1
|
Elboray EE, Bae T, Kikushima K, Takenaga N, Kita Y, Dohi T. Metal-Free Synthesis of Benzisoxazolones Utilizing ortho-Ester and ortho-Cyano-Functionalized Diaryliodonium Salts with Protected Hydroxylamines. J Org Chem 2024; 89:17518-17527. [PMID: 39523745 DOI: 10.1021/acs.joc.4c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report the development of metal-free one/two-pot procedures for the synthesis of benzo[c]isoxazol-3(1H)-one (benzisoxazolone) heterocycles by designing diaryliodonium salts featuring ortho-ester or nitrile functional groups. These react smoothly with protected hydroxylamines under mild conditions to produce N-arylhydroxylamine intermediates, which readily cyclize to give benzisoxazolone derivatives under acidic conditions. This metal-free process maintains the weak N-O bond, tolerates a wide range of diaryliodonium salts and protected hydroxylamines with diverse functional/protecting groups, thereby overcoming the challenges associated with previous transformations. The protocol expands the reaction scope and broadens the chemical space of the fused isoxazolone backbones to include unprecedented five-membered heteroaryl-fused isoxazolones in high yields. This method is also applicable to gram-scale synthesis, and the resulting benzisoxazolones can be effectively derivatized at the N-position to afford valuable compounds.
Collapse
Affiliation(s)
- Elghareeb E Elboray
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Taeho Bae
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Kotaro Kikushima
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Naoko Takenaga
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
2
|
Hu C, Jia Q, Bao W, Gu G, Li Y, Zhao Y. Synthesis of Diaryl Ethers via Hypervalent Iodine-Mediated C-H Functionalization. Org Lett 2024; 26:7864-7868. [PMID: 39250002 DOI: 10.1021/acs.orglett.4c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A hypervalent iodine-reagent-based C-H functionalization strategy was utilized to synthesize diaryl ethers. This method directly transforms various arenes into their corresponding diaryliodonium salts, followed by a C-O coupling reaction to produce structurally diverse diaryl ethers. The efficacy of this approach in the late-stage structural modifications of complex molecules was demonstrated.
Collapse
Affiliation(s)
- Chenghu Hu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, People's Republic of China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Qi Jia
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Wenjing Bao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Guangxing Gu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Ya Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, People's Republic of China
| | - Yanchuan Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
3
|
Mondal S, Gunschera B, Olofsson B. Transition-Metal-Free C-Diarylations to Reach All-Carbon Quaternary Centers. JACS AU 2024; 4:2832-2837. [PMID: 39211612 PMCID: PMC11350576 DOI: 10.1021/jacsau.4c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Herein, we disclose a convenient protocol for the α-diarylation of carbon nucleophiles to yield heavily functionalized quaternary products. Diaryliodonium salts are utilized to transfer both aryl groups under transition-metal-free conditions, which enables an atom-efficient and high-yielding method with broad functional group tolerance. The methodology is amenable to a wide variety of carbon nucleophiles and can be utilized in late-stage functionalization of complex arenes. Furthermore, it is compatible with a new class of zwitterionic iodonium reagents, which gives access to phenols with an ortho-quaternary center. The diarylated products bear an ortho-iodo substituent that can be utilized in further transformations, including the formation of novel, functionalized six-membered cyclic iodonium salts.
Collapse
Affiliation(s)
- Shobhan Mondal
- Department of Organic Chemistry, Arrhenius
Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Benjamin Gunschera
- Department of Organic Chemistry, Arrhenius
Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Berit Olofsson
- Department of Organic Chemistry, Arrhenius
Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Jiang K, Pan C, Wang L, Wang HY, Han J. Ortho-ester-substituted diaryliodonium salts enabled regioselective arylocyclization of naphthols toward 3,4-benzocoumarins. Beilstein J Org Chem 2024; 20:841-851. [PMID: 38655558 PMCID: PMC11035988 DOI: 10.3762/bjoc.20.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Cyclic annulation involving diaryliodonium salts is an efficient tool for the construction of two or more chemical bonds in a one-pot process. Ortho-functionalized diaryliodonium salts have showcased distinct reactivity in the exploration of benzocyclization or arylocyclization. With this strategy of ortho-ester-substituted diaryliodonium salts, herein, we utilized a copper catalyst to activate the C-I bond of diaryliodonium salts in the generation of aryl radicals, thus resulting in an annulation reaction with naphthols and substituted phenols. This approach yielded a diverse array of 3,4-benzocoumarin derivatives bearing various substituents.
