X. Biomimetic Self-Propelled Asymmetric Nanomotors for Cascade-Targeted Treatment of Neurological Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310211. [PMID: 38460166 PMCID: PMC11165487 DOI: 10.1002/advs.202310211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Indexed: 03/11/2024]
Abstract
The precise targeted delivery of therapeutic agents to deep regions of the brain is crucial for the effective treatment of various neurological diseases. However, achieving this goal is challenging due to the presence of the blood‒brain barrier (BBB) and the complex anatomy of the brain. Here, a biomimetic self-propelled nanomotor with cascade targeting capacity is developed for the treatment of neurological inflammatory diseases. The self-propelled nanomotors are designed with biomimetic asymmetric structures with a mesoporous SiO2 head and multiple MnO2 tentacles. Macrophage membrane biomimetic modification endows nanomotors with inflammatory targeting and BBB penetration abilities The MnO2 agents catalyze the degradation of H2O2 into O2, not only by reducing brain inflammation but also by providing the driving force for deep brain penetration. Additionally, the mesoporous SiO2 head is loaded with curcumin, which actively regulates macrophage polarization from the M1 to the M2 phenotype. All in vitro cell, organoid model, and in vivo animal experiments confirmed the effectiveness of the biomimetic self-propelled nanomotors in precise targeting, deep brain penetration, anti-inflammatory, and nervous system function maintenance. Therefore, this study introduces a platform of biomimetic self-propelled nanomotors with inflammation targeting ability and active deep penetration for the treatment of neurological inflammation diseases.
Collapse
Affiliation(s)
- Jiamin Ye
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yaoguang She
- Department of General Surgerythe First Medical CenterChinese People's Liberation Army General HospitalBeijing100853China
| | - Jiacheng Shi
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yiwen Yang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Xue Yuan
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Ruiyan Li
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Jingwen Han
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Luntao Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin100730China
| | - Yong Kang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
- Medical CollegeLinyi UniversityLinyi276000China
| |
Collapse
|
14
|
Feng K, Shen W, Chen L, Gong J, Palberg T, Qu J, Niu R. Weak Ion-Exchange Based Magnetic Swarm for Targeted Drug Delivery and Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306798. [PMID: 38059804 DOI: 10.1002/smll.202306798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Swimming microrobots that are actuated by multiple stimuli/fields display various intriguing collective behaviors, ranging from phase separation to clustering and giant number fluctuation; however, it is still chanllenging to achieve multiple responses and functionalities within one colloidal system to emulate high environmental adaptability and improved tasking capability of natural swarms. In this work, a weak ion-exchange based swarm is presented that can self-organize and reconfigure by chemical, light, and magnetic fields, showing living crystal, amorphous glass, liquid, chain, and wheel-like structures. By changing the frequency and strength of the rotating magnetic field, various well-controlled and fast transformations are obtained. Experiments show the high adaptability and functionality of the microrobot swarm in delivering drugs in confined spaces, such as narrow channels with turns or obstacles. The drug-carrying swarm exhibits excellent chemtherapy for Hela and CT26 cells due to the pH-enhanced drug release and locomotion. This reconfigurable microswarm provides a new platform for biomedical and environmental applications.
