1
|
Cai B, Wu W, Miao X, Yang X, Duan L, Lin D, Yang K. A Novel kgd-Topological Covalent Organic Framework with Optimum Pore Size for Efficient Benzene/Cyclohexane Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408742. [PMID: 39564757 DOI: 10.1002/smll.202408742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Separation of benzene and cyclohexane is essential for obtaining high-purity cyclohexane in the chemical industry and for resource recovery from exhaust gas, but is one of the most challenging separation processes due to their highly similar boiling points and kinetic diameters. Herein, based on the isoreticular contraction strategy, a novel covalent organic framework (i.e., HFPB-TAB-COF) with kgd topological structure and average pore size of 5.70 Å, between the kinetic diameters of benzene (5.60 Å) and cyclohexane (6.10 Å), is synthesized for benzene/cyclohexane separation by pore confinement effect. HFPB-TAB-COF has the highest ideal adsorbed solution theory (IAST) selectivity of 36.0 for benzene/cyclohexane separation, and can produce 0.48 mmol g-1 cyclohexane with purity of +99% from 50:50 (v:v) benzene/cyclohexane mixture under dynamic condition, higher than reported separation materials. Optimizing the pore size of COFs by isoreticular contraction strategy can trigger the pore confinement effect for better meeting the separation challenge in industry.
Collapse
Affiliation(s)
- Borui Cai
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| | - Xiaozeng Miao
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| | - Xi Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| | - Limin Duan
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| |
Collapse
|
2
|
Han Y, Huang W, He M, An B, Chen Y, Han X, An L, Kippax-Jones M, Li J, Yang Y, Frogley MD, Li C, Crawshaw D, Manuel P, Rudić S, Cheng Y, Silverwood I, Daemen LL, Ramirez-Cuesta AJ, Day SJ, Thompson SP, Spencer BF, Nikiel M, Lee D, Schröder M, Yang S. Trace benzene capture by decoration of structural defects in metal-organic framework materials. NATURE MATERIALS 2024; 23:1531-1538. [PMID: 39472753 PMCID: PMC11525167 DOI: 10.1038/s41563-024-02029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Capture of trace benzene is an important and challenging task. Metal-organic framework materials are promising sorbents for a variety of gases, but their limited capacity towards benzene at low concentration remains unresolved. Here we report the adsorption of trace benzene by decorating a structural defect in MIL-125-defect with single-atom metal centres to afford MIL-125-X (X = Mn, Fe, Co, Ni, Cu, Zn; MIL-125, Ti8O8(OH)4(BDC)6 where H2BDC is 1,4-benzenedicarboxylic acid). At 298 K, MIL-125-Zn exhibits a benzene uptake of 7.63 mmol g-1 at 1.2 mbar and 5.33 mmol g-1 at 0.12 mbar, and breakthrough experiments confirm the removal of trace benzene (from 5 to <0.5 ppm) from air (up to 111,000 min g-1 of metal-organic framework), even after exposure to moisture. The binding of benzene to the defect and open Zn(II) sites at low pressure has been visualized by diffraction, scattering and spectroscopy. This work highlights the importance of fine-tuning pore chemistry for designing adsorbents for the removal of air pollutants.
Collapse
Affiliation(s)
- Yu Han
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Wenyuan Huang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Meng He
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Bing An
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Yinlin Chen
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Xue Han
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Lan An
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - Meredydd Kippax-Jones
- Department of Chemistry, University of Manchester, Manchester, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Jiangnan Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Yuhang Yang
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - Mark D Frogley
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Cheng Li
- Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Pascal Manuel
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, UK
| | - Svemir Rudić
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, UK
| | - Yongqiang Cheng
- Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ian Silverwood
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, UK
| | - Luke L Daemen
- Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Anibal J Ramirez-Cuesta
- Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sarah J Day
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - Ben F Spencer
- Photon Science Institute, University of Manchester, Manchester, UK
- Department of Materials, University of Manchester, Manchester, UK
| | - Marek Nikiel
- Photon Science Institute, University of Manchester, Manchester, UK
- Department of Materials, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - Daniel Lee
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - Martin Schröder
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, UK.
