1
|
Chang XL, Zhang XR, Qiang Y, Cao YH, Shang XY, Wang WF, Yang JL. In Situ Biomineralization and Citric Acid Etching Strategy for Enhancing Activity of Immobilized Acetylcholinesterase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22794-22802. [PMID: 39413434 DOI: 10.1021/acs.langmuir.4c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Enhancing the structural stability of an enzyme and maintaining its catalytic activity are effective ways to improve enzyme utilization and reduce the cost of drug screening. However, immobilized enzyme activity tends to decrease in existing immobilization techniques due to conformational changes and microenvironmental restrictions. In this paper, we present a facile approach to prepare immobilized acetylcholinesterase (AChE) with high activity by a ZIF-8 in situ immobilization and citric acid (CA) etching strategy. CA breaks the coordination bond of ZIF-8 and produces defects, expanding the pore space, improving substrate accessibility, and fully exposing the active site of the enzyme. The enhancement of the catalytic activity of AChE@ZIF-8-CA was about 6.10-fold compared with the free enzyme. In addition, AChE@ZIF-8-CA exhibited an excellent encapsulation efficiency and good tolerance to temperature, pH, and organic solvents. The relative activity remains at the initial 83.77% even in five repeated experiments. The strategy provides a novel and efficient way to quickly construct highly active immobilized enzymes under mild conditions.
Collapse
Affiliation(s)
- Xiang-Lei Chang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin-Ru Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yin Qiang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Hong Cao
- Longnan Academy of Non-wood Forest, Longnan 742500, P. R. China
| | - Xian-Yi Shang
- Longnan Municipal Enrich People Industry Development Corporation, Longnan 742500, P. R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Chen T, Ma YJ, Xiao G, Fang X, Liu Y, Li K, Yan D. The trade-off anionic modulation in metal-organic glasses showing color-tunable persistent luminescence. MATERIALS HORIZONS 2024; 11:4951-4960. [PMID: 39045671 DOI: 10.1039/d4mh00771a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Ultralong room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) materials provide exciting opportunities for the rational design of persistent luminescence owing to their long-lived excitons. However, conventional rare-earth-based all-inorganic emitters involve high cost and harsh synthesis conditions, and purely organic systems may require complicated synthesis routes and tedious purification. Therefore, it is highly desirable to develop a cost-effective and easily manufacturable method for achieving color-tunable RTP-TADF with a long afterglow. Herein, we demonstrate a rational strategy to introduce different anions (Cl-, Br- and OAc- ions) into a Zn-based metal-organic scaffold, which can improve the crystal rigidity and achieve a well-balanced RTP-TADF. Both theoretical and experimental studies have demonstrated that the adjustment of different anions can effectively modulate the spin-orbit coupling (SOC) and the energy gap of singlet-triplet states (ΔEST) and then tailor the afterglow lifetime. Moreover, we prepared dye-doped metal-organic hybrid glasses with remarkable potential for the color-tunable afterglow. Therefore, this work not only provides a new horizon for modulating crystal and glass states with color/lifetime-tunable persistent luminescence, but also contributes to optical information storage and anti-counterfeiting technology.
Collapse
Affiliation(s)
- Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yumin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Kangjing Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
3
|
Jiang Y, Hu X, Mei Y, Li X, Chen S, Yuan J, Wang Y, Tao R, Si J, Xu Z, Ke F, Yang H. A new UiO-66-NH 2 MOF-based nano-immobilized DFR enzyme as a biocatalyst for the synthesis of anthocyanidins. Int J Biol Macromol 2024; 277:134296. [PMID: 39094888 DOI: 10.1016/j.ijbiomac.2024.134296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Anthocyanidins and anthocyanins are one subclass of flavonoids in plants with diverse biological functions and have health-promoting effects. Dihydroflavonol 4-reductase (DFR) is one of the important enzymes involved in the biosynthesis of anthocyanidins and other flavonoids. Here, a new MOF-based nano-immobilized DFR enzyme acting as a nano-biocatalyst for the production of anthocyanidins in vitro was designed. We prepared UiO-66-NH2 MOF nano-carrier and recombinant DFR enzyme from genetic engineering. DFR@UiO-66-NH2 nano-immobilized enzyme was constructed based on covalent bonding under the optimum immobilization conditions of the enzyme/carrier ratio of 250 mg/g, 37 °C, pH 6.5 and fixation time of 10 min. DFR@UiO-66-NH2 was characterized and its catalytic function for the synthesis of anthocyanidins in vitro was testified using UPLC-QQQ-MS analysis. Compared with free DFR enzyme, the enzymatic reaction catalyzed by DFR@UiO-66-NH2 was more easily for manipulation in a wide range of reaction temperatures and pH values. DFR@UiO-66-NH2 had better thermal stability, enhanced adaptability, longer-term storage, outstanding tolerances to the influences of several organic reagents and Zn2+, Cu2+ and Fe2+ ions, and relatively good reusability. This work developed a new MOF-based nano-immobilized biocatalyst that had a good prospect of application in the green synthesis of anthocyanins in the future.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Xiaodie Hu
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Yu Mei
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Xuefeng Li
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Shilin Chen
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Jingbo Yuan
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Yang Wang
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Ranran Tao
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Jingyu Si
- Department of Chemistry and Materials Engineering, Hefei University, Hefei 230601, People's Republic of China.
| | - Zezhong Xu
- Analytical and Testing Center, Hefei University, Hefei 230601, People's Republic of China.