Collapse
Affiliation(s)
- Kai Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenqi Shen
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Ling Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Thomas Palberg
- Institut für physics, Johannes Gutenberg-Universtät Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
15
|
Yang Q, Zhou X, Lou B, Zheng N, Chen J, Yang G. An F OF 1-ATPase motor-embedded chromatophore as a nanorobot for overcoming biological barriers and targeting acidic tumor sites. Acta Biomater 2024; 179:207-219. [PMID: 38513724 DOI: 10.1016/j.actbio.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Despite the booming progress of anticancer nanomedicines in the past two decades, precise tumor-targetability and sufficient tumor-accumulation are less successful and still require further research. To tackle this challenge, herein we present a biomolecular motor (FOF1-ATPase)-embedded chromatophore as nanorobot to efficiently overcome biological barriers, and thoroughly investigate its chemotactic motility, tumor-accumulation ability and endocytosis. Chromatophores embedded with FOF1-ATPase motors were firstly extracted from Thermus thermophilus, then their properties were fully characterized. Specifically, two microfluidic platforms (laminar flow microchip and tumor microenvironment (TME) microchip) were designed and developed to fully investigate the motility, tumor-accumulation ability and endocytosis of the chromatophore nanorobot (CN). The results from the laminar flow microchip indicated that the obtained CN possessed the strongly positive chemotaxis towards protons. And the TME microchip experiments verified that the CN had a desirable tumor-accumulation ability. Cellular uptake experiments demonstrated that the CN efficiently promoted the endocytosis of the fluorescence DiO into the HT-29 cells. And the in vivo studies revealed that the intravenously administered CN exhibited vigorous tumor-targetability and accumulation ability as well as highly efficient antitumor efficacy. All the results suggested that FOF1-ATPase motors-embedded CN could be promising nanomachines with powerful self-propulsion for overcoming physiological barriers and tumor-targeted drug delivery. STATEMENT OF SIGNIFICANCE: In this study, we demonstrated that FOF1-ATPase-embedded chromatophore nanorobots exhibit a strong proton chemotaxis, which not only plays a key role in tumor-targetability and accumulation, but also promotes tumor tissue penetration and internalization. The results of in vitro and in vivo studies indicated that drug-loaded chromatophore nanorobots are capable to simultaneously accomplish tumor-targeting, accumulation, penetration and internalization for enhanced tumor therapy. Our study provides a fundamental basis for further study on FOF1-ATPase-embedded chromatophore as tumor-targeting drug delivery systems that have promising clinical applications. It offers a new and more efficient delivery vehicle for cancer related therapeutics.
Collapse
Affiliation(s)
- Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xuhui Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ning Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jiale Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
16
|
Ji Y, Pan Y, Ma X, Ma Y, Zhao Z, He Q. pH-Sensitive Glucose-Powered Nanomotors for Enhanced Intracellular Drug Delivery and Ferroptosis Efficiency. Chem Asian J 2024; 19:e202300879. [PMID: 37930193 DOI: 10.1002/asia.202300879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
We propose a glucose-powered Janus nanomotor where two faces are functionalized with glucose oxidase (GOx) and polydopamine-Fe3+ chelates (PDF), respectively. In the glucose fuel solution, the GOx on the one side of these Janus nanomotors catalytically decomposes glucose fuels into gluconic acid and hydrogen peroxide (H2 O2 ) to drive them at a speed of 2.67 μm/s. The underlying propulsion mechanism is the glucose-based self-diffusiophoresis owing to the generated local glucose concentration gradient by the enzymatic reaction. Based on the enhanced diffusion motion, such nanomotors with catalytic activity increase the uptake towards cells and subsequently exhibit excellent capabilities for Fe3+ ions delivery and H2 O2 generation for enhancing ferroptosis efficiency for inducing cancer cell death. In particular, the Fe3+ ions are released from nanomotors in a slightly acidic environment, and subsequently generate toxic hydroxyl radicals via Fenton reactions, which accumulation reactive oxygen species (ROS) level (~300 %) and further lipid peroxidation (LPO) strengthened ferroptosis therapy for cancer treatment. The as-developed glucose-powered Janus nanomotor with efficient diffusion and Fe ions delivery capabilities show great promise as a potential in biomedical applications.
Collapse
Affiliation(s)
- Yuxing Ji
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanan Pan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xuemei Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yan Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
17
|
Gu Z, Zhu R, Shen T, Dou L, Liu H, Liu Y, Liu X, Liu J, Zhuang S, Gu F. Autonomous nanorobots with powerful thrust under dry solid-contact conditions by photothermal shock. Nat Commun 2023; 14:7663. [PMID: 38001071 PMCID: PMC10674020 DOI: 10.1038/s41467-023-43433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Nanorobotic motion on solid substrates is greatly hindered by strong nanofriction, and powerful nanomotors‒the core components for nanorobotic motion‒are still lacking. Optical actuation addresses power and motion control issues simultaneously, while conventional technologies with small thrust usually apply to fluid environments. Here, we demonstrate micronewton-thrust nanomotors that enable the autonomous nanorobots working like conventional robots with precise motion control on dry surfaces by a photothermal-shock technique. We build a pulsed laser-based actuation and trapping platform, termed photothermal-shock tweezers, for general motion control of metallic nanomaterials and assembled nanorobots with nanoscale precision. The thrust-to-weight ratios up to 107 enable nanomotors output forces to interact with external micro/nano-objects. Leveraging machine vision and deep learning technologies, we assemble the nanomotors into autonomous nanorobots with complex structures, and demonstrate multi-degree-of-freedom motion and sophisticated functions. Our photothermal shock-actuation concept fundamentally addresses the nanotribology challenges and expands the nanorobotic horizon from fluids to dry solid surfaces.
