1
|
Qiu Y, Wei X, Lam JWY, Qiu Z, Tang BZ. Chiral Nanostructures from Artificial Helical Polymers: Recent Advances in Synthesis, Regulation, and Functions. ACS NANO 2025; 19:229-280. [PMID: 39754598 DOI: 10.1021/acsnano.4c14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). This review mainly focuses on the formation of chiral nanostructures and the morphology regulation triggered by polymer chain length, concentration, solvent, temperature, photoirradiation, and chemical additives. In addition, the distinct chiral functions including chiral recognition, circularly polarized luminescence, drug release, cell imaging, and antibiosis are also discussed.
Collapse
Affiliation(s)
- Yuan Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 230026, China
| | - Xilong Wei
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 230026, China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 230026, China
| |
Collapse
|
2
|
Wang X, Gao X, Zhong H, Yang K, Zhao B, Deng J. Three-Level Chirality Transfer and Amplification in Liquid Crystal Supramolecular Assembly for Achieving Full-Color and White Circularly Polarized Luminescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412805. [PMID: 39487629 DOI: 10.1002/adma.202412805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Chiral liquid crystal supramolecular assembly provides an ideal strategy for constructing excellent circularly polarized luminescence (CPL) materials. However, the chirality transfer in chiral liquid crystals normally occurs at two levels from the configurational chirality to the supramolecular phase chirality. The more precise and more levels of chirality transmission are fascinating but remain challenging. The present work reports the first success of three-level chirality transfer and amplification from configurationally point chirality of small molecules to conformationally helical chirality of helical polymers and finally to supramolecular phase chirality of cholesteric liquid crystals composed of chiral nonfluorescent polymers (P46) and nematic liquid crystals. Noticeably, the helical twisting power of P46 is five-fold larger than its monomer. Full-color and white CPL with maximum luminescence dissymmetry factor up to 1.54 and photoluminescence quantum yield up to 63.8% are realized utilizing helical supramolecular assembly combined with selective reflection mechanism. Also significantly, the electrically stimuli-responsive CPL switching device as well as anti-counterfeiting security, information encryption, and chiral logic gate applications are developed. This study deepens the understanding of chirality transfer and amplification across different hierarchical levels.
Collapse
Affiliation(s)
- Xujie Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinhui Gao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Liang J, Song Y, Xing H, Ma L, Wang F, Zhang M, Zhang H, Zou G, Yang G. Electrochemical chiral recognition of tryptophan enantiomers by using chiral polyaniline and β-CD-MOF. NANOSCALE 2024; 16:22011-22020. [PMID: 39514180 DOI: 10.1039/d4nr02854f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Chiral detection of tryptophan (Trp) isomers is of vital importance and the introduction of efficient, stable and sensitive enantioselective recognition technology is in high demand in the fields of medicine, food and life science. Herein, a facile and sensitive electrochemical probe for the chiral recognition of Trp enantiomers by using chiral polyaniline (D-PANI) and β-CD-MOF is presented. The structure and electrochemical performance of the designed sensor (GCE/β-CD-MOF/D-PANI) were characterized via FT-IR, SEM, TEM, EIS, CV and DPV methods. Under the optimized conditions, the enantiomer selection coefficient (IL/ID) reached 2.26, and the detection limits for L- and D-Trp were calculated to be 6.67 and 16.1 μM, respectively. The higher DPV result for L-Trp was attributed to its higher affinity for the chiral selectors D-PANI and β-CD-MOF than that of D-Trp. Moreover, the proposed chiral sensing platform could be used for analyzing the percentage of D-Trp in enantiomer mixed solutions and human urine samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Jiamin Liang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China.
| | - Yuxin Song
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China.
| | - Huan Xing
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China.
| | - Liang Ma
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China.
| | - Fengxia Wang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China.
| | - Mingfang Zhang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China.
| | - Hongli Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
| | - Gang Zou
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
| | - Guang Yang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China.
| |
Collapse
|
4
|
Li SY, Duan BH, Liu N, Luo J, Chen Z, Wu ZQ. Helical Star-Shaped Bottlebrush Polymers: From Controlled Synthesis to Tunable Photoluminescence and Circularly Polarized Luminescence. ACS Macro Lett 2024; 13:1396-1402. [PMID: 39377270 DOI: 10.1021/acsmacrolett.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The controlled synthesis of star-shaped bottlebrush polymers with tunable topologies is a challenge. However, such materials may exhibit distinct photoluminescence properties. Bottlebrush polymers have polymerization-induced emission (PIE) properties due to their aggregated side chains, and aggregation-induced emission (AIE) is also a unique luminescent property. In this work, we prepared a variety of highly active alkyne Pd catalysts and polymerized poly(L/D-lactic acid) macromonomers containing polymerizable phenylisocyanide groups as end groups to obtain a variety of topologically structured bottlebrush polymers with controllable molecular weights and narrow molecular weight distributions. Bottlebrush polymers with tetraphenyl ethylene (TPE) units as the core exhibit tunable photoluminescence and circularly polarized luminescence properties. We propose that such properties are due to the unique AIE characteristics of the TPE unit combined with the PIE characteristics of the bottlebrush polymer.