| | - Fei Ke
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Hua Yang
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| |
Collapse
|
4
|
Ma YF, Zhang ML, Lu XY, Ren YX, Yang XG. Artificial light harvesting system of CM6@Zn-MOF nanosheets with highly enhanced photoelectric performance. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125152. [PMID: 39332073 DOI: 10.1016/j.saa.2024.125152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024]
Abstract
As donors for effective energy transfer, metal-organic frameworks (MOFs) have attracted the attention of many experts in the field of artificial light-harvesting materials. This study introduces a novel two-dimensional Zn-MOF, synthesized using flexible 1,3-phenyldiacetic acid (H2mpda) and rigid 1,3,5-tris(1-imidazolyl)benzene (tib) as organic ligands. Through atomic force microscopy (AFM), we have determined the monolayer thickness of this novel material to be 5 nm. Achieving two-dimensional Zn-MOF nanosheets with large BET surface area was made possible by employing ultrasonic stripping techniques. The fluorescence emission spectrum of Zn-MOF nanosheets overlaps with the UV-vis absorption spectrum of coumarin 6 (CM6), so they can be used as a donor and acceptor for fluorescence resonance energy transfer (FRET) to construct an artificial light-harvesting system (ALHS). Compared with single crystal Zn-MOF, CM6@Zn-MOF(2) has a larger BET surface area (41 m2/g), higher quantum yield (Φfl, 30.56 %), narrower energy gap (Eg, 2.87 eV), and the light-harvesting range extends to the visible green light area. Notably, CM6@Zn-MOF(2) demonstrates a robust photocurrent response, characterized by a photocurrent on/off ratio (Ilight/Idark) of 21, and a maximum photocurrent density that surpasses that of pure Zn-MOF (2.25:1). This study successfully designed a high-performance photoelectric conversion material CM6@Zn-MOF(2), which laid a certain theoretical foundation for new artificial optical acquisition systems and electrochemical material selection.
Collapse
Affiliation(s)
- Ya-Fei Ma
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Mei-Li Zhang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China.
| | - Xue-Ying Lu
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Yi-Xia Ren
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| |
Collapse
|
5
|
Qiao M, Li Y, Li Y, Chang M, Zhang X, Yuan S. Unlocking of Hidden Mesopores for Enzyme Encapsulation by Dynamic Linkers in Stable Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024:e202409951. [PMID: 39177482 DOI: 10.1002/anie.202409951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Mesoporous metal-organic frameworks (MOFs) are promising supports for the immobilization of enzymes, yet their applications are often limited by small pore apertures that constrain the size of encapsulated enzymes to below 5 nm. In this study, we introduced labile linkers (4,4',4''-(2,4,6-boroxintriyl)-tribenzoate, TBTB) with dynamic boroxine bonds into mesoporous PCN-333, resulting in PCN-333-TBTB with enhanced enzyme loading and protection capabilities. The selective breaking of B-O bonds creates defects in PCN-333, which effectively expands both window and cavity sizes, thereby unlocking hidden mesopores for enzyme encapsulation. Consequently, this strategy not only increases the adsorption kinetics of small enzymes (<5 nm) such as cytochrome c (Cyt C) and horseradish peroxidase (HRP), but also enables the immobilization of various large-sized enzymes (>5 nm), such as glycoenzymes. The glycoenzymes@PCN-333-TBTB platform was successfully applied to synthesize thirteen complex oligosaccharides and polysaccharides, demonstrating high activity and enhanced enzyme stability. The dynamic linker-mediated enzyme encapsulation strategy enables the immobilization of enzymes exceeding the inherent pore size of MOFs, thus broadening the scope of enzymatic catalytic reactions achievable with MOF materials.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Youcong Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanqi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Mengting Chang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Li W, Guo B, Zhang K, Chen X, Zhang H, Chen W, Chen H, Li H, Feng X. Ru-regulated electronic structure CoNi-MOF nanosheets advance water electrolysis kinetics in alkaline and seawater media. J Colloid Interface Sci 2024; 668:181-189. [PMID: 38677207 DOI: 10.1016/j.jcis.2024.04.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/23/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Herein, an ion-exchange strategy is utilized to greatly improve the kinetics of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by Ru-modified CoNi- 1,3,5-Benzenetricarboxylic acid (BTC)-metal organic framework nanosheets (Ru@CoNi-MOF). Due to the higher Ni active sites and lower electron transfer impedance, Ru@CoNi-MOF catalyst requires the overpotential as low as 47 and 279 mV, at a current density of 10 mA/cm2 toward HER and OER, respectively. Significantly, the mass activity of Ru@CoNi-MOF for HER and OER are 25.9 and 10.6 mA mg-1, nearly 15.2 and 8.8 times higher than that of Ni-MOF. In addition, the electrolyzer of Ru@CoNi-MOF demonstrates exceptional electrolytic performance in both KOH and seawater environment, surpasses the commercial Pt/C||IrO2 couple. Theoretical calculations prove that introducing Ru atoms in - CoNi-MOF modulates the electronic structure of Ni, optimizes adsorption energy for H* and reduces energy barrier of metal organic frameworks (MOFs). This modification significantly improves the kinetic rate of the Ru@CoNi-MOF during water splitting. Certainly, this study highlights the utilization of MOF nanosheets as advanced HER/OER electrocatalysts with immense potential, and will paves a way to develop more efficient MOFs for catalytic applications.
Collapse
Affiliation(s)
- Wenqiang Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Bowen Guo
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473601, PR China
| | - Ka Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xueyi Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Heng Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Wanyu Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Haipeng Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Huabo Li
- Guangdong Alcohol and Hydrogen New Energy Research Institute Co., Ltd., Guangzhou 511316, PR China
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China.
