1
|
Babu T, Muthuramalingam RPK, Chng WH, Yau JNN, Acharya S, Engelmayer N, Feldman-Goriachnik R, Lev S, Pastorin G, Binshtok A, Hanani M, Gibson D. Multitargeting Pt(IV) Derivatives of Cisplatin or Oxaliplatin Inhibit Tumor Growth in Mice without Inducing Neuropathic Pain. J Med Chem 2025. [PMID: 39779280 DOI: 10.1021/acs.jmedchem.4c02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cisplatin and oxaliplatin are Pt(II) anticancer agents that are used to treat several cancers, usually in combination with other drugs. Their efficacy is diminished by dose-limiting peripheral neuropathy (PN) that affects ∼70% of patients. PN is caused by selective accumulation of the platinum drugs in the dorsal root ganglia (DRG), which overexpress transporters for cisplatin and oxaliplatin. To date, no drug is recommended for the prevention of PN. We report that Pt(IV) prodrugs of cisplatin or oxaliplatin do not induce neuropathic pain in mice, likely due to the lower accumulation of platinum in the DRG compared with Pt(II) drugs. Moreover, the multitargeting prodrug that combines cisplatin with paclitaxel, both strong inducers of PN, efficiently inhibited tumor growth in vivo without inducing neuropathic pain. The high antitumor efficacy of Pt(IV) prodrugs and their micellar counterparts and the low level of neuropathic pain associated with them make them ideal candidates for clinical use in cancer therapy.
Collapse
Affiliation(s)
- Tomer Babu
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ram Pravin Kumar Muthuramalingam
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore 117544, Singapore
| | - Wei Heng Chng
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore 117544, Singapore
| | - Jia Ning Nicolette Yau
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore 117544, Singapore
| | - Sourav Acharya
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Nurit Engelmayer
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem 91120, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Rachel Feldman-Goriachnik
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem 91120, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Giorgia Pastorin
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore 117544, Singapore
| | - Alexander Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem 91120, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
2
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
3
|
Xie DD, Li XL, Zeng LZ, Ren X, Zhang D, Yang R, Gao F. Substituent-Modulated Excited Triplet States and Activities of Ruthenium Complexes for Dual Photodynamic/Sonodynamic Therapy to Cisplatin-Resistant Non-Small Cell Lung Cancer. Chembiochem 2024:e202400801. [PMID: 39558494 DOI: 10.1002/cbic.202400801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
Six polypyridyl Ru(II) complexes were designed for single-molecule photodynamic and sonodynamic therapy (PDT/SDT) synergistic multimodal anticancer toward cisplatin-resistant NSCLC. They demonstrated lowest 3ES with distinct intraligand transition nature, which is beneficial for singlet oxygen generation. Remarkable quantum yields of both singlet oxygen and superoxide anion under either 808 nm laser irradiation or ultrasonic treatment and could induce apoptosis and ferroptosis of A549R cells. Cytotoxicity experiments clearly demonstrated a synergistic effect between PDT and SDT. The relationship between the structures of these complexes and their cellular biological mechanisms has been explored in detail. Using a single-molecule sensitizer to achieve synergistic PDT/SDT may provide valuable insights for the treatment of drug-resistant tumors that located deeply and in hypoxic microenvironment.
