1
|
Li K, Wu H, Yu H, Hu Z, Wang J, Wu Y. Ba 2GeF 2Q 3 (Q = S, Se) and Ba 3GeF 2Se 4: new F-based chalcohalides with enhanced birefringence. Chem Commun (Camb) 2024; 60:12734-12737. [PMID: 39397726 DOI: 10.1039/d4cc04530k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Three new F-based chalcohalides, Ba2GeF2Q3 (Q = S, Se) and Ba3GeF2Se4, have been successfully synthesized. On going from Ba3GeF2Se4 (Δn = 0.063@1064 nm) to Ba2GeF2Q3 (Q = S, Se) (Δn = 0.109 and 0.103@1064 nm, respectively), the birefringence doubled. The structure-property relationship study shows that the enhanced birefringence originates from the modulation of the configuration of the ionic lattices and highly polymerized covalent lattices. This provides not only promising IR birefringent crystals, Ba2GeF2Q3, but also some insights into the design of IR birefringent materials.
Collapse
Affiliation(s)
- Kaixuan Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
2
|
Lei Z, Liu F, Pang X, Yi Y, Huang C, Yang T. Constructing Ultraviolet Nonlinear Optical Crystals with Superior Thermal Stability Based on Organic π-Conjugated [HCOO] Groups. Inorg Chem 2024; 63:18536-18542. [PMID: 39321329 DOI: 10.1021/acs.inorgchem.4c03628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
In recent years, more and more organic π-conjugated moieties have been screened out to create excellent ultraviolet (UV) and deep-UV nonlinear optical (NLO) crystal materials. However, NLO crystals with organic groups usually exhibit poor thermal stability compared with those of traditional inorganic NLO materials. Herein, the organic group [HCOO], which is similar to traditional planar trigonal π-conjugated anionic groups, was employed to successfully build three UV NLO crystals RE(HCOO)3 (RE = Eu, Gd, and Dy) and two centrosymmetric compounds RE(HCOO)2(OH) (RE = Eu, and Gd) with superior thermal stability. Their structures and properties were further studied and characterized, especially the structure evolutions between noncentrosymmetric RE(HCOO)3 (RE = Eu, Gd, and Dy) and centrosymmetric RE(HCOO)2(OH) (RE = Eu, and Gd), as well as the NLO properties of the three crystals RE(HCOO)3 (RE = Eu, Gd, and Dy).
Collapse
Affiliation(s)
- Zhiyuan Lei
- Chongqing Key Laboratory of inorganic functional materials, College of chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Fangrong Liu
- Chongqing Key Laboratory of inorganic functional materials, College of chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Xuan Pang
- Chongqing Key Laboratory of inorganic functional materials, College of chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Yuanxue Yi
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing 400000, P.R. China
| | - Chunmei Huang
- Chongqing Key Laboratory of inorganic functional materials, College of chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Tao Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
3
|
Tian Y, Zeng W, Dong X, Huang L, Zhou Y, Zeng H, Lin Z, Zou G. Enhanced UV Nonlinear Optical Properties in Layered Germanous Phosphites through Functional Group Sequential Construction. Angew Chem Int Ed Engl 2024; 63:e202409093. [PMID: 38850113 DOI: 10.1002/anie.202409093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
This study pioneers a novel strategy for synthesizing solar-blind ultraviolet (UV) nonlinear optical (NLO) crystals through functional groups sequential construction, effectively addressing the inherent trade-offs among broad transmittance, enhanced second-harmonic generation (SHG), and optimal birefringence. We have developed two innovative van der Waals layered germanous phosphites: GeHPO3, the first Ge(II)-based oxide NLO crystal which exhibits a black phosphorus-like structure, and K(GeHPO3)2Br, distinguished by its exceptional birefringence and graphene-like structure. Significantly, GeHPO3 exhibits a remarkable array of NLO properties, including the highest SHG coefficient recorded among all NLO crystals for phase-matching and generating 266 nm coherent light via quadruple frequency conversion. It delivers a potent SHG intensity, surpassing KH2PO4 (KDP) by 10.3 times at 1064 nm and β-BaB2O4 by 1.3 times at 532 nm, complemented by a distinct UV absorption edge at 211 nm and moderate birefringence of 0.062 at 546 nm. Comprehensive theoretical analysis links these exceptional characteristics to the unique NLO-active GeO3 4- units and the distinctive, highly ordered layered structures. Our findings deliver essential experimental insights into the development of Ge(II)-based optoelectronic materials and present a strategic blueprint for engineering structure-driven functional materials with customized properties.