| |
Collapse
|
7
|
Xiong L, Duan S, Wang W, Yao Y, Zhang H, Liu B, Lin W, Liu H, Wu J, Lu L, Zhang X. ZIF-8 functionalized S-tapered fiber-optic sensor for polystyrene nanoplastics detection by electrostatic adsorption. Talanta 2024; 275:126168. [PMID: 38678924 DOI: 10.1016/j.talanta.2024.126168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Microplastic (MP) residues in marine have become an increasingly serious environmental pollution issue, and in recent years the detection of MPs in marine started to attract worldwide research interests. Optical-fiber-based environmental sensors have been extensively employed for their several merits such as high sensitivity, pressure resistance, compactness and ease of constructing communication networks. However, fiber-optic refractive index sensors are not specifically developed for distinguishing MPs from other inorganic particles suspended in water. In this paper, an metal-organic framework (MOF) ZIF-8 functionalized S-tapered fiber (STF) sensor is proposed for specific detection of polystyrene nanoplastics (PSNPs) in aqueous environment. ZIF-8 coordination nanoporous polymers with different film thickness were immobilized over the surface of the fabricated STF structure based on self-growth technique and yielding a large surface area over the sensor surface. High sensitivity detection can be achieved by converting the concentration perturbation of PSNPs into evanescent waves over the ZIF-8 functionalized STF surface through the strong electrostatic adsorption effect and π-π stacking, while the fabricated sensor is insensitive to gravels with silica as the primary component in water. It is found that the proposed detector with 18 film layers achieves a sensitivity up to 114.1353nm/%(w/v) for the PSNPs concentration range of 0.01 %(w/v) to 0.08 %(w/v).
Collapse
Affiliation(s)
- Lingyi Xiong
- Institute of Modern Optics, Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin, 300350, China
| | - Shaoxiang Duan
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| | - Wenyu Wang
- Institute of Modern Optics, Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin, 300350, China
| | - Yuan Yao
- Institute of Modern Optics, Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin, 300350, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China
| | - Hao Zhang
- Institute of Modern Optics, Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin, 300350, China
| | - Bo Liu
- Institute of Modern Optics, Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin, 300350, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China
| | - Wei Lin
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Haifeng Liu
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Jixuan Wu
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronics and Information Engineering, Tiangong University, Tianjin, 300387, China
| | - Lan Lu
- Center for Policy & Project Research, Sansha, 570100, China
| | - Xu Zhang
- Institute of Modern Optics, Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin, 300350, China
| |
Collapse
|
8
|
Yang XG, Chen YJ, Yin PP, Li Y, Yang SY, Li YM, Ma LF. Low thermal quenching of metal halide-based metal-organic framework phosphor for light-emitting diodes. Chem Sci 2024; 15:d4sc04228j. [PMID: 39149214 PMCID: PMC11322981 DOI: 10.1039/d4sc04228j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Phosphor-converted white light-emitting diodes (PC-WLEDs) have attracted considerable attention in solid-state lighting and display. However, urgent issues of thermal quenching and high cost remain formidable challenges. Herein, a novel metal-organic framework (MOF) phosphor [CdCl2(AD)] was facilely prepared using a mixture of CdCl2 and acridine (AD) under solvothermal conditions. It shows intensive green emission with a long lifetime of 31.88 ns and quantum yield of 65% while maintaining 95% and 84% of its initial emission intensity after remaining immersed in water for 60 days and being heated to 150 °C, respectively. The low thermal quenching of this MOF material is comparable to or can even exceed that of commercial inorganic phosphors. The combination of experiments and theoretical calculations reveals that the alternating arrangement of delocalized AD π-conjugated systems and CdCl2 inorganic chains through strong coordination bonds and π⋯π stacking interactions imparts the MOF phosphor with high thermal stability and optoelectronic performance. The successful fabrication of green and white LED devices by coating [CdCl2(AD)] and/or N630 red phosphor on a 365/460 nm commercial diode chip suggests a promising and potential alternative to commercial phosphors.
Collapse
Affiliation(s)
- Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Ying-Jun Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Pei-Pei Yin
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Yan Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Shu-Yao Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Yi-Man Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| |
Collapse
|
9
|
Wu XZ, Wu RQ, Lin ZT, Chen X, Hu JH, Li DJ. MOF-Derived Zn/N-Doped Porous Carbon Film on a Carbon Nanotube for High-Performance Supercapacitors. Inorg Chem 2024; 63:14200-14205. [PMID: 39012164 DOI: 10.1021/acs.inorgchem.4c02330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Designing high-performance binder-free electrochemical electrodes is crucially important toward supercapacitors. In this paper, a Zn/N-doped porous carbon film coating on flexible carbon nanotubes (ZIF-8@CT-800) derived from the epitaxial Zn-MOF film growth on cotton textile was successfully fabricated via a combination of the liquid-phase epitaxial (LPE) method and calcination treatments. The ZIF-8@CT-800 serves directly as a self-supported electrode for supercapacitors and exhibits a high areal capacitance of 930 mF·cm-2 at a current density of 1 mA·cm-2 and a good recyclability of 86% after 2000 cycles. The excellent supercapacitor property is ascribed to the unique structural design of ZIF-8@CT-800, which provides appropriate channels for enhanced electronic and ionic transport as well as increased surface area for accessing more electrolyte ions. This work will provide significant guidance for designing MOF-derived porous carbon to construct flexible binder-free electrode materials with high electrochemical performance.
Collapse
Affiliation(s)
- Xiang-Zong Wu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| | - Rui-Qiu Wu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| | - Zi-Tong Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| | - Xuan Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| | - Jian-Hua Hu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| | - De-Jing Li
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| |
Collapse
|
10
|
Xia F, Yang J, Chen J, Liu X, Ma Z, Gu J. Coordination-Driven Templated Synthesis of Hierarchically Porous Zeolitic Imidazolate Frameworks for Cascade Enzyme Cycle Amplification Coupled Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042822 DOI: 10.1021/acsami.4c06788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although hierarchically porous zeolitic imidazolate frameworks (HPZIFs) not only inherit the intrinsic architectural and chemical stabilities of their microporous counterparts but also afford open space for the efficient mass diffusion of the macromolecules involved, their rational design and construction are still challenging. Herein, HPZIFs with tailorable pore sizes ranging from 18 to 54 nm were successfully fabricated by using a newly developed soft-template-directed strategy. Our success rooted in the fact that the screened PS81-PVP44-PEO113 triblock copolymer could effectively coordinate with the metal precursor for the directed crystallization of ZIFs along surfactant assemblies. The advantages of continuous large pores and open structures in such HPZIFs were fully taken into account to serve as a bioreactor for the efficient immunoassay. The expanded large pores provided not only a significantly vast surface area to enhance the density of capture antibodies but also enough space for accommodating multiple conjugated biomolecules in one pore channel. In combination with a cascade enzyme cycle amplification strategy, a model biomarker of prostate-specific antigen (PSA) at the femtomolar level was checked with a limit of detection of 92 fM using the developed immunosensor. Specific screening on patients with prostate cancer or even benign prostatic hyperplasia was exemplified through accurately quantifying small changes of PSA concentration in clinical serum samples, prefiguring the great potential of the developed HPZIF-8 immunosensor platform for the early monitoring and diagnostics of diseases.