Collapse
Affiliation(s)
- Dan-Dan Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Xue-Lian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Li-Zhen Zeng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Xiaoxia Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, Kunming, 650500, P. R. China
| | - Dan Zhang
- First Affiliated Hospital of Kunming Medical University, Kunming, 650050, P. R. China
| | - Rong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
- Department of Pharmacy, Qujing Medical College, Qujing, 655000, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| |
Collapse
|
4
|
Bera A, Nepalia A, Upadhyay A, Saini DK, Chakravarty AR. Biotin-Pt(IV)-Ru(II)-Boron-Dipyrromethene Prodrug as "Platin Bullet" for Targeted Chemo- and Photodynamic Therapy. Inorg Chem 2024; 63:17249-17262. [PMID: 39235210 DOI: 10.1021/acs.inorgchem.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Using the principle of "Magic Bullet", a cisplatin-derived platinum(IV) prodrug heterobimetallic Pt(IV)-Ru(II) complex, cis,cis,trans-[Pt(NH3)2Cl2{Ru(tpy-BODIPY)(tpy-COO)}(biotin)]Cl2 (Pt-Ru-B, 2), having two axial ligands, namely, biotin as water-soluble B-vitamin for enhanced cellular uptake and a BODIPY-ruthenium(II) (Ru-B, 1) photosensitizer having N,N,N-donor tpy (4'-phenyl-2,2':6',2″-terpyridine) bonded to boron-dipyrromethene (BODIPY), is developed as a "Platin Bullet" for targeted photodynamic therapy (PDT). Pt-Ru-B exhibited intense absorption near 500 nm and emission near 513 nm (λex = 488 nm) in a 10% dimethyl sulfoxide-Dulbecco's phosphate-buffered saline medium (pH 7.2). The BODIPY complex on light activation generates singlet oxygen as the reactive oxygen species (ROS) giving a quantum yield (ΦΔ) of ∼0.64 from 1,3-diphenylisobenzofuran experiments. Pt-Ru-B exhibited preferential cellular uptake in cancer cells over noncancerous cells. The dichlorodihydrofluorescein diacetate assay confirmed the generation of cellular ROS. Confocal images revealed its mitochondrial internalization. Pt-Ru-B showed submicromolar photocytotoxicity in visible light (400-700 nm) in A549 and multidrug-resistant MDA-MB-231 cancer cells. It remained nontoxic in the dark and less toxic in nontumorigenic cells. Cellular apoptosis and alteration of the mitochondrial membrane potential were evidenced from the respective Annexin V-FITC/propidium iodide assay and JC-1 dye assay. A wound healing assay using A549 cells and Pt-Ru-B revealed inhibition of cancer cell migration, highlighting its potential as an antimetastatic agent.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Amrita Nepalia
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Li XL, Wang MF, Zeng LZ, Li GK, Zhao RY, Liu FD, Li Y, Yan YF, Liu Q, Li Z, Zhang H, Ren X, Gao F. Bithiophene-Functionalized Infrared Two-Photon Absorption Metal Complexes as Single-Molecule Platforms for Synergistic Photodynamic, Photothermal, and Chemotherapy. Angew Chem Int Ed Engl 2024; 63:e202402028. [PMID: 38656658 DOI: 10.1002/anie.202402028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
A planar conjugated ligand functionalized with bithiophene and its Ru(II), Os(II), and Ir(III) complexes have been constructed as single-molecule platform for synergistic photodynamic, photothermal, and chemotherapy. The complexes have significant two-photon absorption at 808 nm and remarkable singlet oxygen and superoxide anion production in aqueous solution and cells when exposed to 808 nm infrared irradiation. The most potent Ru(II) complex Ru7 enters tumor cells via the rare macropinocytosis, locates in both nuclei and mitochondria, and regulates DNA-related chemotherapeutic mechanisms intranuclearly including DNA topoisomerase and RNA polymerase inhibition and their synergistic effects with photoactivated apoptosis, ferroptosis and DNA cleavage. Ru7 exhibits high efficacy in vivo for malignant melanoma and cisplatin-resistant non-small cell lung cancer tumors, with a 100 % survival rate of mice, low toxicity to normal cells and low residual rate. Such an infrared two-photon activatable metal complex may contribute to a new generation of single-molecule-based integrated diagnosis and treatment platform to address drug resistance in clinical practice and phototherapy for large, deeply located solid tumors.
