1
|
Keenan T, Cowan AR, Flack EKP, Hatton NE, Walklett AJ, Thomas GH, Hemsworth GR, Fascione MA. Structural dissection of the CMP-pseudaminic acid synthetase, PseF. Structure 2024; 32:2399-2409.e4. [PMID: 39393361 DOI: 10.1016/j.str.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Pseudaminic acid is a non-mammalian sugar found in the surface glycoconjugates of many bacteria, including several human pathogens, and is a virulence factor thought to facilitate immune evasion. The final step in the biosynthesis of the nucleotide activated form of the sugar, CMP-Pse5Ac7Ac is performed by a CMP-Pse5Ac7Ac synthetase (PseF). Here we present the biochemical and structural characterization of PseF from Aeromonas caviae (AcPseF), with AcPseF displaying metal-dependent activity over a broad pH and temperature range. Upon binding to CMP-Pse5Ac7Ac, AcPseF undergoes dynamic movements akin to other CMP-ulosonic acid synthetases. The enzyme clearly discriminates Pse5Ac7Ac from other ulosonic acids, through active site interactions with side-chain functional groups and by positioning the molecule in a hydrophobic pocket. Finally, we show that AcPseF binds the CMP-Pse5Ac7Ac side chain in the lowest energy conformation, a trend that we observed in the structures of other enzymes of this class.
Collapse
Affiliation(s)
- Tessa Keenan
- Department of Chemistry, University of York, York YO10 5DD, UK
| | - Andrew R Cowan
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Emily K P Flack
- Department of Biology, University of York, York YO10 5DD, UK
| | | | | | - Gavin H Thomas
- Department of Biology, University of York, York YO10 5DD, UK
| | - Glyn R Hemsworth
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
2
|
Simone M. Borylated Monosaccharide 3-Boronic-3-deoxy-d-galactose: Detailed NMR Spectroscopic Characterisation, and Method for Spectroscopic Analysis of Anomeric and Boron Equilibria. Int J Mol Sci 2024; 25:12396. [PMID: 39596462 PMCID: PMC11594630 DOI: 10.3390/ijms252212396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Drug leads with a high Fsp3 index are more likely to possess desirable properties for progression in the drug development pipeline. This paper describes the first detailed NMR analysis of the borylated intermediate 3-deoxy-3-boronodiethanolamine-1,2:5,6-di-O-isopropylidene-α-d-galactofuranose and of the corresponding free monosaccharide analogue 3-boronic-3-deoxy-d-galactose in the early stage of the concurrent equilibrium processes of mutarotation and borarotation. A discussion of all potential equilibria is also presented alongside a comparison with relevant 11B-NMR data available from the scientific literature and our own library.
Collapse
Affiliation(s)
- Michela Simone
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
3
|
Jannus F, Sainz J, Reyes-Zurita FJ. Principal Bioactive Properties of Oleanolic Acid, Its Derivatives, and Analogues. Molecules 2024; 29:3291. [PMID: 39064870 PMCID: PMC11279785 DOI: 10.3390/molecules29143291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Natural products have always played an important role in pharmacotherapy, helping to control pathophysiological processes associated with human disease. Thus, natural products such as oleanolic acid (OA), a pentacyclic triterpene that has demonstrated important activities in several disease models, are in high demand. The relevant properties of this compound have motivated re-searchers to search for new analogues and derivatives using the OA as a scaffold to which new functional groups have been added or modifications have been realized. OA and its derivatives have been shown to be effective in the treatment of inflammatory processes, triggered by chronic diseases or bacterial and viral infections. OA and its derivatives have also been found to be effective in diabetic disorders, a group of common endocrine diseases characterized by hyperglycemia that can affect several organs, including the liver and brain. This group of compounds has been reported to exhibit significant bioactivity against cancer processes in vitro and in vivo. In this review, we summarize the bioactive properties of OA and its derivatives as anti-inflammatory, anti-bacterial, antiviral, anti-diabetic, hepatoprotective, neuroprotective, and anticancer agents.