Collapse
Affiliation(s)
- Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bing-Hui Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Jing Luo
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi, Hefei, Anhui 230022, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
5
|
Zong Y, Gao RT, Liu N, Luo J, Chen Z, Wu ZQ. Helical Polyallenes: From Controlled Synthesis to Distinct Properties. Macromol Rapid Commun 2024:e2400671. [PMID: 39388665 DOI: 10.1002/marc.202400671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Polyallenes with appropriate pendants can form stable helices and exhibit significant optical activity. These helical polyallenes contain reactive double bonds that allow for further functionalization, making them a class of chiral functional materials with broad application prospects. This review article delves into the intricacies of synthesizing well-defined helical polyallenes through controlled synthetic methodologies, including helix-sense selective living polymerization, regioselective and asymmetric living polymerization, and one-pot block copolymerization of allenes with aryl monomers. The systemically outlined characteristics of the resulting helical polyallenes and related copolymers are summarized include their unique chiroptical properties, stimuli-responsiveness, helix-induced chiral self-assembly, and circularly polarized luminescence (CPL). Additionally, current challenges and future perspectives in the research of controlled synthesis, functionalities, and applications of helical polyallenes are discussed in detail.
Collapse
Affiliation(s)
- Yang Zong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Jing Luo
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230009, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
6
|
Wang X, Yang K, Zhao B, Deng J. Polymeric Cholesteric Superhelix Induced by Chiral Helical Polymer for Achieving Full-Color Circularly Polarized Room-Temperature Phosphorescence with Ultra-High Dissymmetry Factor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404576. [PMID: 38881334 DOI: 10.1002/smll.202404576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Circularly polarized room-temperature phosphorescence (CPRTP) simultaneously featuring multiple colors and extremely high dissymmetry factor (glum) is crucial for increasing the complexity of optical characteristics and advancing further development, but such a type of CPRTP is still unprecedented. The present work develops an effective and universal strategy to achieve full-color CPRTP with ultra-high glum factors in a polymeric cholesteric superhelix network, which is constructed by cholesteric liquid crystal polymer and chiral helical polymer (CHP). Taking advantage of the high helical twisting power of CHP, the resulting polymeric cholesteric superhelix network exhibits remarkable optical activity. Significantly, by adopting a simple double-layered architectures consisting of the cholesteric superhelix film and phosphorescent films, blue-, green-, yellow-, and red-CPRTP emissions are successfully obtained, with maximum |glum| values up to 1.43, 1.39, 1.09 and 0.84, respectively. Further, a multilevel information encryption application is demonstrated based on the multidimensional optical characteristics of the full-color double-layered CPRTP architectures. This study offers new insights into fabricating polymeric cholesteric superhelix with considerable CPRTP performance in advanced photonic applications.
Collapse
Affiliation(s)
- Xujie Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Geng Z, Wang Z, Zhu SE, Wang P, Yao K, Cheng Y, Chu B. Tunable circularly polarized luminescence behaviors caused by the structural symmetry of achiral pyrene-based emitters in chiral co-assembled systems. J Colloid Interface Sci 2024; 669:561-568. [PMID: 38729004 DOI: 10.1016/j.jcis.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
The regulation of circularly polarized luminescence (CPL) behavior is of great significance for practical applications. Herein, we deliberately designed three achiral pyrene derivatives (Py-1, Py-2, and Py-3) with different butoxy-phenyl substituents and the chiral binaphthyl-based inducer (R/S-B) with anchored dihedral angle to construct chiral co-assemblies, and explored their induced CPL behaviors. Interestingly, the resulting co-assemblies demonstrate tunable CPL emission behaviors caused by the structural symmetry effect of achiral pyrene-based emitters during the chiral co-assembly process. And in spin-coated films, the dissymmetry factor (gem) values were 9.1 × 10-3 for (R/S-B)1-(Py-1)10, 5.6 × 10-2 for (R/S-B)1-(Py-2)7, and 8.6 × 10-4 for (R/S-B)1-(Py-3)1, respectively. The strongest CPL emission (|gem| = 5.6 × 10-2, λem = 423 nm, QY = 34.8 %) was detected on (R/S-B)1-(Py-2)7 due to the formation of regular and ordered helical nanofibers through the strong π-π stacking interaction between the R/S-B and the achiral Py-2 emitter. The strategy presented here provides a creative approach for progressively regulating CPL emission behaviors in the chiral co-assembly process.