Collapse
Affiliation(s)
- Yao Tian
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Yuqiao Zhou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
4
|
Shen Y, Ding M, Chen G, Luo Y, Zhao S, Luo J. C 9H 7NBrX (X = Cl, Br, NO 3): Three Excellent Birefringent Crystals with Distinct Optical Anisotropy Regulated by Anions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400549. [PMID: 38726954 DOI: 10.1002/smll.202400549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/01/2024] [Indexed: 10/01/2024]
Abstract
A large optical anisotropy is the most important parameter of birefringent crystals. Integrating π-conjugated groups with large polarizable anisotropy into target compounds is a common strategy for constructing brilliant birefringent crystals. However, the key problem is to enhance the density of the birefringence-active units and further arrange them parallelly. In this study, three novel birefringent crystals, C9H7NBrX (X = Cl, Br, NO3), are successfully synthesized by introducing a new birefringence-active [C9H7NBr]+ unit. Interestingly, these compounds feature similar layered structures but exhibit different optical anisotropies at 550 nm (0.277 for C9H7NBrCl, 0.328 for C9H7NBrBr, and 0.401 for C9H7NBrNO3) owing to the different anions in them. Particularly, the small trigonal planar NO3 anions perfectly fill the interstices of the π-conjugated [C9H7NBr]+ groups with large optical anisotropy, with the resulting compound C9H7NBrNO3 showing superior optical properties compared to the others. The above findings provide strategies for designing new optical materials with large birefringence by matching birefringence-active groups of different sizes. Additionally, a new theory for predicting and comparing the polarizability anisotropy of compounds is proposed, which would guide in exploring large birefringent crystals.
Collapse
Affiliation(s)
- Yaoguo Shen
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Mingliang Ding
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Gang Chen
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yingjie Luo
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, China
| |
Collapse
|
5
|
Yang C, Kang Y, Wang X, Gou J, Xiong Y, Zhu Z, Chen L, Wu Q. N 2H 4Zn(HC 3N 3O 3): exceptionally strong second harmonic generation and ultra-long phosphorescence. Chem Sci 2024:d4sc04476b. [PMID: 39263656 PMCID: PMC11382538 DOI: 10.1039/d4sc04476b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
The discovery and designed synthesis of multifunctional materials is a leading pursuit in materials science. Herein, we report a novel hydro-isocyanurate, N2H4Zn(HC3N3O3), which combines strong second harmonic generation (SHG) and ultra-long room-temperature phosphorescence (RTP). The SHG intensity is the highest within the cyanurate system (13 × KDP), and RTP lifetime extends up to 448 ms, accompanied by a long-lasting afterglow visible to the naked eye for 1.2 s, surpassing most of the current metal-organic complexes. This advancement holds promise for the development of multifunctional optoelectronic devices, particularly leveraging second-harmonic generation (SHG) processes.
Collapse
Affiliation(s)
- Can Yang
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| | - Yuwei Kang
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| | - Xuefei Wang
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| | - Jie Gou
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| | - Yi Xiong
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| | - Zece Zhu
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| | - Ling Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Qi Wu
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| |
Collapse
|
6
|
Lv YL, Ma L, Liu W, Guo SP, Tang RL. (C 5H 12N 2S)Hg(NO 3) 2: A Mercury Nitrate Nonlinear Optical Crystal Motivated by Heteroatom Coordination Strategy. Inorg Chem 2024; 63:14821-14826. [PMID: 39083375 DOI: 10.1021/acs.inorgchem.4c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Effective design and synthesis of second-order nonlinear optical (NLO) materials hold immense significance in driving modern science and technology advancements. In this study, we synthesized a new acentric mercury nitrate, (C5H12N2S)Hg(NO3)2, by regulating the coordination of the Hg atom through the introduction of a heteroatom. It exhibits an unprecedented [(C5H12N2S)2Hg2(NO3)4]∞ chain composed of Hg2+, NO3-, and organic molecule C5H12N2S. Notably, (C5H12N2S)Hg(NO3)2 demonstrates an unprecedented HgO3S unit and a second harmonic generation (SHG) intensity of 1.3 × KDP at 1064 nm, presenting the second-order nonlinear mercury nitrate constructed by organic molecule. Theoretical calculations suggest that the HgO3S unit and organic molecule C5H12N2S significantly contribute to the SHG effect. This study demonstrates that the incorporation of heteroatoms is an effective strategy for the development of new NLO materials.