Collapse
Affiliation(s)
- Ke Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Cheng Pan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hao-Yang Wang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Zhang Y, Chen YJ, Yue XD, Zhang YL, Jia JH, Li M, Wang XC. EtOS 2K as a C1 Source: Solvent- and Temperature-Controlled Selective Synthesis of Quinoline-2-thione and Quinoline-2-one Derivatives. Org Lett 2024; 26:1985-1990. [PMID: 38393365 DOI: 10.1021/acs.orglett.4c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Herein, we disclosed a highly chemoselective synthesis of quinoline-2-one and quinoline-2-thione derivatives using EtOS2K as the C1 source. Quinoline-2-one derivatives were synthesized selectively with NaCl as a catalyst in the solvent DMSO/H2O, while quinoline-2-thione derivatives were produced without the need for any catalyst in an environmentally friendly solvent EtOH/H2O. The reaction conditions were mild and had good functional group tolerance.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Yu-Jie Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xiao-Dong Yue
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Yu-Lian Zhang
- Department of Pharmacy, Chongqing University Three Gorges Hospital, Chongqing 404100, People's Republic of China
| | - Jin-Hong Jia
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
6
|
Citarella A, Vittorio S, Dank C, Ielo L. Syntheses, reactivity, and biological applications of coumarins. Front Chem 2024; 12:1362992. [PMID: 38440776 PMCID: PMC10909861 DOI: 10.3389/fchem.2024.1362992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
This comprehensive review, covering 2021-2023, explores the multifaceted chemical and pharmacological potential of coumarins, emphasizing their significance as versatile natural derivatives in medicinal chemistry. The synthesis and functionalization of coumarins have advanced with innovative strategies. This enabled the incorporation of diverse functional fragments or the construction of supplementary cyclic architectures, thereby the biological and physico-chemical properties of the compounds obtained were enhanced. The unique chemical structure of coumarine facilitates binding to various targets through hydrophobic interactions pi-stacking, hydrogen bonding, and dipole-dipole interactions. Therefore, this important scaffold exhibits promising applications in uncountable fields of medicinal chemistry (e.g., neurodegenerative diseases, cancer, inflammation).
Collapse
Affiliation(s)
- Andrea Citarella
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Christian Dank
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Laura Ielo
- Department of Chemistry, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Zhang Y, Wang Y, Wang L, Han J. Selective S-arylation of thiols with o-OTf-substituted diaryliodonium salts toward diarylsulfides. Org Biomol Chem 2024; 22:486-490. [PMID: 38111368 DOI: 10.1039/d3ob01922e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In contrast to the previously reported intramolecular aryl migration, we present the selective sulfenylation of ortho-trifluoromethanesulfonate (OTf) substituted diaryliodonium salts with thiols. As such, diarylsulfides bearing vicinal OTf groups were synthesized in good yields. The unique reactivity of the vicinal OTf group and the sulfur atom in arylsulfides offers further transformations.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yu Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
8
|
Ye J, Liu Y, Luo J, Wan JP. "Alkene-to-Alkene" Difunctionalization of Enaminones for the Synthesis of Polyfunctionalized Alkenes by Transition-Metal-Free C-H and C-N Bond Transformation. Org Lett 2023; 25:8451-8456. [PMID: 37971945 DOI: 10.1021/acs.orglett.3c03353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The three-component reactions of enaminones, disulfides, and alcohols for the synthesis of polyfunctionalized alkenes have been realized via the C-H and C-N bond transformation on enaminones. The reactions proceed in a novel "alkene-to-alkene" difunctionalization mode without using any transition metal. The application of the alkene products in the synthesis of divergent sulfenyl heteroaryls, including sulfenylated pyrazoles, pyrimidines, and isoxazoles, via simple annulation has also been verified.