Collapse
Affiliation(s)
- Fan Xia
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ximeng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhefan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Xiang G, Wang B, Zhang W, Dong Y, Tao J, Zhang A, Chen R, Jiang T, Zhao X. A Zn-MOF-GOx-based cascade nanoreactor promotes diabetic infected wound healing by NO release and microenvironment regulation. Acta Biomater 2024; 182:245-259. [PMID: 38729545 DOI: 10.1016/j.actbio.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Diabetic wound healing is a great clinical challenge due to the microenvironment of hyperglycemia and high pH value, bacterial infection and persistent inflammation. Here, we develop a cascade nanoreactor hydrogel (Arg@Zn-MOF-GOx Gel, AZG-Gel) with arginine (Arg) loaded Zinc metal organic framework (Zn-MOF) and glucose oxidase (GOx) based on chondroitin sulfate (CS) and Pluronic (F127) to accelerate diabetic infected wound healing. GOx in AZG-Gel was triggered by hyperglycemic environment to reduce local glucose and pH, and simultaneously produced hydrogen peroxide (H2O2) to enable Arg-to release nitric oxide (NO) for inflammation regulation, providing a suitable microenvironment for wound healing. Zinc ions (Zn2+) released from acid-responsive Zn-MOF significantly inhibited the proliferation and biofilm formation of S.aureus and E.coli. AZG-Gel significantly accelerated diabetic infected wound healing by down-regulating pro-inflammatory tumor necrosis factor (TNF)-α and interleukin (IL)-6, up-regulating anti-inflammatory factor IL-4, promoting angiogenesis and collagen deposition in vivo. Collectively, our nanoreactor cascade strategy combining "endogenous improvement (reducing glucose and pH)" with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new idea for promoting diabetic infected wound healing by addressing both symptoms and root causes. STATEMENT OF SIGNIFICANCE: A cascade nanoreactor (AZG-Gel) is constructed to solve three key problems in diabetic wound healing, namely, hyperglycemia and high pH microenvironment, bacterial infection and persistent inflammation. Local glucose and pH levels are reduced by GOx to provide a suitable microenvironment for wound healing. The release of Zn2+ significantly inhibits bacterial proliferation and biofilm formation, and NO reduces wound inflammation and promotes angiogenesis. The pH change when AZG-Gel is applied to wounds is expected to enable the visualization of wound healing to guide the treatment of diabetic wound. Our strategy of "endogenous improvement (reducing glucose and pH)" combined with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new way for promoting diabetic wound healing.
Collapse
Affiliation(s)
- Guangli Xiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenshang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yu Dong
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiaojiao Tao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Aijia Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rui Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
12
|
Yang Y, Yu L, Jiang X, Li Y, He X, Chen L, Zhang Y. Textural Precursor Compositions Harvested for Independent Signal Generators: Scaling Micron-Sized Flower-Like Metal-Organic Frameworks as Amplifying Units for Dual-Mode Glycoprotein Assay. Anal Chem 2024; 96:9503-9511. [PMID: 38780632 DOI: 10.1021/acs.analchem.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this work, a micron-sized flower-like metal-organic frameworks (MOFs)-based boronate-affinity sandwich-type immunoassay was fabricated for the dual-mode glycoprotein assay. For proof of concept, the flower-like MOFs were synthesized from transition Cu nodes and tetrakis (4-carboxyphenyl) porphyrin (TCPP) ligands by spontaneous standing assembly. In addition, the specificity toward glycoprotein involved the antigen recognition as well as covalent bonding via the boronate-glycan affinity, and the immediate signal responses were initiated by textural decomposition of the flower-like MOFs. Intriguingly, Cu nodes, of which the valence state is dominant by CuI species, can endow the Fenton-like catalytic reaction of the fluorogenic substrate for generating fluorescence signals. For benefits, TCPP ligands, in which each TCPP molecule has four guest donors, can provide multiple valences for the assembly of cyclodextrin-capped gold nanoparticles via host-guest interaction for colorimetry output. Albeit important, the scaling micrometer patterns for the flower-like MOFs carrying numerous Cu nodes and TCPP ligands can also function as amplifying units, signifying the output signal. The detection limit of the dual-mode glycoprotein assay can reach 10.5 nM for the fluorescence mode and 18.7 nM for the colorimetry mode, respectively. Furthermore, the merits of harvesting different signal generators toward the multimodal readout patterns can allow the mutual verification and make the analytical results more reliable. Collectively, our proposed assay may offer a new idea in combining the inherent textural merits from MOFs for dual signal generators, which can also emphasize accurate detection capability for glycoprotein assay.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Licheng Yu
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Xiaowen Jiang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| |
Collapse
|
13
|
Song H, Zhang W, Zhang S, Liu Y, Su P, Song J, Yang Y. Trypsin Encapsulation in the Zeolitic Imidazolate Framework for Low-Molecular Weight Protein Analysis with High Selectivity and Efficiency. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24398-24409. [PMID: 38712727 DOI: 10.1021/acsami.4c04507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Low-molecular weight proteins (LWPs) are important sources of biological information in biomarkers, signaling molecules, and pathology. However, the separation and analysis of LWPs in complex biological samples are challenging, mainly due to their low abundance and the complex sample pretreatment procedure. Herein, trypsin modified by poly(acrylic acid) (PAA) was encapsulated by a zeolitic imidazolate framework (ZIF-L). Mesopores were formed on the ZIF-L with the introduction of PAA. An alternative strategy for separation and pretreatment of LWPs was developed based on the prepared ZIF-L-encapsulated trypsin with adjustable pore size. The mesoporous structure of the prepared materials selectively excluded high-molecular weight proteins from the reaction system, allowing LWPs to enter the pores and react with the internal trypsin, resulting in an improved separation efficiency. The hydrophobicity of the ZIF-L simplified the digestion process by inducing significant structural changes in substrate proteins. In addition, the enzymatic activity was significantly enhanced by the developed encapsulation method that maintained the enzyme conformation, allowed low mass transfer resistance, and possessed a high enzyme-to-substrate ratio. As a result, the ZIF-L-encapsulated trypsin can achieve highly selective separation, valid denaturation, and efficient digestion of LWPs in a short time by simply mixing with substrate proteins, greatly simplifying the separation and pretreatment process of the traditional hydrolysis method. The prepared materials and the developed strategy demonstrated an excellent size-selective assay performance in model protein mixtures, showing great potential in the application of proteomics analysis.