Collapse
Affiliation(s)
- Zhongxing Geng
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, PR China
| | - Zhentan Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, PR China
| | - San-E Zhu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, PR China
| | - Peng Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Kun Yao
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, PR China.
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China.
| |
Collapse
|
8
|
Núñez-Martínez M, Fernández-Míguez M, Quiñoá E, Freire F. Size Control of Chiral Nanospheres Obtained via Nanoprecipitation of Helical Poly(phenylacetylene)s in the Absence of Surfactants. Angew Chem Int Ed Engl 2024; 63:e202403313. [PMID: 38742679 DOI: 10.1002/anie.202403313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Nanostructuration of dynamic helical polymers such as poly(phenylacetylene)s (PPAs) depends on the secondary structure adopted by the polymer and the functional group used to connect the chiral pendant to the PPA backbone. Thus, while PPAs with dynamic and flexible scaffolds (para- and meta-substituted, ω1<165°) generate by nanoprecipitation low polydisperse nanospheres with controllable size at different acetone/water mixtures, those with a quasi-static behavior and the presence of an extended, almost planar structure (ortho-substituted, ω1>165°), aggregate into a mixture of spherical and oval nanostructures whose size is not controlled. Photostability studies show that poly(phenylacetylene) particles are more stable to light irradiation than when dissolved macromolecularly. Moreover, the photostability of the particle depends on the secondary structure of the PPA and its screw sense excess. This fact, in combination with the encapsulation ability of these polymer particles, allows the creation of light stimuli-responsive nanocarriers, whose cargo can be delivered by light irradiation.
Collapse
Affiliation(s)
- Manuel Núñez-Martínez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| |
Collapse
|
9
|
Kan L, Zhang Z, Zhang J, Liu Q, Yuan C, He Y, Zhang W, Qiao X, Shi G, Pang X. Precise Construction of Chiral Plasmonic Nanoparticles for Enantioselective Discrimination. J Phys Chem Lett 2024; 15:7740-7747. [PMID: 39046311 DOI: 10.1021/acs.jpclett.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Chiral plasmonic nanostructures exhibit potential in the advanced manufacturing industry, due to their fascinating characteristics. However, the limitation of existing fabrication methods as difficulty to precisely manipulate chiral nanostructures at the nanoscale restricts their application and optimization of performance. In this work, we report a simple and robust route for the precise construction of chiral Au nanoparticles (NPs), employing star-like block copolymers with well-defined structures as chiral templates. The globular unimolecular micelles as nanoreactors enabled control over the size, shape, and chirality of in situ grown nanocrystals. Utilizing the chiral anisotropy property of surface-enhanced Raman scattering (SERS), the enantioselective discrimination on various substrates was accomplished with an enhancement factor over 9.3 × 106. NPs with a smaller size exhibited strengthened Raman enhancement and chiral recognition. Furthermore, these chiral unimolecular-micelle-based templates with high efficiency and strong controllability could pave the way for tailor-made chiral nanomaterials.
Collapse
Affiliation(s)
- Longwang Kan
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenqian Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junle Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Faculty of Engineering, Huanghe Science and Technology College, Zhengzhou 450063, China
| | - Qianwei Liu
- International College of Zhengzhou University, Zhengzhou 450001, China
| | - Chenrong Yuan
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
10
|
Ji Y, Yang K, Zhao B, Pan K, Deng J. Fluorescence-Selective Absorption and Circularly Polarized Fluorescence Energy Transfer Assist the Generation of Multicolor Circularly Polarized Luminescence in Chiral Helical Polyacetylene-Based Janus Nanofibers. ACS Macro Lett 2024; 13:673-680. [PMID: 38755117 DOI: 10.1021/acsmacrolett.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Chiroptical nanomaterials with circularly polarized luminescence (CPL) performance have aroused increasing attention. Herein, multicolor CPL-active Janus nanofibers are prepared through a simple parallel electrospinning method using chiral helical polyacetylenes as the chiral source and achiral fluorophores as the fluorescent source. Interestingly, despite a direct spatial isolation between the chiral component and the fluorescent component, blue and green CPL emissions can still be obtained due to the fluorescence-selective absorption behavior of chiral helical polyacetylenes, with a satisfactory dissymmetric factor (glum) of 2 × 10-2 and 2.5 × 10-3, respectively. Moreover, by taking advantage of the circular polarization fluorescence energy transfer process, red CPL emission is further achieved using the obtained blue and green CPL as energy donors and the achiral red fluorophore as an energy acceptor. The present work offers a facile approach to prepare multilevel-structured chiroptical materials with promising application potentials in a flexible photoelectric device.