Collapse
Affiliation(s)
- Jingfeng Ye
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jin Luo
- Analytical and Testing Center, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
9
|
Linde E, Olofsson B. Synthesis of Complex Diarylamines through a Ring-Opening Difunctionalization Strategy. Angew Chem Int Ed Engl 2023; 62:e202310921. [PMID: 37847128 DOI: 10.1002/anie.202310921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
The diarylation and skeletal diversification of unstrained cyclic amines was exploited to expand and modify the favorable properties of this important substrate class with pivotal roles in drug discovery. Cyclic amines were employed in the synthesis of a novel class of amino-substituted diaryliodonium salts, which were converted to highly functionalized diarylamines through an atom-efficient one-pot N-arylation/ring opening reaction with external nucleophiles. The reaction proceeds through in situ formation of a diarylammonium intermediate that undergoes a nucleophilic ring opening by cleavage of the strong C-N bond. A wide variety of diarylamines was obtained through introduction of two different aryl groups of varied electronics, and the retained iodo-substituent enables downfield diversifications of the products. More than 20 nucleophiles, including amines, phenols, carboxylic acids, thiols and halides, were alkylated with high functional group tolerance, and the strategy proved efficient also in in late-stage functionalization of natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Erika Linde
- Department of Organic Chemistry Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| | - Berit Olofsson
- Department of Organic Chemistry Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
10
|
Pan C, Wang L, Han J. Diaryliodonium Salts Enabled Arylation, Arylocyclization, and Aryl-Migration. CHEM REC 2023; 23:e202300138. [PMID: 37249418 DOI: 10.1002/tcr.202300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Our research interest focusing on synthetic methodology with diaryliodonium salts, is summarized in this account. Besides employing a dual activation strategy of C-I and ortho C-H bonds, we have introduced vicinal functional groups at ortho-positions of diaryliodonium salts, in which their unique reactivities have been explored in various processes, including arylation, diarylation, cascade annulation, benzocyclization, arylocyclization, and intramolecular aryl migration. The variety of mechanisms of these reactions that involves either transition metals, especially palladium in organometallic catalysis, or transition-metal free conditions, were discussed in the context.
Collapse
Affiliation(s)
- Cheng Pan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
11
|
Sephton T, Large JM, Butterworth S, Greaney MF. Synthesis of Functionalized Pyrrolidinone Scaffolds via Smiles-Truce Cascade. Org Lett 2023; 25:6736-6740. [PMID: 37668613 PMCID: PMC10510726 DOI: 10.1021/acs.orglett.3c02559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 09/06/2023]
Abstract
Arylsulfonamides have been found to react with cyclopropane diesters under simple base treatment to give α-arylated pyrrolidinones. This one-pot process comprises three steps: nucleophilic ring-opening of the cyclopropane, reaction of the resulting enolate in a Smiles-Truce aryl transfer, and lactam formation. The reaction represents a new, operationally simple approach to biologically active pyrrolidinones and expands Smiles-Truce arylation methods to encompass sp3 electrophilic centers in cascade processes.
Collapse
Affiliation(s)
- Thomas Sephton
- School
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Jonathan M. Large
- Accelerator
Building, Open Innovation Campus, LifeArc, Stevenage SG1 2FX, U.K.
| | - Sam Butterworth
- Division
of Pharmacy and Optometry, School of Health Sciences, Manchester Academic
Health Sciences Centre, University of Manchester, Manchester M13 9PL, U.K.