Collapse
Affiliation(s)
- Hanyue Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenkang Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuyi Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
14
|
Weng Y, Chen R, Hui Y, Chen D, Zhao CX. Boosting Enzyme Activity in Enzyme Metal-Organic Framework Composites. CHEM & BIO ENGINEERING 2024; 1:99-112. [PMID: 38566967 PMCID: PMC10983012 DOI: 10.1021/cbe.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Enzymes, as highly efficient biocatalysts, excel in catalyzing diverse reactions with exceptional activity and selective properties under mild conditions. Nonetheless, their broad applications are hindered by their inherent fragility, including low thermal stability, limited pH tolerance, and sensitivity to organic solvents and denaturants. Encapsulating enzymes within metal-organic frameworks (MOFs) can protect them from denaturation in these harsh environments. However, this often leads to a compromised enzyme activity. In recent years, extensive research efforts have been dedicated to enhancing enzymatic activity within MOFs, leading to the development of new enzyme-MOF composites that not only preserve their catalytic potential but also outperform their free counterparts. This Review provides a comprehensive review on recent developments in enzyme-MOF composites with a specific emphasis on their enhanced enzymatic activity compared to free enzymes.
Collapse
Affiliation(s)
- Yilun Weng
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Rui Chen
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Yue Hui
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Dong Chen
- State
Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310003, China
| | - Chun-Xia Zhao
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
15
|
Ren H, Yuan J, Li YM, Li WJ, Guo YH, Zhang YB, Wang BH, Ma K, Peng L, Hu G, Wang WQ, He H, Chou LY, Zeng MH, Zhang YB, Cheng L. Highly Enantioselective Catalysis by Enzyme Encapsulated in Metal Azolate Frameworks with Micelle-Controlled Pore Sizes. ACS CENTRAL SCIENCE 2024; 10:358-366. [PMID: 38435533 PMCID: PMC10906037 DOI: 10.1021/acscentsci.3c01432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2024]
Abstract
Encapsulating enzymes within metal-organic frameworks has enhanced their structural stability and interface tunability for catalysis. However, the small apertures of the frameworks restrict their effectiveness to small organic molecules. Herein, we present a green strategy directed by visible linker micelles for the aqueous synthesis of MAF-6 that enables enzymes for the catalytic asymmetric synthesis of chiral molecules. Due to the large pore aperture (7.6 Å), double the aperture size of benchmark ZIF-8 (3.4 Å), MAF-6 allows encapsulated enzyme BCL to access larger substrates and do so faster. Through the optimization of surfactants' effect during synthesis, BCL@MAF-6-SDS (SDS = sodium dodecyl sulfate) displayed a catalytic efficiency (Kcat/Km) that was 420 times greater than that of BCL@ZIF-8. This biocomposite efficiently catalyzed the synthesis of drug precursor molecules with 94-99% enantioselectivity and nearly quantitative yields. These findings represent a deeper understanding of de novo synthetic encapsulation of enzyme in MOFs, thereby unfolding the great potential of enzyme@MAF catalysts for asymmetric synthesis of organics and pharmaceuticals.
Collapse
Affiliation(s)
- Hao Ren
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jian Yuan
- Avogadral
Solutions, 3130 Grants
Lake Boulevard #18641, Sugar Land, Texas 77496, United States
| | - Yi-Ming Li
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- School
of Chemistry and Chemical Engineering, Anhui
University, Hefei 230601, China
| | - Wen-Jing Li
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yi-Hang Guo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fujian 350002, China
- School
of
Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry
and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Yi-Bo Zhang
- School
of
Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry
and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Bing-Hao Wang
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Kaili Ma
- Analysis
and Testing Center, Southeast University, Nanjing 211189, China
| | - Lu Peng
- Analysis
and Testing Center, Southeast University, Nanjing 211189, China
| | - Guping Hu
- School
of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wen-Qi Wang
- School
of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution
Electron Microscopy, State Key Laboratory of Advanced Medical Materials
and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hailong He
- School
of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution
Electron Microscopy, State Key Laboratory of Advanced Medical Materials
and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Lien-Yang Chou
- School
of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution
Electron Microscopy, State Key Laboratory of Advanced Medical Materials
and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Ming-Hua Zeng
- School
of
Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry
and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Yue-Biao Zhang
- School
of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution
Electron Microscopy, State Key Laboratory of Advanced Medical Materials
and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Lin Cheng
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
16
|
Zhou Z, Wang T, Hu T, Xu H, Cui L, Xue B, Zhao X, Pan X, Yu S, Li H, Qin Y, Zhang J, Ma L, Liang R, Tan C. Synergistic Interaction between Metal Single-Atoms and Defective WO 3- x Nanosheets for Enhanced Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2311002. [PMID: 38408758 DOI: 10.1002/adma.202311002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
Although metal single-atom (SA)-based nanomaterials are explored as sonosensitizers for sonodynamic therapy (SDT), they normally exhibit poor activities and need to combine with other therapeutic strategies. Herein, the deposition of metal SAs on oxygen vacancy (OV)-rich WO3- x nanosheets to generate a synergistic effect for efficient SDT is reported. Crystalline WO3 and OV-rich WO3- x nanosheets are first prepared by simple calcination of the WO3 ·H2 O nanosheets under an air and N2 atmosphere, respectively. Pt, Cu, Fe, Co, and Ni metal SAs are then deposited on WO3- x nanosheets to obtain metal SA-decorated WO3- x nanocomposites (M-WO3- x ). Importantly, the Cu-WO3- x sonosensitizer exhibits a much higher activity for ultrasound (US)-induced production of reactive oxygen species than that of the WO3- x and Cu SA-decorated WO3 , which is also higher than other M-WO3- x nanosheets. Both the experimental and theoretical results suggest that the excellent SDT performance of the Cu-WO3- x nanosheets should be attributed to the synergistic effect between Cu SAs and WO3- x OVs. Therefore, after polyethylene glycol modification, the Cu-WO3- x can quickly kill cancer cells in vitro and effectively eradicate tumors in vivo under US irradiation. Transcriptome sequencing analysis and further molecular validation suggest that the Cu-WO3- x -mediated SDT-activated apoptosis and TNF signaling pathways are potential drivers of tumor apoptosis induction.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Tao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Hao Xu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lin Cui