Collapse
Affiliation(s)
- Fatin Jannus
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración, 114, PTS, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria IBs.Granada, 18010 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria IBs.Granada, 18010 Granada, Spain
| |
Collapse
|
4
|
Yin Y, Shi X, Cai X, Liu F, Ni W, Li B, Wan X, Ren M. Isolation Techniques, Structural Characteristics, and Pharmacological Effects of Phellinus Polysaccharides: A Review. Molecules 2024; 29:3047. [PMID: 38998999 PMCID: PMC11243265 DOI: 10.3390/molecules29133047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Phellinus is a precious perennial medicinal fungus. Its polysaccharides are important bioactive components, and their chemical composition is complex. The polysaccharides are mainly extracted from the fruiting body and mycelium. The yield of the polysaccharides is dependent on the extraction method. They have many pharmacological activities, such as antitumor, immunomodulatory, antioxidant, hypoglycemic, anti-inflammatory, etc. They are also reported to show minor toxic and side effects. Many studies have reported the anticancer activity of Phellinus polysaccharides. This review paper provides a comprehensive examination of the current methodologies for the extraction and purification of Phellinus polysaccharides. Additionally, it delves into the structural characteristics, pharmacological activities, and mechanisms of action of these polysaccharides. The primary aim of this review is to offer a valuable resource for researchers, facilitating further studies on Phellinus polysaccharides and their potential applications.
Collapse
Affiliation(s)
- Yiming Yin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Y.); (X.S.); (X.C.); (F.L.); (W.N.)
- College of Pharmacy, Shandong University, Jinan 250100, China
| | - Xiaolin Shi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Y.); (X.S.); (X.C.); (F.L.); (W.N.)
| | - Xiaoqing Cai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Y.); (X.S.); (X.C.); (F.L.); (W.N.)
| | - Fangrui Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Y.); (X.S.); (X.C.); (F.L.); (W.N.)
| | - Wenting Ni
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Y.); (X.S.); (X.C.); (F.L.); (W.N.)
| | - Baohong Li
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Xinhuan Wan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Y.); (X.S.); (X.C.); (F.L.); (W.N.)
| | - Meng Ren
- College of Physical Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
5
|
Hernández-Guadarrama A, Díaz-Román MA, Linzaga-Elizalde I, Domínguez-Mendoza BE, Aguilar-Guadarrama AB. In Silico Analysis: Anti-Inflammatory and α-Glucosidase Inhibitory Activity of New α-Methylene-γ-Lactams. Molecules 2024; 29:1973. [PMID: 38731463 PMCID: PMC11085531 DOI: 10.3390/molecules29091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
The research about α-methylene-γ-lactams is scarce; however, their synthesis has emerged in recent years mainly because they are isosters of α-methylene-γ-lactones. This last kind of compound is structurally most common in some natural products' nuclei, like sesquiterpene lactones that show biological activity such as anti-inflammatory, anticancer, antibacterial, etc., effects. In this work, seven α-methylene-γ-lactams were evaluated by their inflammation and α-glucosidase inhibition. Thus, compounds 3-methylene-4-phenylpyrrolidin-2-one (1), 3-methylene-4-(p-tolyl)pyrrolidin-2-one (2), 4-(4-chlorophenyl)-3-methylenepyrrolidin-2-one (3), 4-(2-chlorophenyl)-3-methylenepyrrolidin-2-one (4), 5-ethyl-3-methylene-4-phenylpyrrolidin-2-one (5), 5-ethyl-3-methylene-4-(p-tolyl)pyrrolidin-2-one (6) and 4-(4-chlorophenyl)-5-ethyl-3-methylenepyrrolidin-2-one (7) were evaluated via in vitro α-glucosidase assay at 1 mM concentration. From this analysis, 7 exerts the best inhibitory effect on α-glucosidase compared with the vehicle, but it shows a low potency compared with the reference drug at the same dose. On the other side, inflammation edema was induced using TPA (12-O-tetradecanoylphorbol 13-acetate) on mouse ears; compounds 1-7 were tested at 10 µg/ear dose. As a result, 1, 3, and 5 show a better inhibition than indomethacin, at the same doses. This is a preliminary report about the biological activity of these new α-methylene-γ-lactams.