| | | |
Collapse
|
12
|
Liu X, Wang L, Wang HY, Han J. Diversification of Complex Diaryl Ethers via Diaryliodonium Intramolecular Aryl Rearrangement. J Org Chem 2023; 88:13089-13101. [PMID: 37661693 DOI: 10.1021/acs.joc.3c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In this study, we present an efficient site-selective O-arylation method applicable to a broad range of complex arenes involving intramolecular aryl rearrangement. The reaction was facilitated by diaryliodonium salts bearing vicinal trifluoromethanesulfonate (OTf) groups. The procedure was initiated with selective C-H bond activation of arenes, which were then converted into diaryl ethers through nucleophilic aromatic substitution (SNAr). This synthetic method successfully affords complex diaryl ether derivatives, showcasing its practicality for the diversification of functionalized arenes and pharmaceutical agents.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hao-Yang Wang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
13
|
Radzhabov AD, Soldatova NS, Ivanov DM, Yusubov MS, Kukushkin VY, Postnikov PS. Metal-free and atom-efficient protocol for diarylation of selenocyanate by diaryliodonium salts. Org Biomol Chem 2023; 21:6743-6749. [PMID: 37552120 DOI: 10.1039/d3ob00833a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
We developed an atom- and reaction mass efficient strategy for the preparation of diarylselenides using iodonium salts as reactants. The developed approach allows the obtaining of diarylselenides from the corresponding trimethoxyphenyl-substituted iodonium salts via a two-step one-pot reaction sequence. The proposed metal-free methodology is based on the involvement of both iodonium aryl groups for diarylation.
Collapse
Affiliation(s)
- Amirbek D Radzhabov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
| | - Daniil M Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
- Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
| |
Collapse
|
14
|
Saito F, Euteneuer S. One-Pot, Three-Component Assembly of Sulfides Using a Sulfoxide Reagent as a Sulfur Dication Equivalent. Org Lett 2023; 25:6057-6061. [PMID: 37551799 DOI: 10.1021/acs.orglett.3c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
We report a one-pot, three-component synthesis of sulfides by exploiting a sulfoxide reagent as a formal sulfur dication equivalent. Our protocol consists of three simple chemical operations involving two Grignard reagents and trimethylsilyl chloride (TMSCl) to sequentially form sulfenate anions, sulfenate esters, and sulfides. We demonstrate a wide range of Grignard reagents to be coupled, thereby allowing the modular, thiol-free synthesis of sulfides including dialkenyl and alkenyl-alkynyl sulfides.
Collapse
Affiliation(s)
- Fumito Saito
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Simon Euteneuer
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
15
|
Zhou YJ, Fang YG, Yang K, Lin JY, Li HQ, Chen ZJ, Wang ZY. DBDMH-Promoted Methylthiolation in DMSO: A Metal-Free Protocol to Methyl Sulfur Compounds with Multifunctional Groups. Molecules 2023; 28:5635. [PMID: 37570605 PMCID: PMC10419854 DOI: 10.3390/molecules28155635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Organic thioethers play an important role in the discovery of drugs and natural products. However, the green synthesis of organic sulfide compounds remains a challenging task. The convenient and efficient synthesis of 5-alkoxy-3-halo-4-methylthio-2(5H)-furanones from DMSO is performed via the mediation of 1,3-dibromo-5,5-dimethylhydantoin (DBDMH), affording a facile route for the sulfur-functionalization of 3,4-dihalo-2(5H)-furanones under transition metal-free conditions. This new approach has demonstrated the functionalization of non-aromatic Csp2-X-type halides with unique structures containing C-X, C-O, C=O and C=C bonds. Compared with traditional synthesis methods using transition metal catalysts with ligands, this reaction has many advantages, such as the lower temperature, the shorter reaction time, the wide substrate range and good functional group tolerance. Notably, DMSO plays multiple roles, and is simultaneously used as an odorless methylthiolating reagent and safe solvent.
Collapse
Affiliation(s)
- Yong-Jun Zhou
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| | - Yong-Gan Fang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| | - Kai Yang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Jian-Yun Lin
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huan-Qing Li
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| | - Zu-Jia Chen
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| |
Collapse
|