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Baoli Xue
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xinshuo Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xiangrong Pan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Shilong Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
17
|
Ye P, Fang K, Wang H, Wang Y, Huang H, Mo C, Ning J, Hu Y. Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation. Nat Commun 2024; 15:1012. [PMID: 38307871 PMCID: PMC10837452 DOI: 10.1038/s41467-024-45320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Oxygen evolution reaction (OER) is critical to renewable energy conversion technologies, but the structure-activity relationships and underlying catalytic mechanisms in catalysts are not fully understood. We herein demonstrate a strategy to promote OER with simultaneously achieved lattice oxygen activation and enhanced local electric field by dual doping of cations and anions. Rough arrays of Fe and F co-doped CoO nanoneedles are constructed, and a low overpotential of 277 mV at 500 mA cm-2 is achieved. The dually doped Fe and F could cooperatively tailor the electronic properties of CoO, leading to improved metal-oxygen covalency and stimulated lattice oxygen activation. Particularly, Fe doping induces a synergetic effect of tip enhancement and proximity effect, which effectively concentrates OH- ions, optimizes reaction energy barrier and promotes O2 desorption. This work demonstrates a conceptual strategy to couple lattice oxygen and local electric field for effective electrocatalytic water oxidation.
Collapse
Affiliation(s)
- Pengcheng Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Keqing Fang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yahao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Hao Huang
- Department of Microsystems, University of South-Eastern Norway, Borre, 3184, Norway.
| | - Chenbin Mo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiqiang Ning
- Department of Optical Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Yong Hu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
18
|
Wei Y, Zhao H, Liu Z, Yang J, Ren J, Qu X. MOFs Modulate Copper Trafficking in Tumor Cells for Bioorthogonal Therapy. NANO LETTERS 2024; 24:1341-1350. [PMID: 38252869 DOI: 10.1021/acs.nanolett.3c04369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In situ drug synthesis using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has attracted considerable attention in tumor therapy because of its satisfactory effectiveness and reduced side-effects. However, the exogenous addition of copper catalysts can cause cytotoxicity and has hampered biomedical applications in vivo. Here, we design and synthesize a metal-organic framework (MOF) to mimic copper chaperone, which can selectively modulate copper trafficking for bioorthogonal synthesis with no need of exogenous addition of copper catalysts. Like copper chaperones, the prepared ZIF-8 copper chaperone mimics specifically bind copper ions through the formation of coordination bonds. Moreover, the copper is unloaded under the acidic environment due to the dissipation of the coordination interactions between metal ions and ligands. In this way, the cancer cell-targeted copper chaperone mimics can selectively transport copper ions into cells. Regulation of intracellular copper trafficking may inspire constructing bioorthogonal catalysis system with reduced metal cytotoxicity in live cells.
Collapse
Affiliation(s)
- Yue Wei
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huisi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
19
|
Qin Y, Wang X. Preventing Dissolution of Cathode Active Materials by Ion-anchoring Zeolite-based Separators for Durable Aqueous Zinc Batteries. Angew Chem Int Ed Engl 2024; 63:e202315464. [PMID: 38032352 DOI: 10.1002/anie.202315464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/12/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Aqueous zinc batteries have emerged as promising energy storage devices due to their safety and low cost. However, they face challenges such as anodic dendrite formation and cathodic compound dissolution. Here, we present the development of a polymer-matrixed zeolite separator (SZ) by synthesizing zeolite materials on a flexible polymeric membrane. This separator acts as an effective ionic barrier, preventing the leaching and shuttling of vanadium from the cathode, while significantly inhibiting the formation of by-products and zinc dendrites. The SZ cells demonstrate stable operation for more than 400 cycles at 0.5 A g-1 , with an initial capacity of 375.4 mAh g-1 , and over 10,000 cycles at 15 A g-1 . Notably, when pre-anchored with vanadium ions, the SZ-V cells exhibited excellent capacity retention of up to 94.6 % over 1000 cycles. The SZ separator featuring an ion barrier represents a crucial advancement towards the commercialization of zinc storage devices.
Collapse
Affiliation(s)
- Yao Qin
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Xin Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
20
|
Yang XG, Chen YJ, Yin PP, Diao JW, Cheng YY, Ma LF. Direct White-Light Emitting From a Single Metal-Organic Framework with Dual Phosphorescence Peaks. Inorg Chem 2023; 62:19389-19394. [PMID: 38044829 DOI: 10.1021/acs.inorgchem.3c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Single component white-light-emitting (SCWLE) materials are extremely desired in the field of solid-state lighting. However, pure-phosphorescent SCWLE has rarely been reported. Herein, one halogen-bonding-containing MOF [Cd(5-BIPA)(phen)] (1) has been synthesized, which shows efficient white-light emission originating from dual phosphorescence bands with different wavelengths and lifetimes. The fabrication of a phosphor-converted white-light-emitting diode device driven by pulsing current enables this MOF to be a promising phosphor.