Collapse
Affiliation(s)
- Yujie Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kai Pan
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Chu B, Song F, Wang P, Cheng Y, Geng Z. Amplified Circularly Polarized Luminescence Behavior in Chiral Co-assembled Liquid Crystal Polymer Films via the Strategic Manipulation of Chiral Inducers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26604-26612. [PMID: 38723622 DOI: 10.1021/acsami.4c04268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
One of the most important factors for the future application of circularly polarized luminescence (CPL) materials is their high dissymmetry factors (gem), and more and more studies are working tirelessly to focus on increasing the gem value. Herein, we chose an achiral liquid crystal polymer (LC-P) and two chiral binaphthyl-based inducers (R/S-3 and R/S-6) with different substitution positions (3,3' positions for R/S-3 and 6,6' positions for R/S-6) to construct chiral co-assemblies and explored their induced amplification CPL behaviors. Interestingly, after the thermal annealing treatment, this kind of chiral co-assembly (R/S-3)0.05-(LC-P)0.95 can emit a superior CPL signal (|gem| = 0.31 and λem = 424 nm), which achieves about 13-fold signal amplification in the spin-coated film, compared to (R/S-6)0.1-(LC-P)0.9 (|gem| = 0.023 and λem = 424 nm). This is because (R/S-3)0.05-(LC-P)0.95 could further co-assemble to form a more ordered arrangement LC state and generate regular helix nanofibers than that of (R/S-6)0.1-(LC-P)0.9. This work provides an efficient method for synthesizing high-quality CPL-active materials through the strategic manipulation of the structure of chiral binaphthyl-based inducers in chiral co-assembled LCP systems.
Collapse
Affiliation(s)
- Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Feiyang Song
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Zhongxing Geng
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
12
|
Yu JX, Duan BH, Chen Z, Liu N, Wu ZQ. Polymers with Circularly Polarized Luminescent Properties: Design, Synthesis, and Prospects. Chempluschem 2024; 89:e202300481. [PMID: 37955194 DOI: 10.1002/cplu.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Chiral materials with circularly polarized luminescence (CPL) have garnered significant attention owing to their distinctive luminescent properties and wide array of applications. CPL enables the selective emission of left and right circularly polarized light. The fluorescence quantum yield and dissymmetry factor play pivotal roles in the generation of CPL. Helical polymers exhibit immense promise as CPL materials due to their inherent chirality, structural versatility, modifiability, and capacity to incorporate diverse chromophores. This Review provides a brief review of the synthesis of CPL materials based on helical polymers. The CPL can be realized by aggregation-induced CPL of non-emissive helical polymers, and helices bearing chromophores on the pendants and on the chain end. Furthermore, future challenges and potential applications of CPL materials are summarized and discussed.
Collapse
Affiliation(s)
- Jia-Xin Yu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Bing-Hui Duan
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Zheng Chen
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, P.R. China
| | - Zong-Quan Wu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
13
|
Zhong H, Gao X, Zhao B, Deng J. "Matching Rule" for Generation, Modulation and Amplification of Circularly Polarized Luminescence. Acc Chem Res 2024; 57:1188-1201. [PMID: 38578919 DOI: 10.1021/acs.accounts.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
ConspectusCircularly polarized luminescence (CPL) generated by chiral luminescent systems has sparked enormous attention in multidisciplinary field as it brings infinite potential for applications, such as 3D optical displays, biological probes, and chiroptical sensors. Satisfying both the conditions of chirality and luminescence (including fluorescence or phosphorescence) is a prerequisite for constructing CPL materials. In this regard, whether in organic, inorganic, or hybrid systems, chiral and luminescent components generally involve effective coupling through covalent or noncovalent bonds. For covalent interactions, such as the copolymerization of chiral and luminescent monomers, although covalent bonds provide high stability for the system, they inevitably involve tedious preparation procedures that connect chirality and luminescence together. For noncovalent bonds, take supramolecular assembly as an example, chiral elements and achiral light-emitting units are chiral transferred through intermolecular interactions, and their advantages include the diversity of luminescent and chiral building blocks, the stimuli responsiveness brought by noncovalent bonds, as well as the potential amplification of CPL signals by coassembly. However, the stability of the assembly system may be poor, and the assembly chiroptical performance and morphology are difficult to predict. Gratifyingly, matching rule that do not rely on covalent together with noncovalent interactions allows for the effortless construction, modulation, as well as amplification of CPL systems.In this Account, we overview different strategies based on matching