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China.
| |
Collapse
|
3
|
Han Y, Brooks D, He M, Chen Y, Huang W, Tang B, An B, Han X, Kippax-Jones M, Frogley MD, Day SJ, Thompson SP, Rudić S, Cheng Y, Daemen LL, Ramirez-Cuesta AJ, Dejoie C, Schröder M, Yang S. Enhanced Benzene Adsorption in Chloro-Functionalized Metal-Organic Frameworks. J Am Chem Soc 2024; 146. [PMID: 39365881 PMCID: PMC11488476 DOI: 10.1021/jacs.4c07207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
The functionalization of metal-organic frameworks (MOFs) to enhance the adsorption of benzene at trace levels remains a significant challenge. Here, we report the exceptional adsorption of trace benzene in a series of zirconium-based MOFs functionalized with chloro groups. Notably, MFM-68-Cl2, constructed from an anthracene linker incorporating chloro groups, exhibits a remarkable benzene uptake of 4.62 mmol g-1 at 298 K and 0.12 mbar, superior to benchmark materials. In situ synchrotron X-ray diffraction, Fourier transform infrared microspectroscopy, and inelastic neutron scattering, coupled with density functional theory modeling, reveal the mechanism of binding of benzene in these materials. Overall, the excellent adsorption performance is promoted by an unprecedented cooperation between chloro-groups, the optimized pore size, aromatic functionality, and the flexibility of the linkers in response to benzene uptake in MFM-68-Cl2. This study represents the first example of enhanced adsorption of trace benzene promoted by -CH···Cl and Cl···π interactions in porous materials.
Collapse
Affiliation(s)
- Yu Han
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - David Brooks
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Meng He
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Yinlin Chen
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Wenyuan Huang
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing 100871, China
| | - Boya Tang
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Bing An
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Xue Han
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meredydd Kippax-Jones
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Diamond
Light Source, Harwell
Science Campus, Oxfordshire OX11 0DE, U.K.
| | - Mark D. Frogley
- Diamond
Light Source, Harwell
Science Campus, Oxfordshire OX11 0DE, U.K.
| | - Sarah J. Day
- Diamond
Light Source, Harwell
Science Campus, Oxfordshire OX11 0DE, U.K.
| | | | - Svemir Rudić
- ISIS
Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton OX11 0QX, U.K.
| | - Yongqiang Cheng
- Chemical
and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Luke L. Daemen
- Chemical
and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Anibal J. Ramirez-Cuesta
- Chemical
and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Catherine Dejoie
- The
European Synchrotron Radiation Facility, Beamline ID22, 71 Avenue des Martyrs, CS40220, Grenoble Cedex 9 38043, France
| | - Martin Schröder
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Wu C, Xu J. Cross-Polarization Solid-State NMR Quantification of Species within Pores of Metal-Organic Frameworks: A Case Study of α-Mg 3(HCOO) 6. Chemphyschem 2024; 25:e202400215. [PMID: 38637951 DOI: 10.1002/cphc.202400215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
The quantitative measurement of adsorbed guest species within metal-organic framework (MOF) pores is of fundamental importance for evaluating the adsorption performance of MOFs. However, routine analytic techniques such as thermogravimetric analysis cannot distinguish the contribution from species adsorbed within pores, species adsorbed on the surface, and gas phase or liquid phase encapsulated in the inter-crystalline space. Herein, we developed a new quantification method based on the cross-polarization (CP) solid-state nuclear magnetic resonance (ssNMR) technique, in which only the species within MOF pores are selectively probed due to the dramatically reduced mobility. Using the commercialized MOF α-Mg3(HCOO)6 as an example, a good linear correlation between Areaguest/Areaframework (i. e., the integrated area of guest and framework 13C NMR signals) and guest loading can be observed for several representative molecules such as benzene, tetrahydrofuran (THF), and 1,4-dioxane, clearly revealing the feasibility of CP quantification approach. The effects of guest molecule and corresponding residual mobility on the CP quantification are further discussed by varying the geometry and size of guest molecules. This methodology thus provides an effective and irreplaceable route to evaluate the adsorption performance of porous materials in-depth, especially for liquid-phase adsorption and gas-phase adsorption in which the capillary condensation is not negligible.
Collapse
Affiliation(s)
- Changzong Wu
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Jun Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
5
|
Ma Z, Zhang Y, Xue Z, Fan Y, Wang L, Wang H, Zhong A, Xu J. Thermodynamically and Kinetically Enhanced Benzene Vapor Sensor Based on the Cu-TCPP-Cu MOF with Extremely Low Limit of Detection. ACS Sens 2024; 9:1906-1915. [PMID: 38565844 DOI: 10.1021/acssensors.3c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
As a carcinogenic and highly neurotoxic hazardous gas, benzene vapor is particularly difficult to be distinguished in BTEX (benzene, toluene, ethylbenzene, xylene) atmosphere and be detected in low concentrations due to its chemical inertness. Herein, we develop a depth-related pore structure in Cu-TCPP-Cu to thermodynamically and kinetically enhance the adsorption of benzene vapor and realize the detection of ultralow-temperature benzene gas. We find that the in-plane π electronic nature and proper pore sizes in Cu-TCPP-Cu can selectively induce the adsorption and diffusion of BTEX. Interestingly, the theoretical calculations (including density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations) exhibit that benzene molecules are preferred to adsorb and array as a consecutive arrangement mode in the Cu-TCPP-Cu pore, while the TEX (toluene, ethylbenzene, xylene) dominate the jumping arrangement model. The differences in distribution behaviors can allow adsorption and diffusion of more benzene molecules within limited room. Furthermore, the optimal pore-depth range (60-65 nm) of Cu-TCPP-Cu allows more exposure of active sites and hinders the gas-blocking process. The optimized sensor exhibits ultrahigh sensitivity to benzene vapor (155 Hz/μg@1 ppm), fast response time (less than 10 s), extremely low limit of detection (65 ppb), and excellent selectivity (83%). Our research thus provides a fundamental understanding to design and optimize two-dimensional metal-organic framework (MOF)-based gas sensors.