Collapse
Affiliation(s)
- Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, People's Republic of China
| | - Ying-Jun Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, People's Republic of China
| | - Pei-Pei Yin
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, People's Republic of China
| | - Jia-Wei Diao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, People's Republic of China
| | - Yi-Yang Cheng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, People's Republic of China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, People's Republic of China
| |
Collapse
|
21
|
Huang J, Cheng C, Yang Y, Zan J, Shuai C. Zeolitic Imidazolate Frameworks Serve as an Interface Layer for Designing Bifunctional Bone Scaffolds with Antibacterial and Osteogenic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2828. [PMID: 37947674 PMCID: PMC10647501 DOI: 10.3390/nano13212828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The integration of hydroxyapatite (HA) with broad-spectrum bactericidal nano-silver within biopolymer-based bone scaffolds not only promotes new bone growth, but also effectively prevents bacterial infections. However, there are problems such as a poor interface compatibility and easy agglomeration. In this project, zeolitic imidazolate frameworks (ZIF-8) were grown in situ on nano-HA to construct a core-shell structure, and silver was loaded into the ZIF-8 shell through ion exchange. Finally, the core-shell structure (HA@Ag) was composited with polylactic acid (PLLA) to prepare bone scaffolds. In this case, the metal zinc ions of ZIF-8 could form ionic bonds with the phosphate groups of HA by replacing calcium ions, and the imidazole ligands of ZIF-8 could form hydrogen bonds with the carboxyl groups of the PLLA, thus enhancing the interface compatibility between the biopolymers and ceramics. Additionally, the frame structure of MOFs enabled controlling the release of silver ions to achieve a long-term antibacterial performance. The test results showed that the HA@Ag nanoparticles endowed the scaffold with good antibacterial and osteogenic activity. Significantly, the HA@Ag naoaprticle exhibited a good interfacial compatibility with the PLLA matrix and could be relatively evenly dispersed within the matrix. Moreover, the HA@ZIF-8 also effectively enhanced the mechanical strength and degradation rate of the PLLA scaffold.
Collapse
Affiliation(s)
- Jingxi Huang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China (Y.Y.)
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Chen Cheng
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China (Y.Y.)
| | - Youwen Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China (Y.Y.)
| | - Jun Zan
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China (Y.Y.)
| | - Cijun Shuai
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China (Y.Y.)
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
22
|
Chen YJ, Dou CX, Yin PP, Chen JT, Yang XG, Li B, Ma LF, Wang LY. U-type π-conjugated phosphorescent ligand sensitized lanthanide metal-organic frameworks for efficient white-light-emitting diodes. Dalton Trans 2023; 52:13872-13877. [PMID: 37772935 DOI: 10.1039/d3dt01869e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Lanthanide metal-organic framework (Ln-MOF) based phosphors for light-emitting diodes (LEDs) play an important role in the fields of solid-state lighting and display. The rational design of organic antennae to address the drawback of low extinction coefficients of the lanthanide ions is highly desired. In this work, we provide a new design strategy to achieve an energy transfer molecule with a through-space conjugated folded structure, which can strengthen the skeleton rigidity and facilitate triplet state energy transfer. Consequently, one U-type π-conjugated molecule 2,6-bis(3,5-dicarboxylphenoxy) pyridine (H4L) was selected as a light gatherer to sensitize lanthanide ions for the construction of Ln-MOFs [Ln(HL)(H2O)3]n (Eu-MOF and Tb-MOF), which exhibit a long-lived luminescence lifetime (0.88 ms for Eu-MOF and 1.31 ms for Tb-MOF) and high quantum yields (50.87% for Eu-MOF and 85.64% for Tb-MOF). Furthermore, a white LED device with a colour rendering index (89) was fabricated using the mixture of Ln-MOFs with a commercial blue phosphor.
Collapse
Affiliation(s)
- Ying-Jun Chen
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Chang-Xun Dou
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Pei-Pei Yin
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Jun-Ting Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Xiao-Gang Yang
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Bo Li
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Ya Wang
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
| |
Collapse
|
23
|
Dou CX, Tian XK, Chen YJ, Yin PP, Guo JH, Yang XG, Guo YM, Ma LF. Fast photocatalytic degradation of rhodamine B using indium-porphyrin based cationic MOF under visible light irradiation. Phys Chem Chem Phys 2023; 25:25139-25145. [PMID: 37706361 DOI: 10.1039/d3cp03255h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
A broad light-harvesting range and efficient charge separation are two main ways to enhance the visible photocatalytic performance of semiconductors. Herein, an ionic porphyrin MOF [In(TPyP)]·(NO3) (1) (TPyP = 5,10,15,20-tetrakis(4-pyridyl)-21H,23H-porphyrin) was synthesized via in situ metalation. The orderly arranged porphyrin photosensitizer and the internal electric field between the MOF host and NO3- guests enable effective visible light response and electron-hole separation. Consequently, the as-synthesized MOF shows efficient photocatalytic degradation of rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) organic pollutants. It can degrade 99.07% of RhB within only 20 minutes under visible light irradiation (λ > 420 nm) with a high chemical reaction rate constant of 0.2400 min-1. The photocatalytic activity of the title MOF is more efficient than those of other reported MOFs, COFs and even inorganic semiconductors. The reusability, energy level, band gap, charge distribution and main degradation mechanisms of the photocatalyst were well studied.