Collapse
Affiliation(s)
- Yi-Lei Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Liang Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Ru-Ling Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|
7
|
Luo H, Zhang Y, Wang T, Huang L, Cao L, Dong X, Zou G. Sb 2O 2SeO 3 and Sb 2O(SeO 3) 2: Two-Layered Antimony(III) Selenites with Enhanced Birefringence. Inorg Chem 2024; 63:11470-11477. [PMID: 38833633 DOI: 10.1021/acs.inorgchem.4c01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Two antimony selenites, Sb2O2SeO3 and Sb2O(SeO3)2, were synthesized by simultaneously incorporating stereochemically active lone pair electrons containing SeO32- and Sb3+. These compounds are structured with [SbOx] polyhedra and [SeO3] units within a two-dimensional framework. Both of them exhibit cutoffs at 300 and 330 nm within the ultraviolet (UV) range and demonstrate significant birefringence, with indices of 0.069 and 0.126 at 546 nm, respectively. These properties highlight their potential as UV birefringent materials. Structural analyses and theoretical calculations reveal that their exceptional birefringence results from the synergistic interactions between SeO32- anions and Sb3+ cations.
Collapse
Affiliation(s)
- Han Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Yu Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Tingyu Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
8
|
Li S, Li W, Li X, Yang G, Ye N, Hu Z, Wu Y, Li C. A bifunctional primitive strategy induces enhancements of large second harmonic generation and wide UV transmittance in rare-earth borates containing [B 5O 10] groups. Chem Sci 2024; 15:8959-8965. [PMID: 38873076 PMCID: PMC11168142 DOI: 10.1039/d4sc01853b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
Strong second-harmonic generation (SHG) and a short ultraviolet (UV) cutoff edge are two crucial yet often conflicting parameters that must be finely tuned in the exploration of nonlinear optical (NLO) materials. In this study, two new rare earth borate NLO crystals, K7BaSc2B15O30 (KBSBO) and Rb21Sr3.8Sc5.2B45O90 (RSSBO), were rationally designed through a bifunctional primitive strategy to achieve an optimized balance between favorable SHG efficiency and UV transparency. As anticipated, both KBSBO and RSSBO exhibit a wide UV transparency window below 190 nm. Notably, these tailored crystals display strong SHG responses, with RSSBO achieving a remarkable enhancement in SHG efficiency (2 × KDP), surpassing that of most deep-UV rare earth borates containing [B5O10] groups known to date. Theoretical calculations and structural analyses reveal that the impressive SHG activities primarily stem from the [B5O10] groups and [ScO6] polyhedra. These findings suggest promising potential for KBSBO and RSSBO crystals as beryllium-free deep UV NLO materials.
Collapse
Affiliation(s)
- Shuaifeng Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology Tianjin 300384 China
| | - Weiming Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology Tianjin 300384 China
| | - Xiang Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology Tianjin 300384 China
| | - Guangsai Yang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology Tianjin 300384 China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology Tianjin 300384 China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology Tianjin 300384 China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology Tianjin 300384 China
| | - Conggang Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology Tianjin 300384 China
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| |
Collapse
|
9
|
Kang Y, Yang C, Gou J, Zhu Y, Zhu Q, Xu W, Wu Q. From Cd(SCN) 2(CH 4N 2S) 2 to Cd(SCN) 2(C 4H 6N 2) 2: Controlling Sulfur Content in Thiocyanate Systems Significantly Improves the Overall Performance of UV Nonlinear Optical Materials. Angew Chem Int Ed Engl 2024; 63:e202402086. [PMID: 38477869 DOI: 10.1002/anie.202402086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/14/2024]
Abstract
Combining a strong second-order nonlinear optical (NLO) effect (>1×KH2PO4 (KDP)), a large band gap (>4.2 eV), and a moderate birefringence in ultraviolet (UV) NLO crystals remains a formidable challenge. Herein, Cd(SCN)2(C4H6N2)2, the first example of a thiocyanate capable of realizing a phase-matched UV NLO crystal material, is obtained by reducing the sulfur (S) content in the centrosymmetric (CS) structure of Cd(SCN)2(CH4N2S)2. Compared to the "shoulder-to-shoulder" one-dimensional (1D) chain of Cd(SCN)2(CH4N2S)2, Cd(SCN)2(C4H6N2)2 has a different sawtooth 1D chain structure. Cd(SCN)2(CH4N2S)2 has second harmonic generation (SHG) inertia with a band gap of 3.90 eV and a UV cutoff edge of 342 nm, however, it possesses a large birefringence (0.35@546 nm). In contrast, the symmetry center breaking of Cd(SCN)2(C4H6N2)2 leads to remarkably strong SHG intensity (10 times that of KDP). Furthermore, it has a wide band gap (4.74 eV), short UV cutoff edge (234 nm), and moderate birefringence capable of phase matching (0.17@546 nm). This research indicates that thiocyanates are a promising class of UV NLO crystal materials, and that modulation of the sulfur content of CS thiocyanates is an effective strategy for the development of UV NLO crystals with excellent overall performances.