Collapse
Affiliation(s)
| | | | | | | | - A. Berenice Aguilar-Guadarrama
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Mexico; (A.H.-G.); (M.A.D.-R.); (I.L.-E.); (B.E.D.-M.)
| |
Collapse
|
6
|
Mune Mune MA, Hatanaka T, Kishimura H, Kumagai Y. Understanding Antidiabetic Potential of Oligosaccharides from Red Alga Dulse Devaleraea inkyuleei Xylan by Investigating α-Amylase and α-Glucosidase Inhibition. Molecules 2024; 29:1536. [PMID: 38611816 PMCID: PMC11013419 DOI: 10.3390/molecules29071536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, the α-glucosidase (maltase-glucoamylase: MGAM) and α-amylase inhibitory properties elicited by xylooligosaccharides (XOSs) prepared from dulse xylan were analysed as a potential mechanism to control postprandial hyperglycaemia for type-2 diabetes prevention and treatment. Xylan was purified from red alga dulse powder and used for enzymatic hydrolysis using Sucrase X to produce XOSs. Fractionation of XOSs produced xylobiose (X2), β-(1→3)-xylosyl xylobiose (DX3), xylotriose (X3), β-(1→3)-xylosyl-xylotriose (DX4), and a dulse XOS mixture with n ≥ 4 xylose units (DXM). The different fractions exhibited moderate MGAM (IC50 = 11.41-23.44 mg/mL) and α-amylase (IC50 = 18.07-53.04 mg/mL) inhibitory activity, which was lower than that of acarbose. Kinetics studies revealed that XOSs bound to the active site of carbohydrate digestive enzymes, limiting access to the substrate by competitive inhibition. A molecular docking analysis of XOSs with MGAM and α-amylase clearly showed moderate strength of interactions, both hydrogen bonds and non-bonded contacts, at the active site of the enzymes. Overall, XOSs from dulse could prevent postprandial hyperglycaemia as functional food by a usual and continuous consumption.
Collapse
Affiliation(s)
| | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama 716-1241, Japan;
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan;
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan;
| |
Collapse
|
7
|
Luo Y, Yang D, Xu Y, Wu D, Tan D, Qin L, Wu X, Lu Y, He Y. Hypoglycemic Effects and Quality Marker Screening of Dendrobium nobile Lindl. at Different Growth Years. Molecules 2024; 29:699. [PMID: 38338442 PMCID: PMC10856227 DOI: 10.3390/molecules29030699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: The effect of Dendrobium nobile Lindl. (D. nobile) on hyperglycemic syndrome has only been recently known for several years. Materials of D. nobile were always collected from the plants cultivated in various growth ages. However, regarding the efficacy of D. nobile on hyperglycemic syndrome, it was still unknown as to which cultivation age would be selected. On the other hand, with the lack of quality markers, it is difficult to control the quality of D. nobile to treat hyperglycemic syndrome. (2) Methods: The effects of D. nobile cultivated at year 1 and year 3 were checked on alloxan-induced diabetic mice while their body weight, diet, water intake, and urinary output were monitored. Moreover, levels of glycosylated serum protein and insulin were measured using Elisa kits. The constituents of D. nobile were identified and analyzed by using UPLC-Q/trap. Quality markers were screened out by integrating the data from UPLC-Q/trap into a network pharmacology model. (3) Results: The D. nobile cultivated at both year 1 and year 3 showed a significant effect on hyperglycemic syndrome at the high dosage level; however, regarding the significant level, D. nobile from year 1 showed the better effect. In D. nobile, most of the metabolites were identified as alkaloids and sesquiterpene glycosides. Alkaloids, represented by dendrobine, were enriched in D. nobile from year 1, while sesquiterpene glycosides were enriched in D. nobile from year 3. Twenty one metabolites were differentially expressed between D. nobile from year 1 and year 3. The aforementioned 21 metabolites were enriched to 34 therapeutic targets directly related to diabetes. (4) Conclusions: Regarding the therapy for hyperglycemic syndrome, D. nobile cultivated at year 1 was more recommended than that at year 3. Alkaloids were recommended to be used as markers to control the quality of D. nobile for hyperglycemic syndrome treatment.