Collapse
Affiliation(s)
- Zhaoqi Gu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Runlin Zhu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Tianci Shen
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Lin Dou
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Hongjiang Liu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Yifei Liu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Xu Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 300130, Tianjin, China
| | - Jia Liu
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Songlin Zhuang
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Fuxing Gu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| |
Collapse
|
18
|
Bronte Ciriza D, Callegari A, Donato MG, Çiçek B, Magazzù A, Kasianiuk I, Kasyanyuk D, Schmidt F, Foti A, Gucciardi PG, Volpe G, Lanza M, Biancofiore L, Maragò OM. Optically Driven Janus Microengine with Full Orbital Motion Control. ACS PHOTONICS 2023; 10:3223-3232. [PMID: 37743937 PMCID: PMC10515694 DOI: 10.1021/acsphotonics.3c00630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 09/26/2023]
Abstract
Microengines have shown promise for a variety of applications in nanotechnology, microfluidics, and nanomedicine, including targeted drug delivery, microscale pumping, and environmental remediation. However, achieving precise control over their dynamics remains a significant challenge. In this study, we introduce a microengine that exploits both optical and thermal effects to achieve a high degree of controllability. We find that in the presence of a strongly focused light beam, a gold-silica Janus particle becomes confined at the stationary point where the optical and thermal forces balance. By using circularly polarized light, we can transfer angular momentum to the particle, breaking the symmetry between the two forces and resulting in a tangential force that drives directed orbital motion. We can simultaneously control the velocity and direction of rotation of the particle changing the ellipticity of the incoming light beam while tuning the radius of the orbit with laser power. Our experimental results are validated using a geometrical optics phenomenological model that considers the optical force, the absorption of optical power, and the resulting heating of the particle. The demonstrated enhanced flexibility in the control of microengines opens up new possibilities for their utilization in a wide range of applications, including microscale transport, sensing, and actuation.
Collapse
Affiliation(s)
| | - Agnese Callegari
- Department
of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | | | - Berk Çiçek
- Department
of Mechanical Engineering, Bilkent University, TR-06800, Ankara, Turkey
| | - Alessandro Magazzù
- CNR-IPCF,
Istituto per i Processi Chimico-Fisici, I-98158, Messina, Italy
| | - Iryna Kasianiuk
- Department
of Mechanical Engineering, Bilkent University, TR-06800, Ankara, Turkey
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science & Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Denis Kasyanyuk
- Department
of Mechanical Engineering, Bilkent University, TR-06800, Ankara, Turkey
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science & Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Falko Schmidt
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Antonino Foti
- CNR-IPCF,
Istituto per i Processi Chimico-Fisici, I-98158, Messina, Italy
| | | | - Giovanni Volpe
- Department
of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Maurizio Lanza
- CNR-IPCF,
Istituto per i Processi Chimico-Fisici, I-98158, Messina, Italy
| | - Luca Biancofiore
- Department
of Mechanical Engineering, Bilkent University, TR-06800, Ankara, Turkey
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science & Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Onofrio M. Maragò
- CNR-IPCF,
Istituto per i Processi Chimico-Fisici, I-98158, Messina, Italy
| |
Collapse
|
19
|