rule, including fluorescence-selective absorption, circularly polarized reflection, and circularly polarized fluorescence energy transfer (CPF-ET). Examples of these strategies are illustrated with a focus on helical polymers in light of their appealing structures and wide uses. For instance, for fluorescence-selective absorption, chiral helical polymers can convert racemic fluorescence light into a circularly polarized one with specific handedness by simply overlapping the helical polymer's circular dichroism (CD) spectra with the luminophore's emission spectra. For circularly polarized reflection, employing the selective reflection of certain handedness's circularly polarized light, the high helical twisting power (HTP) of the helical polymer in the cholesteric liquid crystals (N*-LCs) gives the system high glum. Additionally, for CPF-ET, only the emission spectrum of the donor and the absorption (or excitation) spectrum of the achiral acceptor are required to overlap, and no covalent or noncovalent interactions between the two are required. An outlook for the CPL materials related to matching rule which will avail the optimization and extension of this intriguing approach concludes the Account. We hope that the Account will offer insightful inspiration for the flourishing progress of chiroptical systems and present exciting opportunities.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaobin Gao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Zeng M, Wang W, Zhang S, Gao Z, Yan Y, Liu Y, Qi Y, Yan X, Zhao W, Zhang X, Guo N, Li H, Li H, Xie G, Tao Y, Chen R, Huang W. Enabling robust blue circularly polarized organic afterglow through self-confining isolated chiral chromophore. Nat Commun 2024; 15:3053. [PMID: 38594234 PMCID: PMC11004163 DOI: 10.1038/s41467-024-47240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Creating circularly polarized organic afterglow system with elevated triplet energy levels, suppressed non-radiative transitions, and effective chirality, which are three critical prerequisites for achieving blue circularly polarized afterglow, has posed a formidable challenge. Herein, a straightforward approach is unveiled to attain blue circularly polarized afterglow materials by covalently self-confining isolated chiral chromophore within polymer matrix. The formation of robust hydrogen bonds within the polymer matrix confers a distinctly isolated and stabilized molecular state of chiral chromophores, endowing a blue emission band at 414 nm, lifetime of 3.0 s, and luminescent dissymmetry factor of ~ 10-2. Utilizing the synergistic afterglow and chirality energy transfer, full-color circularly polarized afterglow systems are endowed by doping colorful fluorescent molecules into designed blue polymers, empowering versatile applications. This work paves the way for the streamlined design of blue circularly polarized afterglow materials, expanding the horizons of circularly polarized afterglow materials into various domains.
Collapse
Affiliation(s)
- Mingjian Zeng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Weiguang Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Shuman Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Zhisheng Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Yingmeng Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Yitong Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Yulong Qi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Xin Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Wei Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Ningning Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Hui Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China.
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China.
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China.
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, Shanxi, China.
| |
Collapse
|
15
|
Liu H, Hu R, Hu Z, Ji X. Construction of Supramolecular Polymers and Covalent Polymers via the Same Monomers. Chemistry 2024:e202400394. [PMID: 38584129 DOI: 10.1002/chem.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/09/2024]
Abstract
Nature owns the ability to construct structurally different polymers from the same monomers. While polymers can be classified as covalent polymers (CPs) and supramolecular polymers (SPs), it is still difficult to synthesize CPs and SPs using same monomers like nature do. Herein, M1 with two diazo salts on both the ends was designed. Additionally, hydroquinone was chosen to be M2 for the existence of two hydroxyl groups. When mixing at room temperature, M1 and M2 self-assembled to SPs via N…H hydrogen bonds. In another way, upon the exposure to ultraviolet irradiation when blending M1 with M2, CPs were fabricated in the presence of covalent bonds. The excellent thermal stability of CPs was determined by TGA and DSC, while the great corrosion resistance of covalent polymers was detected by acid or alkali immersion. In this way, constructing two kinds of polymers using the same monomers was successfully achieved. This shows tremendous potential in fields of polymer science, supramolecular chemistry, which would boom the development of polymers.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Rui Hu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Ziqing Hu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xiaofan Ji