Collapse
Affiliation(s)
- Yi Luo
- Key Lab of the Basic Pharmacology of The Ministry of Education, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (Y.L.); (D.Y.); (Y.X.)
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Da Yang
- Key Lab of the Basic Pharmacology of The Ministry of Education, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (Y.L.); (D.Y.); (Y.X.)
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Yanzhe Xu
- Key Lab of the Basic Pharmacology of The Ministry of Education, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (Y.L.); (D.Y.); (Y.X.)
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Xingdong Wu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Yanliu Lu
- Key Lab of the Basic Pharmacology of The Ministry of Education, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (Y.L.); (D.Y.); (Y.X.)
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Yuqi He
- Key Lab of the Basic Pharmacology of The Ministry of Education, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (Y.L.); (D.Y.); (Y.X.)
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| |
Collapse
|
8
|
Flis Z, Szatkowski P, Pielichowska K, Molik E. The Potential of Sheep or Camel Milk Constituents to Contribute to Novel Dressings for Diabetic Wounds. Int J Mol Sci 2023; 24:17551. [PMID: 38139380 PMCID: PMC10744295 DOI: 10.3390/ijms242417551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Impaired wound healing is a complication of diabetes, which constitutes a serious problem in clinical practice. Currently, there is a high demand on the market for local treatment options for difficult-to-heal wounds caused by diabetes. The development of dressings that accelerate wound healing has recently been the subject of much research. Sheep and camel milk is gaining importance due to the content of many bioactive substances with health-promoting effects, such as insulin, LF, proline, or CLA. Sheep and camel milk proteins are a promising source of insulin, antidiabetic, and antihypertensive peptides. Numerous studies show that local administration of insulin has a significant impact on the healing of diabetic wounds. Sheep and camel milk, due to the highest LF content among ruminants, reduces autoimmune inflammatory processes and protects against bacterial and viral infections in the wound environment. Sheep's milk has the highest content of proline and CLA, and their addition to a hydrogel dressing can help in the development of an effective dressing material. The production of hydrogel dressings containing sheep and camel milk, which are naturally rich in the bioactive substances presented in this review, may be a promising step in the market of specialized dressings for difficult-to-heal diabetic wounds.
Collapse
Affiliation(s)
- Zuzanna Flis
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 31-059 Krakow, Poland
| | - Piotr Szatkowski
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, University of Science and Technology in Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland (K.P.)
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, University of Science and Technology in Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland (K.P.)