Collapse
Affiliation(s)
- Yuwei Kang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Can Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Jie Gou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Yaolong Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Qingwen Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Qi Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| |
Collapse
|
10
|
Li J, Li JN, Hu LY, Ni JJ, Yao WD, Zhou W, Liu W, Guo SP. Polysubstitution Induced Centrosymmetric-to-Noncentrosymmetric Structural Transformation and Nonlinear-Optical Behavior: The Case of Na 0.45Ag 0.55Ga 3Se 5. Inorg Chem 2024; 63:6116-6121. [PMID: 38518373 DOI: 10.1021/acs.inorgchem.4c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Obtaining compounds with large nonlinear-optical (NLO) coefficients and wide band gaps is challenging due to their competitive requirements for chemical bonds. Herein, the first member with mixed cations on the A site in the A-M3-Q5 or A-Ag-M6-Q10 (A = alkali metal; M = Ga, In; Q = S, Se, Te) family, viz. Na0.45Ag0.55Ga3Se5 (NAGSe), was obtained by a solid-state reaction. Its structure features [GaSe4] tetrahedra built three-dimensional {[Ga3Se5]-}∞ network, with Na and Na/Ag cations located at the octahedral cavities. Noncentrosymmetric (R32) NAGSe can also be transformed from centrosymmetric RbGa3S5 (P21/c) via multiple-site cosubstitution. NAGSe exhibits the highest NLO response (1.9 × AGS) in the A-Ag-M-Q family. Crystal structure analysis and theoretical calculations suggest that the NLO response is mainly contributed by the regularly arranged [GaSe4] units. This work enriches the exploration of the undeveloped A-M3-Q5 or A-Ag-M6-Q10 family as potential infrared NLO materials.
Collapse
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jia-Nuo Li
- Graduate School of Engineering, Nagoya University, Nagoya 4648601, Japan
| | - Li-Yun Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jun-Jie Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wenfeng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
11
|
Huang W, Song X, Li Y, Zhou Y, Xu Q, Song Y, Wang H, Li M, Zhao S, Luo J. Designing a Hybrid Perovskite with Enlarged Birefringence and Bandgap for Modulation of Light Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306158. [PMID: 37863830 DOI: 10.1002/smll.202306158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Indexed: 10/22/2023]
Abstract
Birefringent crystals have important applications in optoelectronics areas due to their ability to modulate and polarize light. Despite increasing discovery of the birefringence potential of new crystals, it remains a great challenge to optimize both birefringence and bandgap simultaneously. Herein, a 1D chain-like hybrid perovskite birefringent crystal designed by 3D-to-1D dimensional tailoring, (GAM)2 PbI7 ·H2 O (GAM = C5 N10 H10 ), is presented, showing enlarged birefringence of 0.49@550 nm and enlarged optical bandgap (2.48 eV). Consequently, the birefringent quality factor of (GAM)2 PbI7 ·H2 O is up to 2.8 times that of the template MAPbI3 . In particular, the birefringence is much larger than those of commercial birefringent crystals and surpasses that of the vast majority of hybrid perovskite known to date. Theoretical calculations reveal that the strongly anisotropic arrangement of (GAM)2.5+ π-conjugated cations and ordered PbI6 octahedra contributes to the large birefringence and wide bandgap of (GAM)2 PbI7 ·H2 O. It is believed that this work will provide a new pathway toward the rational design and synthesis of hybrid perovskite birefringent crystals for compact wide-bandgap polarization dependent devices.