Collapse
Affiliation(s)
- Chang-Xun Dou
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Xu-Ke Tian
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Ying-Jun Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Pei-Pei Yin
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Jia-Hui Guo
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Yu-Ming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Lu-Fang Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| |
Collapse
|
24
|
Lu X, Huang JJ, Chen T, Zheng J, Liu M, Wang XY, Li YX, Niu X, Dang LL. A Coordination-Driven Self-Assembly and NIR Photothermal Conversion Study of Organometallic Handcuffs. Molecules 2023; 28:6826. [PMID: 37836669 PMCID: PMC10574444 DOI: 10.3390/molecules28196826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their fascinating topological structures and application prospects, coordination supramolecular complexes have continuously been studied by scientists. However, the controlled construction and property study of organometallic handcuffs remains a significant and challenging research subject in the area of supramolecular chemistry. Hence, a series of tetranuclear organometallic and heterometallic handcuffs bearing different size and metal types were rationally designed and successfully synthesized by utilizing a quadridentate pyridyl ligand (tetra-(3-pyridylphenyl)ethylene) based on three Cp*Rh (Cp* = η5-C5Me5) fragments bearing specific longitudinal dimensions and conjugated planes. These results were determined with single-crystal X-ray diffraction analysis technology, ESI-MS NMR spectroscopy, etc. Importantly, the photoquenching effect of Cp* groups and the discrepancy of intermolecular π-π stacking interactions between building block and half-sandwich fragments promote markedly different photothermal conversion results. These results will further push the synthesis of topological structures and the development of photothermal conversion materials.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Jing-Jing Huang
- Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Jie Zheng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Ming Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xin-Yi Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Yu-Xin Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Science, Shihezi University, Shihezi 832003, China
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
25
|
Dong XH, Li ZG, Bian DY, Guo TM, Li ZY, Li W, He H. Drug release and solubility properties of two zeolitic metal-organic frameworks influenced by their hydrophobicity/hydrophilicity. Dalton Trans 2023; 52:12909-12917. [PMID: 37646201 DOI: 10.1039/d3dt01975f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Metal-organic frameworks (MOFs) have shown significant potential for drug delivery applications. However, there remains a scarcity of comprehensive research addressing the influence of surface properties of MOFs on drug release kinetics and drug solubility. This study focuses on examining the influence of MOFs hydrophilicity and hydrophobicity on the controlled release and solubility of drugs. To achieve this, we prepared drug-loaded nanoparticles through in situ synthesis and created a drug-MOF co-amorphous system using the ball milling technique. Under neutral conditions, the hydrophilic MOF-based drug delivery system demonstrated a comparatively slower drug release profile than its hydrophobic counterpart. This observation suggests that the hydrophilic system holds promise in mitigating drug side effects by enabling improved control over drug release. The implementation of hydrophobic MOFs in co-amorphous systems yields a more pronounced effect on enhancing solubility compared to hydrophilic MOFs. This study offers valuable insights for achieving optimal drug release kinetics and solubility by delicately manipulating surface properties of MOFs.
Collapse
Affiliation(s)
- Xiao-Hui Dong
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, China.
| | - Zhi-Gang Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China.
| | - Dong-Yan Bian
- Department of Pharmacy, Tianjin Huanhu Hospital, Qixiangtai Road 122, Tianjin, China
| | - Tian-Meng Guo
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China.
| | - Zi-Ying Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China.
| | - Wei Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China.
| | - Hongpeng He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, China.
| |
Collapse
|
26
|
Hao T, Li HZ, Wang F, Zhang J. Tetrahedral Imidazolate Frameworks with Auxiliary Ligands (TIF-Ax): Synthetic Strategies and Applications. Molecules 2023; 28:6031. [PMID: 37630285 PMCID: PMC10460009 DOI: 10.3390/molecules28166031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Zeolitic imidazolate frameworks (ZIFs) are an important subclass of metal-organic frameworks (MOFs). Recently, we reported a new kind of MOF, namely tetrahedral imidazolate frameworks with auxiliary ligands (TIF-Ax), by adding linear ligands (Hint) into the zinc-imidazolate system. Introducing linear ligands into the M2+-imidazolate system overcomes the limitation of imidazole derivatives. Thanks to the synergistic effect of two different types of ligands, a series of new TIF-Ax with interesting topologies and a special pore environment has been reported, and they have attracted extensive attention in gas adsorption, separation, catalysis, heavy metal ion capture, and so on. In this review, we give a comprehensive overview of TIF-Ax, including their synthesis methods, structural diversity, and multi-field applications. Finally, we also discuss the challenges and perspectives of the rational design and syntheses of new TIF-Ax from the aspects of their composition, solvent, and template. This review provides deep insight into TIF-Ax and a reference for scholars with backgrounds of porous materials, gas separation, and catalysis.
Collapse
Affiliation(s)
- Tong Hao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350025, China
| | - Hui-Zi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
27
|
Ji Z, Zhou B, Shang Z, Liu S, Li X, Zhang X, Li B. Active CRISPR-Cas12a on Hydrophilic Metal-Organic Frameworks: A Nanobiocomposite with High Stability and Activity for Nucleic Acid Detection. Anal Chem 2023. [PMID: 37413791 DOI: 10.1021/acs.analchem.3c00400] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
CRISPR-Cas12a is an accurate and responsive biosensing technique, but its limited stability has restricted its widespread applications. To address this, we propose a strategy using metal-organic frameworks (MOFs) to protect Cas12a from harsh environments. After screening multiple candidate MOFs, it was found that hydrophilic MAF-7 is highly compatible with Cas12a, and the as-formed Cas12a-on-MAF-7 (COM) not only retains high enzymatic activity but also possesses excellent tolerance to heat, salt, and organic solvents. Further investigation showed that COM can serve as an analytical component for nucleic acid detection, resulting in an ultrasensitive assay for SARS-CoV-2 RNA detection with a detection limit of 1 copy. This is the first successful attempt to create an active Cas12a nanobiocomposite that functions as a biosensor without the need for shell deconstruction or enzyme release.
Collapse
Affiliation(s)
- Zhirun Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bin Zhou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Zhaoyang Shang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Sirui Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xue Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|