Collapse
Affiliation(s)
- Xue-Lian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Meng-Fan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Li-Zhen Zeng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Guo-Kui Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Run-Yu Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Fu-Dan Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Yun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Yu-Fei Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Qishuai Liu
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Zhao Li
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Xiaoxia Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| |
Collapse
|
6
|
Xie Z, Cao B, Zhao J, Liu M, Lao Y, Luo H, Zhong Z, Xiong X, Wei W, Zou T. Ion Pairing Enables Targeted Prodrug Activation via Red Light Photocatalysis: A Proof-of-Concept Study with Anticancer Gold Complexes. J Am Chem Soc 2024; 146:8547-8556. [PMID: 38498689 DOI: 10.1021/jacs.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photocatalysis has found increasing applications in biological systems, for example, in localized prodrug activation; however, high-energy light is usually required without giving sufficient efficiency and target selectivity. In this work, we report that ion pairing between photocatalysts and prodrugs can significantly improve the photoactivation efficiency and enable tumor-targeted activation by red light. This is exemplified by a gold-based prodrug (1d) functionalized with a morpholine moiety. Such a modification causes 1d to hydrolyze in aqueous solution, forming a cationic species that tightly interacts with anionic photosensitizers including Eosin Y (EY) and Rose Bengal (RB), along with a significant bathochromic shift of absorption tailing to the far-red region. As a result, a high photoactivation efficiency of 1d by EY or RB under low-energy light was found, leading to an effective release of active gold species in living cells, as monitored by a gold-specific biosensor (GolS-mCherry). Importantly, the morpholine moiety, with pKa ∼6.9, in 1d brings in a highly pH-sensitive and preferential ionic interaction under a slightly acidic condition over the normal physiological pH, enabling tumor-targeted prodrug activation by red light irradiation in vitro and in vivo. Since a similar absorption change was found in other morpholine/amine-containing clinic drugs, photocages, and precursors of reactive labeling intermediates, it is believed that the ion-pairing strategy could be extended for targeted activation of different prodrugs and for mapping of an acidic microenvironment by low-energy light.
Collapse
Affiliation(s)
- Zhiying Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Education Sciences, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Moyi Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuhan Lao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hejiang Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhi Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Deng B, Liu S, Wang Y, Ali B, Kong N, Xie T, Koo S, Ouyang J, Tao W. Oral Nanomedicine: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306081. [PMID: 37724825 DOI: 10.1002/adma.202306081] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Compared to injection administration, oral administration is free of discomfort, wound infection, and complications and has a higher compliance rate for patients with diverse diseases. However, oral administration reduces the bioavailability of medicines, especially biologics (e.g., peptides, proteins, and antibodies), due to harsh gastrointestinal biological barriers. In this context, the development and prosperity of nanotechnology have helped improve the bioactivity and oral availability of oral medicines. On this basis, first, the biological barriers to oral administration are discussed, and then oral nanomedicine based on organic and inorganic nanomaterials and their biomedical applications in diverse diseases are reviewed. Finally, the challenges and potential opportunities in the future development of oral nanomedicine, which may provide a vital reference for the eventual clinical transformation and standardized production of oral nanomedicine, are put forward.
Collapse
Affiliation(s)
- Bo Deng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Shaomin Liu
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ying Wang
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Barkat Ali
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
8
|
López-Hernández JE, Nayeem N, Cerón-Carrasco JP, Ahad A, Hafeez A, León IE, Contel M. Platinum(IV)-Gold(I) Agents with Promising Anticancer Activity: Selected Studies in 2D and 3D Triple-Negative Breast Cancer Models. Chemistry 2023; 29:e202302045. [PMID: 37507346 PMCID: PMC10615877 DOI: 10.1002/chem.202302045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
New heterometallic binuclear and trinuclear platinum(IV)-gold(I) compounds of the type [Pt(L)n Cl2 (OH){(OOC-4-C6 H4 -PPh2 )AuCl}x ] (L=NH3 , n=2; x=1, 2; L=diaminocyclohexane, DACH, n=1; x=2) are described. These compounds are cytotoxic and selective against a small panel of renal, bladder, ovarian, and breast cancer cell lines. We selected a trinuclear PtAu2 compound containing the PtIV core based on oxaliplatin, to further investigate its cell-death pathway, cell and organelle uptake and anticancer effects against the triple-negative breast cancer (TNBC) MDA-MB-231 cell line. This compound induces apoptosis and accumulates mainly in the nucleus and mitochondria. It also exerts remarkable antimigratory and antiangiogenic properties, and has a potent cytotoxic effect against TNBC 3D spheroids. Trinuclear compounds do not seem to display relevant interactions with calf thymus (CT) DNA and plasmid (pBR322) even in the presence of reducing agents, but inhibit pro-angiogenic enzyme thioredoxin reductase (TrxR) in TNBC cells.