Collapse
Affiliation(s)
- Zhiheng Ma
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yu Zhang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Zhenggang Xue
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yu Fan
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Lingli Wang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - He Wang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Aihua Zhong
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
6
|
Hu L, Wu W, Hu M, Jiang L, Lin D, Wu J, Yang K. Double-walled Al-based MOF with large microporous specific surface area for trace benzene adsorption. Nat Commun 2024; 15:3204. [PMID: 38615115 PMCID: PMC11016061 DOI: 10.1038/s41467-024-47612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/02/2024] [Indexed: 04/15/2024] Open
Abstract
Double-walled metal-organic frameworks (MOFs), synthesized using Zn and Co, are potential porous materials for trace benzene adsorption. Aluminum is with low-toxicity and abundance in nature, in comparison with Zn and Co. Therefore, a double-walled Al-based MOF, named as ZJU-520(Al), with large microporous specific surface area of 2235 m2 g-1, pore size distribution in the range of 9.26-12.99 Å and excellent chemical stability, was synthesized. ZJU-520(Al) is consisted by helical chain of AlO6 clusters and 4,6-Di(4-carboxyphenyl)pyrimidine ligands. Trace benzene adsorption of ZJU-520(Al) is up to 5.98 mmol g-1 at 298 K and P/P0 = 0.01. Adsorbed benzene molecules are trapped on two types of sites. One (site I) is near the AlO6 clusters, another (site II) is near the N atom of ligands, using Grand Canonical Monte Carlo simulations. ZJU-520(Al) can effectively separate trace benzene from mixed vapor flow of benzene and cyclohexane, due to the adsorption affinity of benzene higher than that of cyclohexane. Therefore, ZJU-520(Al) is a potential adsorbent for trace benzene adsorption and benzene/cyclohexane separation.
Collapse
Affiliation(s)
- Laigang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Min Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Ling Jiang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Jian Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| |
Collapse
|
7
|
Okubo K, Oka K, Tsuchiya K, Tomimoto A, Tohnai N. Spirobifluorene-Based Porous Organic Salts: Their Porous Network Diversification and Construction of Chiral Helical Luminescent Structures. Angew Chem Int Ed Engl 2024; 63:e202400475. [PMID: 38279903 DOI: 10.1002/anie.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/29/2024]
Abstract
Porous organic salts (POSs) are organic porous materials assembled via charge-assisted hydrogen bonds between strong acids and bases such as sulfonic acids and amines. To diversify the network topology of POSs and extend its functions, this study focused on using 4,4',4'',4'''-(9,9'-spirobi[fluorene]-2,2',7,7'-tetrayl)tetrabenzenesulfonic acid (spiroBPS), which is a tetrasulfonic acid comprising a square planar skeleton. The POS consisting of spiroBPS and triphenylmethylamine (TPMA) (spiroBPS/TPMA) was constructed from the two-fold interpenetration of an orthogonal network with pts topology, which has not been reported in conventional POSs, owing to the shape of the spirobifluorene backbone. Furthermore, combining tris(4-chlorophenyl)methylamine (TPMA-Cl) and tris(4-bromophenyl)methylamine (TPMA-Br), which are bulkier than TPMA owing to the introduction of halogens at the p-position of the phenyl groups with spiroBPS allows us to construct novel POSs (spiroBPS/TPMA-Cl and spiroBPS/TPMA-Br). These POSs were constructed from a chiral helical network with pth topology, which was induced by the steric hindrance between the halogens and the curved fluorene skeleton. Moreover, spiroBPS/TPMA-Cl with pth topology exhibited circularly polarized luminescence (CPL) in the solid state, which has not been reported in hydrogen-bonded organic frameworks (HOFs).