Zhang H, Zhao Z, Guan W, Zhong Y, Wang Y, Zhou Q, Liu F, Luo Q, Liu J, Ni J, He N, Guo D, Li L, Xing Q. Nano-Selenium inhibited antibiotic resistance genes and virulence factors by suppressing bacterial selenocompound metabolism and chemotaxis pathways in animal manure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115277. [PMID: 37499390 DOI: 10.1016/j.ecoenv.2023.115277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Numerous antibiotic resistance genes (ARGs) and virulence factors (VFs) found in animal manure pose significant risks to human health. However, the effects of graphene sodium selenite (GSSe), a novel chemical nano-Selenium, and biological nano-Selenium (BNSSe), a new bioaugmentation nano-Se, on bacterial Se metabolism, chemotaxis, ARGs, and VFs in animal manure remain unknown. In this study, we investigated the effects of GSSe and BNSSe on ARGs and VFs expression in broiler manure using high-throughput sequencing. Results showed that BNSSe reduced Se pressure during anaerobic fermentation by inhibiting bacterial selenocompound metabolism pathways, thereby lowering manure Selenium pollution. Additionally, the expression levels of ARGs and VFs were lower in the BNSSe group compared to the Sodium Selenite and GSSe groups, as BNSSe inhibited bacterial chemotaxis pathways. Co-occurrence network analysis identified ARGs and VFs within the following phyla Bacteroidetes (genera Butyricimonas, Odoribacter, Paraprevotella, and Rikenella), Firmicutes (genera Lactobacillus, Candidatus_Borkfalkia, Merdimonas, Oscillibacter, Intestinimonas, and Megamonas), and Proteobacteria (genera Desulfovibrio). The expression and abundance of ARGs and VFs genes were found to be associated with ARGs-VFs coexistence. Moreover, BNSSe disruption of bacterial selenocompound metabolism and chemotaxis pathways resulted in less frequent transfer of ARGs and VFs. These findings indicate that BNSSe can reduce ARGs and VFs expression in animal manure by suppressing bacterial selenocompound metabolism and chemotaxis pathways.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Zhigang Zhao
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Weikun Guan
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yuhong Zhong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yang Wang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qilong Zhou
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Fuyu Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qi Luo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Junyi Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jian Ni
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Ning He
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Dongsheng Guo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Lizhi Li
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| | - Qingfeng Xing
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| |
Collapse
|
20
|
Liu J, Li L, Cao C, Feng Z, Liu Y, Ma H, Luo W, Guan J, Mou F. Swarming Multifunctional Heater-Thermometer Nanorobots for Precise Feedback Hyperthermia Delivery. ACS NANO 2023; 17:16731-16742. [PMID: 37651715 DOI: 10.1021/acsnano.3c03131] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Micro-/nanorobots (MNRs) are envisioned to act as "motile-targeting" platforms for biomedical tasks due to their ability to propel and navigate in challenging, hard-to-reach biological environments. However, it remains a great challenge for current swarming MNRs to accurately report and regulate therapeutic doses during disease treatment. Here we present the development of swarming multifunctional heater-thermometer nanorobots (HT-NRs) and their application in precise feedback photothermal hyperthermia delivery. The HT-NRs are designed as photothermal-responsive photonic nanochains consisting of magnetic Fe3O4 nanoparticles arranged periodically in one dimension and encapsulated in a temperature-responsive hydrogel shell. The HT-NRs exhibit energetic and controllable swarming motions under a rotating magnetic field, while simultaneously functioning as motile nanoheaters and nanothermometers, utilizing their photothermal conversion and (photo)thermal-responsive structural color changes (photothermochromism). Consequently, the HT-NRs can be quickly deployed to a remote target area (e.g., a superficial tumor lesion) using their collective motion and selectively eliminate diseased cells in a specific targeted region by utilizing their self-reporting photothermochromism as visual feedback for precisely regulating external light irradiation. This work may inspire the development of intelligent multifunctional theranostic micro-/nanorobots and their practical applications in precise disease treatment.