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| |
Collapse
|
16
|
Yoshida S, Morikawa S, Ueda K, Kaneko K, Hanasaki T, Akagi K. Helicity Control of Circularly Polarized Luminescence from Aromatic Conjugated Copolymers and Their Mixture Using Reversibly Photoinvertible Chiral Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3991-4002. [PMID: 38183275 DOI: 10.1021/acsami.3c15512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
We synthesized cyclic chiral compounds [(R)/(S)-D2s] by linking a photoresponsive bisbenzothienylethene (BTE) moiety with an axially chiral binaphthyl moiety. Chiral nematic liquid crystals (N*-LCs) were prepared by adding chiral compounds as dopants to host N-LCs. These N*-LCs exhibited reversible chirality inversion upon photoisomerization between the open and closed forms of the BTE moiety. Here, the mechanism underlying chirality inversion in photoresponsive N*-LCs was investigated by comparing the helical twisting powers (HTPs) of (R)-D2s with those of analogous compounds. It was found that the helical inversion of N*-LCs containing (R)-D2s is governed by a delicate balance between two types of opposite helicity, i.e., the right-handed helicity of the inherently chiral binaphthyl moiety and the left-handed helicity of the BTE moiety bearing intramolecularly induced chirality. Namely, (R)-D2s induced chirality of the BTE moiety, which is attributed to intramolecular chirality transfer from the axially chiral binaphthyl moiety to the BTE moiety. Thus, (R)-D2s are chiral compounds with double chirality consisting of an intrinsically chiral moiety and an intramolecularly induced chiral moiety. Photocontrol of the helical senses and reversible photoinversion of the N*-LCs are achieved by utilizing UV and visible light irradiation and the steric effects of the substituents at the binaphthyl rings in (R)-D2s. In addition, photocontrol of the induced circularly polarized luminescence (CPL) was achieved using the photoinvertible N*-LC. The achiral aromatic conjugated copolymers that exhibited red, green, and blue fluorescence were dissolved and mixed in the present N*-LC, and they exhibited left- and right-handed white CPL with large dissymmetry factors (|glum|) ranging from 0.2 to 1.0. The CPLs were reversibly photoswitched due to photoisomerization between the open and PSS forms of the chiral compounds through UV and visible light irradiation.
Collapse
Affiliation(s)
- Satoru Yoshida
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Santa Morikawa
- Department of Polymer Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Kenta Ueda
- Department of Polymer Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Kosuke Kaneko
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tomonori Hanasaki
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Kazuo Akagi
- Department of Polymer Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
17
|
Pisetsky W, Budny P, Müller TJJ. Synthesis and Photophysical Properties of Luminescent Phenothiazinyl Merocyanine Substituted Polyacetylenes. Angew Chem Int Ed Engl 2024; 63:e202316246. [PMID: 38009666 DOI: 10.1002/anie.202316246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
A new generation of soluble phenothiazinyl merocyanine substituted polyacetylenes can be readily synthesized by rhodium-catalyzed polymerization of the corresponding 3-ethynyl phenothiazines, accessible by Sonogashira coupling and Knoevenagel condensation. UV/Vis and fluorescence spectroscopy of 7-acceptor-substituted phenothiazinyl polyacetylenes reveal that these polyacetylenes with conjugatively ligated merocyanines are luminescent in solution with positive emission solvatochromism and, in some cases, with distinct solid-state luminescence.
Collapse
Affiliation(s)
- Wladislaw Pisetsky
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Piotr Budny
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
18
|
Lago-Silva M, Cid MM, Quiñoá E, Freire F. P/M Macromolecular Switch Based on Conformational Control Exerted by an Achiral Side Chain within an Axially Chiral Locked Pendant. J Am Chem Soc 2024; 146:752-759. [PMID: 38150582 PMCID: PMC10786024 DOI: 10.1021/jacs.3c10766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Molecular switches, supramolecular chemistry, and polymers can be combined to create stimuli-responsive multichiral materials. Therefore, by acting on the extended/bent conformational composition of an achiral arm, it is possible to create a macromolecular gear, where different supramolecular interactions can be activated/deactivated to control the helical sense of a polymer containing up to five different chiral axial motifs. For this, a chiral allene with a flexible achiral arm was introduced as a pendant in poly(phenylacetylene). Through flexible arm control between extended and bent conformations, it is possible to selectively induce either a P or M helical sense in the polymer, while the relative spatial distribution of the substituents in the allene remains unaltered in two perpendicular planes (configurationally locked). These results show that complex dynamic multichiral materials can be obtained by the polymerization of appropriate monomers that combine chirality, switching properties, and the ability to generate chiral supramolecular assemblies.