Collapse
Affiliation(s)
- Weiqi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xianyu Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Qianting Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yipeng Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Han Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Minjuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
12
|
Kang Y, Yang C, Gou J, Zhu Y, Zhu Q, Wu Q. From C 4H 7N 2Ge 0.4Sn 0.6Br 3 to C 6H 11N 2Ge 0.4Sn 0.6Br 3: Effective Modulation of the Second Harmonic Generation Effect and Optical Band Gap by Planar π-Conjugated Organic Cation Size. Inorg Chem 2024; 63:2725-2731. [PMID: 38247137 DOI: 10.1021/acs.inorgchem.3c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
In the search for nonlinear optical (NLO) materials with excellent overall performance, we have devoted ourselves to organic-inorganic hybrids consisting of anionic groups containing stereochemically active lone-pair (SCALP) electron cations and organic planar π-conjugated group cations. Accordingly, in this paper, two novel organic-inorganic hybrid metal halides, C4H7N2Ge0.4Sn0.6Br3 (I) and C6H11N2Ge0.4Sn0.6Br3 (II), have been synthesized. The powder second-harmonic technique shows that both C4H7N2Ge0.4Sn0.6Br3 and C6H11N2Ge0.4Sn0.6Br3 have moderately strong second-order nonlinear optical effects, which are about 2.03 (I) and 1.16 (II) times that of KH2PO4 (KDP), respectively. They also have different optical band gaps of 2.75 (I) and 2.88 eV (II) due to the different sizes of the organic cations, and their photoluminescent and thermal properties were also investigated. This work provides new structural insights for the design and modulation of organic-inorganic hybrid halide materials with multiple excellent optical properties.
Collapse
Affiliation(s)
- Yuwei Kang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Can Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Jie Gou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yaolong Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Qingwen Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Qi Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
13
|
Yang S, Wu H, Hu Z, Wang J, Wu Y, Yu H. From NaGa(IO 3) 3F to NaGa(IO 3) 2F 2 and NaGa(IO 3) 4: The Effects of Chemical Substitution between F - Anions and IO 3- Groups on the Structures and Properties of Gallium Iodates. Inorg Chem 2024; 63:1404-1413. [PMID: 38163854 DOI: 10.1021/acs.inorgchem.3c03928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Introducing F- anions or substituting F- anions with IO3- groups has been proven to be ideal strategies for designing novel noncentrosymmetric (NCS) and polar materials, yet systematic investigation into the effect of F- anions or the substitution of IO3- for F- anions on structures and properties remains rarely explored. Herein, two new gallium iodates, NaGa(IO3)2F2 (1) and NaGa(IO3)4 (2), were successfully designed and synthesized based on NaGa(IO3)3F by introducing more F- anions and replacing F- anions with IO3 groups, respectively. Structurally, in compound 1, the adjacent [GaF3(IO3)3]3- polyanions are connected in an antiparallel manner, resulting in a complete cancellation of local polarity. While in compound 2, all IO3 groups in 2D [Ga(IO3)4]∞- layers are aligned, leading to large macroscopic polarization. Additionally, chemical substitution also results in a qualitative improvement in the functional properties of compound 2. It possesses strong SHG response (12 × KDP @1064 nm) and broad optical transparency, coupled with large birefringence (0.21 @1064 nm), showcasing its promise as a promising nonlinear optical (NLO) crystal. The effects of chemical substitution between F- anions and IO3- groups on the structures and properties are discussed in detail.