Collapse
Affiliation(s)
- Jianfeng Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Luolin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Chuan Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Ziqi Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Huiru Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
21
|
Huang H, Zhao Y, Yang H, Li J, Ying Y, Li J, Wang S. Light-driven MOF-based micromotors with self-floating characteristics for water sterilization. NANOSCALE 2023; 15:14165-14174. [PMID: 37593810 DOI: 10.1039/d3nr02299d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Three-dimensional motion (especially in the Z-axis direction) of metal-organic frameworks (MOFs)-based micromotors (MOFtors) is essential but still in its infancy. Herein, we propose a simple strategy for designing light-driven MOFtors that move in the Z-axis direction and efficiently kill Staphylococcus aureus (S. aureus). The as-prepared polypyrrole nanoparticles (PPy NPs) with excellent photothermal properties are combined with ZIF-8 through a simple in situ encapsulation method, resulting in multi-wavelength photothermally-responsive MOFtors (PPy/ZIF-8). Under the irradiation of near-infrared (NIR)/ultraviolet (UV)/blue light, the MOFtors all exhibited negative phototaxis and high-speed motion behaviour with the highest speed of 2215 ± 338 μm s-1. In addition, it is proved that these MOFtors can slowly self-float up in an aqueous environment. The light irradiation will accelerate the upward movement of the MOFtors, and the time required for the MOFtors to move to the top is negatively correlated with the light intensity. Finally, efficient antibacterial performances (up to 98.89% against S. aureus) are achieved with these light-driven MOFtors owing to the boosted Zn2+ release by vigorous stirring motion and physical entrapment by the upward motion under light irradiation.
Collapse
Affiliation(s)
- Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yu Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Haowei Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jie Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Sheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
22
|
Zhang Z, Yan H, Cao W, Xie S, Ran P, Wei K, Li X. Ultrasound-Chargeable Persistent Luminescence Nanoparticles to Generate Self-Propelled Motion and Photothermal/NO Therapy for Synergistic Tumor Treatment. ACS NANO 2023; 17:16089-16106. [PMID: 37515593 DOI: 10.1021/acsnano.3c04906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Cancer phototherapy indicates advantages in ease of manipulation, negligible drug resistance, and spatiotemporal control but is confronted with challenges in tumor cell accessibility and intermittent light excitation. Herein, we propose a strategy with persistent luminescence (PL)-excited photothermal therapy (PTT), concurrent thermophoresis-propelled motion, and PL-triggered NO release, where PL emission is chargeable by ultrasonication for readily applicable to deep tumors. Mechanoluminescent (ML) nanodots of SrAl2O4:Eu2+ (SAOE) and PL nanodots of ZnGa2O4:Cr3+ (ZGC) were deposited on mesoporous silicates to obtain mSZ nanoparticles (NPs), followed by partially coating with polydopamine (PDA) caps and loading NO donors to prepare Janus mSZ@PDA-NO NPs. The ML emission bands of SAOE nanodots overlap with the excitation band of ZGC, and the persistent near-infrared (NIR) emission could be repeatedly activated by ultrasonication. The PL emission acts as an internal NIR source to produce a thermophoretic force and NO gas propellers to drive the motion of Janus NPs. Compared with the commonly used intermittent NIR illumination at both 660 and 808 nm, the persistent motion of ultrasound-activated NPs enhances cellular uptake and long-lasting PTT and intracellular NO levels to combat tumor cells without the use of any chemotherapeutic drugs. The ultrasound-activated persistent motion promotes intratumoral accumulation and tumor distribution of PTT/NO therapeutics and exhibits significantly higher tumor growth inhibition, longer animal survival, and larger intratumoral NO levels than those who experience external NIR illumination. Thus, this study demonstrates a strategy to activate PL emissions and construct PL-excited nanomotors for phototherapy in deep tissues.
Collapse
Affiliation(s)
- Zhanlin Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Hui Yan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Wenxiong Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shuang Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Kun Wei
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
23
|
Wang J, Luo Y, Wu H, Cao S, Abdelmohsen LKEA, Shao J, van Hest JCM. Inherently Fluorescent Peanut-Shaped Polymersomes for Active Cargo Transportation. Pharmaceutics 2023; 15:1986. [PMID: 37514172 PMCID: PMC10385398 DOI: 10.3390/pharmaceutics15071986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Nanomotors have been extensively explored for various applications in nanomedicine, especially in cargo transportation. Motile properties enable them to deliver pharmaceutical ingredients more efficiently to the targeted site. However, it still remains a challenge to design motor systems that are therapeutically active and can also be effectively traced when taken up by cells. Here, we designed a nanomotor with integrated fluorescence and therapeutic potential based on biodegradable polymersomes equipped with aggregation-induced emission (AIE) agents. The AIE segments provided the polymersomes with autofluorescence, facilitating the visualization of cell uptake. Furthermore, the membrane structure enabled the reshaping of the AIE polymersomes into asymmetric, peanut-shaped polymersomes. Upon laser irradiation, these peanut polymersomes not only displayed fluorescence, but also produced reactive oxygen species (ROS). Because of their specific shape, the ROS gradient induced motility in these particles. As ROS is also used for cancer cell treatment, the peanut polymersomes not only acted as delivery vehicles but also as therapeutic agents. As an integrated platform, these peanut polymersomes therefore represent an interesting delivery system with biomedical potential.