Collapse
Affiliation(s)
- María Lago-Silva
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, E-15782 Santiago de Compostela, Spain
| | - María Magdalena Cid
- Departamento
de Química Orgánica, Campus Lagoas-Marcosende, Universidade de Vigo, E-36310 Vigo, Spain
| | - Emilio Quiñoá
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, E-15782 Santiago de Compostela, Spain
| | - Félix Freire
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
19
|
Yan H, Yin X, Wang D, Han T, Tang BZ. Synergistically Boosting the Circularly Polarized Luminescence of Functionalized Pillar[5]arenes by Polymerization and Aggregation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305149. [PMID: 37867209 PMCID: PMC10724438 DOI: 10.1002/advs.202305149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Indexed: 10/24/2023]
Abstract
Supramolecular polymers based on chiral macrocycles have attracted increasing attention in the field of circularly polarized luminescence (CPL) owing to their unique properties. However, the construction of macrocyclic supramolecular polymers with highly efficient CPL properties in aggregate states still remains challenging. Herein, w e constructed a class of macrocycle-based coordination polymers by combining the planar chiral properties of pillar[5]arene with the excellent fluorescence properties of aggregation-induced emission luminogens. The formation of polymers enhances both the fluorescence and chiral properties, resulting in chiral supramolecular polymers with remarkable CPL properties. Increasing the aggregation degree of the polymers can further improve their CPL properties, as evidenced by a 21-fold increase in the dissymmetry factor and an over 25-fold increase in the fluorescence quantum yield in the aggregate state compared to the solution state. Such a synergistic effect of polymerization- and aggregation-enhanced CPL can be explained by the restriction of intramolecular motions and aggregation-induced conformation confinement. This work provides a promising method for developing highly efficient CPL supramolecular polymers.
Collapse
Affiliation(s)
- Hewei Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xiaojun Yin
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhen (CUHK‐Shenzhen)Guangdong518172China
| |
Collapse
|
20
|
Liu N, Gao RT, Wu ZQ. Helix-Induced Asymmetric Self-Assembly of π-Conjugated Block Copolymers: From Controlled Syntheses to Distinct Properties. Acc Chem Res 2023; 56:2954-2967. [PMID: 37852202 DOI: 10.1021/acs.accounts.3c00425] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Conspectusπ-Conjugated polymers have gained significant interest because of their potential applications in optoelectronics, bioelectronics, and other domains. The controlled synthesis of π-conjugated block polymers optimizes their performance and enables novel properties and functions. However, precise control of the self-assembled architectures of π-conjugated polymers remains a formidable challenge. Inspired by the precise helical architectures of biomacromolecules, the helical polymers and the supramolecular helical assemblies have gained significant attention. Helical polymers with an excess of one-handed helicity can be optically active with a strong tendency toward self-assembly. Incorporating a helical polymer into a π-conjugated polymer can induce asymmetric helical assemblies, leading to novel chiral materials with unique functionalities.To control the self-assembly of architectures, π-conjugated polymers are usually synthesized into block copolymers by incorporating a polymer with self-assembling characteristics. Although various π-conjugated block copolymers have been produced, precise and asymmetric self-assembly is still challenging and has rarely been addressed. Incorporating helical polymers into the π-conjugated polymers can induce a precise and asymmetric self-assembly, which transfers the chirality of the helical polymer block to the π-conjugated polymer, resulting in chiral supramolecular architectures with unique chiroptical properties and functionalities. However, synthesizing hybrid block copolymers containing two distinct polymer blocks is complicated. Some general strategies such as connecting the chain ends of two preformed homopolymers and extending the chain of a prefabricated π-conjugated polymer with a second monomer are time-consuming and require complex synthetic protocols. Therefore, developing novel strategies for the facile synthesis of π-conjugated block copolymers with a predictable molar mass, low dispersity, and tunable composition is of practical importance.Recently, we investigated a controlled synthesis of helical polyisocyanides, helical polyallenes, and helical polycarbenes by developing advanced Pd(II) and Ni(II) catalysts. These helical polymers were successfully incorporated into π-conjugated polymers, including polythiophene, polyfluorene, and poly(phenyleneethynylene), via a one-pot sequential living block polymerization of the two distinct monomers using Pd(II)- or Ni(II)-complexes as catalysts. As a result, a variety of well-defined π-conjugated block copolymers containing helical polymeric blocks were readily synthesized. Although the copolymerized monomers possess different structures and polymerization mechanisms, the one-pot block copolymerization followed a living polymerization mechanism and provided the desired π-conjugated block copolymers in high yields with controlled molar mass, narrow size distribution, and tunable composition.Remarkably, the helical polymeric block induces the π-conjugated block copolymer asymmetric self-assembly into a supramolecular, one-handed helical architecture resulting in distinct optical properties. More interestingly, by utilizing the crystallization of conjugated blocks and one-handed helical blocks, the crystallization-driven and helix-induced precise asymmetric living self-assembly yielded a family of uniform and single-handed helical architectures with controlled dimensions, narrow distribution, and well-defined helicity. The transfer of helical chirality to the supramolecular architectures rendered the achiral π-conjugated blocks with unique chiroptical properties such as the emission of white light over a broad optical spectrum and the circularly polarized luminescence.