Collapse
Affiliation(s)
- Shuoxing Yang
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal, College of Materials Science and Engineering Tianjin University of Technology, Tianjin 300384, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal, College of Materials Science and Engineering Tianjin University of Technology, Tianjin 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal, College of Materials Science and Engineering Tianjin University of Technology, Tianjin 300384, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal, College of Materials Science and Engineering Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal, College of Materials Science and Engineering Tianjin University of Technology, Tianjin 300384, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal, College of Materials Science and Engineering Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
14
|
Zhou Y, He N, Lin Z, Shang X, Chen X, Li Y, Huang W, Hong M, Zhao S, Luo J. A Non-π-Conjugated Molecular Crystal with Balanced Second-Harmonic Generation, Bandgap, and Birefringence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305473. [PMID: 37688298 DOI: 10.1002/smll.202305473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/20/2023] [Indexed: 09/10/2023]
Abstract
Traditional nonlinear optical (NLO) crystals are exclusively limited to ionic crystals with π-conjugated groups and it is a great challenge to achieve a subtle balance between second-harmonic generation, bandgap, and birefringence for them, especially in the deep-UV spectrum region (Eg > 6.20 eV). Herein, a non-π-conjugated molecular crystal, NH3 BH3 , which realizes such balance with a large second-harmonic generation response (2.0 × KH2 PO4 at 1064 nm, and 0.45 × β-BaB2 O4 at 532 nm), deep-UV transparency (Eg > 6.53 eV), and moderate birefringence (Δn = 0.056@550 nm) is reported. As a result, NH3 BH3 exhibits a large quality factor of 0.32, which is evidently larger than those of non-π-conjugated sulfate and phosphate ionic crystals. Using an unpolished NH3 BH3 crystal, effective second-harmonic generation outputs are observed at different wavelengths. These attributes indicate that NH3 BH3 is a promising candidate for deep-UV NLO applications. This work opens up a new door for developing high-performance deep-UV NLO crystals.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan He
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoying Shang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Xueyuan Chen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
15
|
Yang S, Wu H, Hu Z, Wang J, Wu Y, Yu H. LiGa(IO 3 ) 4 : An Excellent NLO Material with Unprecedented 2D [Ga(IO 3 ) 4 ] ∞ - Layer Synthesized by Aliovalent Substitution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306459. [PMID: 37679055 DOI: 10.1002/smll.202306459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Nonlinear optical (NLO) crystals are indispensable for the solid-state lasers for their ability to expand wavelength spectral to the regions where the directing lasing is difficult or even impossible, yet the rational design of a high-performance NLO crystal remains a great challenge owing to the severe structural and properties' requirements. Herein, a new noncentrosymmetric (NCS) and polar gallium iodate, LiGa(IO3 )4 , with a novel 2D anionic layer, is successfully designed and synthesized by the aliovalent substitution strategy based on classic α-LiIO3 . The 2D [Ga(IO3 )4 ]∞ - layer in LiGa(IO3 )4 is built from the GaO6 octahedra and highly polarizable units IO3 . Compared with its parent compound, the partial replacement of A-site Li+ cation with main group Ga3+ cation facilitates LiGa(IO3 )4 to possess excellent NLO properties, including the large second-harmonic generation (SHG) response (14 × KH2 PO4 (KDP) @ 1064 nm), wide bandgap (4.25 eV), large birefringence (0.23 @ 1064 nm), and wide optical transparency from UV to mid-IR. These reveal that LiGa(IO3 )4 will be a promising NLO crystal.
Collapse
Affiliation(s)
- Shuoxing Yang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
16
|
Li Y, Zhang X, Zheng J, Zhou Y, Huang W, Song Y, Wang H, Song X, Luo J, Zhao S. A Hydrogen Bonded Supramolecular Framework Birefringent Crystal. Angew Chem Int Ed Engl 2023; 62:e202304498. [PMID: 37161839 DOI: 10.1002/anie.202304498] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023]
Abstract
Birefringent crystals could modulate the polarization of light and are widely used as polarizers, waveplates, optical isolators, etc. To date, commercial birefringent crystals have been exclusively limited to purely inorganic compounds such as α-BaB2 O4 with birefringence of about 0.12. Herein, we report a new hydrogen bonded supramolecular framework, namely, Cd(H2 C6 N7 O3 )2 ⋅8 H2 O, which exhibits exceptionally large birefringence up to about 0.60. To the best of our knowledge, the birefringence of Cd(H2 C6 N7 O3 )2 ⋅8 H2 O is significantly larger than those of all commercial birefringent crystals and is the largest among hydrogen bonded supramolecular framework crystals. First-principles calculations and structural analyses reveal that the exceptional birefringence is mainly ascribed to strong covalent interactions within (H2 C6 N7 O3 )- organic ligands and the perfect coplanarity between them. Given the rich structural diversity and tunability, hydrogen bonded supramolecular frameworks would offer unprecedented opportunities beyond the traditional purely inorganic oxides for birefringent crystals.
Collapse
Affiliation(s)
- Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Zhang
- School of Science, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Jieyu Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yipeng Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xianyu Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|