Collapse
Affiliation(s)
- Jianhong Wang
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yingtong Luo
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Hanglong Wu
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Shoupeng Cao
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
24
|
Wu Y, Lou B, Zheng N, Zhou X, Gao Y, Hong W, Yang Q, Yang G. F OF 1-ATPase Motor-Embedded Chromatophore as Drug Delivery System: Extraction, Cargo Loading Ability and Mucus Penetration Ability. Pharmaceutics 2023; 15:1681. [PMID: 37376130 PMCID: PMC10302136 DOI: 10.3390/pharmaceutics15061681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Mucosal drug delivery permits direct and prompt drug absorption, which is capable of reducing undesirable decomposition that occurs before absorption. However, mucus clearance of those mucosal drug delivery systems strongly retards their actual application. Herein, we propose chromatophore nanoparticles embedded with FOF1-ATPase motors to promote mucus penetration. The FOF1-ATPase motor-embedded chromatophores were firstly extracted from Thermus thermophilus by using a gradient centrifugation method. Then, the model drug (curcumin) was loaded onto the chromatophores. The drug loading efficiency and entrapment efficiency were optimized by using different loading approaches. The activity, motility, stability and mucus permeation of the drug-loaded chromatophore nanoparticles were thoroughly investigated. Both the in vitro and in vivo studies revealed that the FOF1-ATPase motor-embedded chromatophore successfully enhanced mucus penetration glioma therapy. This study indicates that the FOF1-ATPase motor-embedded chromatophore is a promising alternative as a mucosal drug delivery system.
Collapse
Affiliation(s)
- Yujing Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
| | - Ning Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
| | - Xuhui Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
| | - Ying Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
- Zhejiang Moda Biotech Co., Ltd., Hangzhou 310018, China
| | - Weiyong Hong
- Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China (B.L.)
| |
Collapse
|
25
|
Chen X, Chen X, Elsayed M, Edwards H, Liu J, Peng Y, Zhang HP, Zhang S, Wang W, Wheeler AR. Steering Micromotors via Reprogrammable Optoelectronic Paths. ACS NANO 2023; 17:5894-5904. [PMID: 36912818 DOI: 10.1021/acsnano.2c12811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Steering micromotors is important for using them in practical applications and as model systems for active matter. This functionality often requires magnetic materials in the micromotor, taxis behavior of the micromotor, or the use of specifically designed physical boundaries. Here, we develop an optoelectronic strategy that steers micromotors with programmable light patterns. In this strategy, light illumination turns hydrogenated amorphous silicon conductive, generating local electric field maxima at the edge of the light pattern that attracts micromotors via positive dielectrophoresis. As an example, metallo-dielectric Janus microspheres that self-propelled under alternating current electric fields were steered by static light patterns along customized paths and through complex microstructures. Their long-term directionality was also rectified by ratchet-shaped light patterns. Furthermore, dynamic light patterns that varied in space and time enabled more advanced motion controls such as multiple motion modes, parallel control of multiple micromotors, and the collection and transport of motor swarms. This optoelectronic steering strategy is highly versatile and compatible with a variety of micromotors, and thus it possesses the potential for their programmable control in complex environments.
Collapse
Affiliation(s)
- Xi Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Xiaowen Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mohamed Elsayed
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Harrison Edwards
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | - Jiayu Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - H P Zhang
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Aaron R Wheeler
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| |
Collapse
|