Collapse
Affiliation(s)
- Na Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
21
|
Sun L, Li N, Ma J, Wang J. Study on Asymmetric Vibrational Coherent Magnetic Transitions and Origin of Fluorescence in Symmetric Structures. Molecules 2023; 28:6645. [PMID: 37764420 PMCID: PMC10534477 DOI: 10.3390/molecules28186645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
In this work, the physical mechanisms of three highly efficient circularly polarized luminescent materials are introduced. The UV-vis spectra are plotted; the transition properties of their electrons at the excited states are investigated using a combination of the transition density matrix (TDM) and the charge difference density (CDD); combining the distribution of electron clouds, the essence of charge transfer excitation in three structures is explained. The resonance Raman spectrum of the three structures at the S1 and S2 excited states are calculated. The M, M-4 and M, M-5 structures are found to produce novel chirality by electronic circular dichroism (ECD) spectrum, and the reasons for the chirality of the M, M-4 and M, M-5 structures are discussed by analyzing the density of transition electric/magnetic dipole moments (TEDM/TMDMs) in different orientations. Finally, the Raman optical activity (ROA) of M, M-4, and M, M-5 are calculated, and the spectra are plotted. This study will provide guidance for the application of carbon-based nanomaterials in organic electronic devices, solar cells, and optoelectronics.
Collapse
Affiliation(s)
| | | | - Ji Ma
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, College of Science, Liaoning Petrochemical University, Fushun 113001, China; (L.S.); (N.L.)
| | - Jingang Wang
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, College of Science, Liaoning Petrochemical University, Fushun 113001, China; (L.S.); (N.L.)
| |
Collapse
|
22
|
Wang X, Zhao B, Deng J. Liquid Crystals Doped with Chiral Fluorescent Polymer: Multi-Color Circularly Polarized Fluorescence and Room-Temperature Phosphorescence with High Dissymmetry Factor and Anti-Counterfeiting Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304405. [PMID: 37505074 DOI: 10.1002/adma.202304405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Chiral nematic liquid crystals (N*-LCs) can tremendously amplify circularly polarized luminescence (CPL) signals. Doped emissive N*-LCs have been substantially explored. However, their CPL performances still need to be improved, mainly due to the unsatisfying helical twisting power (HTP) of commonly used chiral fluorescent dopants. Chiral fluorescent helical polymers (CFHPs) have outstanding optical activity and CPL performance. The present contribution reports the first success in constructing emissive N*-LCs by doping CFHP into nematic liquid crystals (5CB, N-LCs). The helical assembly structures of N*-LCs effectively amplify the CPL signals of the CFHP. Owing to the high HTP of CFHP, the selective reflection band of N*-LC can be adjusted to fully cover its emission band. A nearly pure CPL with a dissymmetry factor (glum ) up to -1.87 is realized at 9 wt% doping concentration. Taking advantage of the selective reflection mechanism, multi-color CPL-active N*-LCs with high glum are fabricated via further adding achiral fluorophores. Also noticeably, circularly polarized room-temperature phosphorescence with glum up to -1.57 is achieved. Anti-counterfeiting application is demonstrated by exploiting multi-mode optical characteristics of the created N*-LCs. The established strategy for constructing emissive N*-LCs provides a platform for future exploring of CPL-active N*-LCs.
Collapse
Affiliation(s)
- Xujie Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
23
|
Liu Y, Xing P. Circularly Polarized Light Responsive Materials: Design Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300968. [PMID: 36934302 DOI: 10.1002/adma.202300968] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Circularly polarized light (CPL) with the end of optical vector traveling along circumferential trajectory shows left- and right-handedness, which transmits chiral information to materials via complicated CPL-matter interactions. Materials with circular dichroism respond to CPL illumination selectively with differential outputs that can be used to design novel photodetectors. Racemic or achiral compounds under CPL go through photodestruction, photoresolution, and asymmetric synthesis pathways to generate enantiomeric bias and optical activity. By this strategy, helical polymers and chiral inorganic plasmonic nanostructures are synthesized directly, and their intramolecular folding and subsequent self-assembly are photomodulable as well. In the aggregated state of self-assembly and liquid crystal phase, helical sense of the dynamic molecular packing is sensitive to enantiomeric bias brought by CPL, enabling the chiral amplification to supramolecular scale. In this review, the application-guided design strategies of CPL-responsive materials are aimed to be systematically summarized and discussed. Asymmetric synthesis, resolution, and property-modulation of small organic compounds, polymers, inorganic nanoparticles, supramolecular assemblies and liquid crystals are highlighted based on the important developments during the last decades. Besides, applications of light-matter interactions including CPL detection and biomedical applications are also referred.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|