Collapse
Affiliation(s)
- Kohei Okubo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kouki Oka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Keiho Tsuchiya
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsunori Tomimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Lv JA, Tang ZL, Liu YH, Zhao RC, Xie LH, Liu XM, Li JR. Interior and Exterior Surface Modification of Zr-Based Metal-Organic Frameworks for Trace Benzene Removal. Inorg Chem 2024; 63:4249-4259. [PMID: 38364203 DOI: 10.1021/acs.inorgchem.3c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The emission of volatile organic compounds (VOCs) significantly contributes to air pollution and poses a serious threat to human health. Benzene, one of the most toxic VOCs, is difficult for the human body to metabolize and is classified as a Group 1 carcinogen. The development of efficient adsorbents for removing trace amounts of benzene from ambient air is thus of great importance. In this work, we studied the benzene adsorption properties of four Zr-based metal-organic frameworks (Zr-MOFs) through static volumetric and dynamic breakthrough experiments. Two previously reported Zr-MOFs, BUT-12 and STA-26, were prepared with a tritopic carboxylic acid ligand (H3L1) functionalized with three methyl groups, and STA-26 is a 2-fold interpenetrated network of BUT-12. Two new isoreticular Zr-MOFs, BUT-12-Et and STA-26-Et, were synthesized using a similar ligand, H3L2, where the methyl groups are replaced with ethyl groups. There are mesopores in BUT-12 and BUT-12-Et and micropores in STA-26 and STA-26-Et. The four Zr-MOFs all showed high stability in liquid water and acidic aqueous solutions. The microporous STA-26 and STA-26-Et showed much higher benzene uptakes than mesoporous BUT-12 and BUT-12-Et at room temperature under low pressures. Particularly, the benzene adsorption capacity of STA-26-Et was high up to 2.21 mmol/g at P/P0 = 0.001 (P0 = 12.78 kPa), higher than those of the other three Zr-MOFs and most reported solid adsorbents. Breakthrough experiments confirmed that STA-26-Et could effectively capture trace benzene (10 ppm) from dry air; however, its benzene capture capacity was reduced by 90% under humid conditions (RH = 50%). Coating of the crystals of STA-26-Et with polydimethylsiloxane (PDMS) increased the hydrophobicity of the exterior MOF surfaces, leading to a more than 2-fold improvement in its benzene capture capacity in the breakthrough experiment under humid condition. PDMS coating of STA-26-Et likely slowed down the water adsorption process, and thus, the adsorbent afforded more efficient capture of benzene. This work demonstrates that modifying both the interior and exterior surfaces of MOFs can effectively enhance their performance in capturing trace benzene from ambient air, even under humid conditions. This finding is meaningful for the development of new adsorbents for effective air purification applications.
Collapse
Affiliation(s)
- Jia-Ao Lv
- Beijing Key Laboratory for Green Catalysis and Separation, and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhen-Ling Tang
- Beijing Key Laboratory for Green Catalysis and Separation, and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yu-Hui Liu
- Beijing Key Laboratory for Green Catalysis and Separation, and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Rui-Chao Zhao
- Beijing Key Laboratory for Green Catalysis and Separation, and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation, and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiao-Min Liu
- Institute of Circular Economy, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation, and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Hu L, Wu W, Jiang L, Hu M, Zhu H, Gong L, Yang J, Lin D, Yang K. Methyl-Functionalized Al-Based MOF ZJU-620(Al): A Potential Physisorbent for Carbon Dioxide Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43925-43932. [PMID: 37688785 DOI: 10.1021/acsami.3c10086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Developing Al-based metal-organic frameworks (MOFs) with moisture-resistance ability is a challenge for carbon dioxide (CO2) capture. Methyl-functionalized Al-based MOF ZJU-620(Al), with excellent chemical-thermal stability and specific surface area of 1347 m2/g, observed here, is a potential adsorbent for CO2 capture with good recyclability and large capacity up to 4.25 mmol/g at 298 K and 1 atm. CO2 molecules are largely trapped on two types of sites. One (site I) is near the AlO6 clusters, and another (site II) is between two parallel benzene rings with a distance of 6.64 Å. ZJU-620(Al) can be used for CO2/N2 (15/85) separation with the excellent selectivity up to 107.20 at 273 K and 31.93 at 298 K, and the separation factor of 13.68. It is also with excellent moisture-resistance ability due to 5% breakthrough time (outlet concentration reached the 5% of inlet concentration) without reduction at 80% relative humidity than under dry conditions. Water molecules occupy a small amount of CO2 adsorption site I, but they almost do not occupy the CO2 adsorption site II due to hydrophobic methyl-functional ligands. Moreover, CO2 can be adsorbed on the ZJU-620(Al) surface through C═O···H binding of water molecules with high affinity. Thus, ZJU-620(Al) is a candidate adsorbent for CO2 capture and separation especially under humidity conditions.
Collapse
Affiliation(s)
- Laigang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Ling Jiang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Min Hu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Hongxia Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Li Gong
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jiahui Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|