Collapse
Affiliation(s)
- Javier E López-Hernández
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Nazia Nayeem
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - José P Cerón-Carrasco
- Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, C/Coronel López Peña s/n, Base Aérea de San Javier, Santiago de la Ribera, 30720, Murcia, Spain
| | - Afruja Ahad
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
- Radiology, Molecular Pharmacology Program, and, Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, NY 11065, USA
| | - Aiman Hafeez
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
| | - Ignacio E León
- Centro de Química Inorgánica, CEQUINOR (CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N°1465, La Plata, 1900, Argentina
| | - Maria Contel
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| |
Collapse
|
9
|
Beirne DF, Farkaš B, Donati C, Gandin V, Rozas I, Velasco-Torrijos T, Montagner D. Novel design of dual-action Pt(IV) anticancer pro-drugs based on cisplatin and derivatives of the tyrosine kinase inhibitors imatinib and nilotinib. Dalton Trans 2023; 52:14110-14122. [PMID: 37747105 DOI: 10.1039/d3dt02030d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Tyrosine kinases (TKs) are emerging as important targets in cancer therapy and some of their inhibitors, TKIs (e.g. imatinib and nilotinib), are FDA-approved drugs that are used as selective anti-cancer therapeutics against cell lines that overexpress TKs. Many examples of metal-based complexes functionalised with TKIs are reported in the literature but very few have been functionalised with platinum. Here we report the design, a detailed computational analysis/simulation, the complete chemical characterisation and the preliminary biological evaluation of two novel Pt(IV) anticancer pro-drugs based on cisplatin tethered with a derivative of either imatinib or nilotinib in the axial position. Pt(IV) complexes are a strategic scaffold in combination therapy due to their axial ligands that can be functionalised to form dual action drugs. The activation by reduction releases the Pt(II) core and the axial ligands upon cellular internalisation. The antiproliferative activity and the TK inhibition properties of the novel adducts are analysed with a theoretical approach and confirmed in vitro with preliminary biological assays.
Collapse
Affiliation(s)
| | | | - Chiara Donati
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Isabel Rozas
- School of Chemistry, Trinity College Dublin, Ireland
| | - Trinidad Velasco-Torrijos
- Department of Chemistry, Maynooth University, Ireland.
- Kathleen Londsdale Institute for Human Health Research, Maynooth University, Ireland
| | - Diego Montagner
- Department of Chemistry, Maynooth University, Ireland.
- Kathleen Londsdale Institute for Human Health Research, Maynooth University, Ireland
| |
Collapse
|
10
|
Müller VVL, Simpson PV, Peng K, Basu U, Moreth D, Nagel C, Türck S, Oehninger L, Ott I, Schatzschneider U. Taming the Biological Activity of Pd(II) and Pt(II) Complexes with Triazolato "Protective" Groups: 1H, 77Se Nuclear Magnetic Resonance and X-ray Crystallographic Model Studies with Selenocysteine to Elucidate Differential Thioredoxin Reductase Inhibition. Inorg Chem 2023; 62:16203-16214. [PMID: 37713601 DOI: 10.1021/acs.inorgchem.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The biological activity of Pd(II) and Pt(II) complexes toward three different cancer cell lines as well as inhibition of selenoenzyme thioredoxin reductase (TrxR) was modulated in an unexpected way by the introduction of triazolate as a "protective group" to the inner metal coordination sphere using the iClick reaction of [M(N3)(terpy)]PF6 [M = Pd(II) or Pt(II) and terpy = 2,2':6',2″-terpyridine] with an electron-poor alkyne. In a cell proliferation assay using A549, HT-29, and MDA-MB-231 human cancer cell lines, the palladium compound was significantly more potent than the isostructural platinum analogue and exhibited submicromolar activity on the most responsive cell line. This difference was also reflected in the inhibitory efficiency toward TrxR with IC50 values of 0.1 versus 5.4 μM for the Pd(II) and Pt(II) complexes, respectively. UV/Vis kinetic studies revealed that the Pt compound binds to selenocysteine faster than to cysteine [k = (22.9 ± 0.2)·10-3 vs (7.1 ± 0.2)·10-3 s-1]. Selective triazolato ligand exchange of the title compounds with cysteine (Hcys) and selenocysteine (Hsec)─but not histidine (His) and 9-ethylguanine (9EtG)─was confirmed by 1H, 77Se, and 195Pt NMR spectroscopy. Crystal structures of three of the four ligand exchange products were obtained, including [Pt(sec)(terpy)]PF6 as the first metal complex of selenocysteine to be structurally characterized.
Collapse
Affiliation(s)
- Victoria V L Müller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Peter V Simpson
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Uttara Basu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sebastian Türck
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Luciano Oehninger
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Ingo Ott
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|