| | - Edyta Molik
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 31-059 Krakow, Poland
| |
Collapse
|
9
|
Chepeleva LV, Demidov OO, Snizhko AD, Tarasenko DO, Chumak AY, Kolomoitsev OO, Kotliar VM, Gladkov ES, Kyrychenko A, Roshal AD. Binding interactions of hydrophobically-modified flavonols with β-glucosidase: fluorescence spectroscopy and molecular modelling study. RSC Adv 2023; 13:34107-34121. [PMID: 38020002 PMCID: PMC10661682 DOI: 10.1039/d3ra06276g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Natural flavonoids are capable of inhibiting glucosidase activity, so they can be used for treating diabetes mellitus and hypertension. However, molecular-level details of their interactions with glucosidase enzymes remain poorly understood. This paper describes the synthesis and spectral characterization of a series of fluorescent flavonols and their interaction with the β-glucosidase enzyme. To tune flavonol-enzyme interaction modes and affinity, we introduced different polar halogen-containing groups or bulky aromatic/alkyl substituents in the peripheral 2-aryl ring of a flavonol moiety. Using fluorescence spectroscopy methods in combination with molecular docking and molecular dynamics simulations, we examined the binding affinity and identified probe binding patterns, which are critical for steric blockage of the key catalytic residues of the enzyme. Using a fluorescent assay, we demonstrated that the binding of flavonol 2e to β-glucosidase decreased its enzymatic activity up to 3.5 times. In addition, our molecular docking and all-atom molecular dynamics simulations suggest that the probe binding is driven by hydrophobic interactions with aromatic Trp and Tyr residues within the catalytic glycone binding pockets of β-glucosidase. Our study provides a new insight into structure-property relations for flavonol-protein interactions, which govern their enzyme binding, and outlines a framework for a rational design of new flavonol-based potent inhibitors for β-glucosidases.
Collapse
Affiliation(s)
- Liudmyla V Chepeleva
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Oleksii O Demidov
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Arsenii D Snizhko
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Dmytro O Tarasenko
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Andrii Y Chumak
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Oleksii O Kolomoitsev
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Volodymyr M Kotliar
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Eugene S Gladkov
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine 60 Nauky Ave. Kharkiv 61072 Ukraine
| | - Alexander Kyrychenko
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine 60 Nauky Ave. Kharkiv 61072 Ukraine
| | - Alexander D Roshal
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| |
Collapse
|
10
|
El-Sayed NNE, Al-Otaibi TM, Barakat A, Almarhoon ZM, Hassan MZ, Al-Zaben MI, Krayem N, Masand VH, Ben Bacha A. Synthesis and Biological Evaluation of Some New 3-Aryl-2-thioxo-2,3-dihydroquinazolin-4(1 H)-ones and 3-Aryl-2-(benzylthio)quinazolin-4(3 H)-ones as Antioxidants; COX-2, LDHA, α-Glucosidase and α-Amylase Inhibitors; and Anti-Colon Carcinoma and Apoptosis-Inducing Agents. Pharmaceuticals (Basel) 2023; 16:1392. [PMID: 37895863 PMCID: PMC10610505 DOI: 10.3390/ph16101392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress, COX-2, LDHA and hyperglycemia are interlinked contributing pathways in the etiology, progression and metastasis of colon cancer. Additionally, dysregulated apoptosis in cells with genetic alternations leads to their progression in malignant transformation. Therefore, quinazolinones 3a-3h and 5a-5h were synthesized and evaluated as antioxidants, enzymes inhibitors and cytotoxic agents against LoVo and HCT-116 cells. Moreover, the most active cytotoxic derivatives were evaluated as apoptosis inducers. The results indicated that 3a, 3g and 5a were efficiently scavenged DPPH radicals with lowered IC50 values (mM) ranging from 0.165 ± 0.0057 to 0.191 ± 0.0099, as compared to 0.245 ± 0.0257 by BHT. Derivatives 3h, 5a and 5h were recognized as more potent dual inhibitors than quercetin against α-amylase and α-glucosidase, in addition to 3a, 3c, 3f and 5b-5f against α-amylase. Although none of the compounds demonstrated a higher efficiency than the reference inhibitors against COX-2 and LDHA, 3a and 3g were identified as the most active derivatives. Molecular docking studies were used to elucidate the binding affinities and binding interactions between the inhibitors and their target proteins. Compounds 3a and 3f showed cytotoxic activities, with IC50 values (µM) of 294.32 ± 8.41 and 383.5 ± 8.99 (LoVo), as well as 298.05 ± 13.26 and 323.59 ± 3.00 (HCT-116). The cytotoxicity mechanism of 3a and 3f could be attributed to the modulation of apoptosis regulators (Bax and Bcl-2), the activation of intrinsic and extrinsic apoptosis pathways via the upregulation of initiator caspases-8 and -9 as well as executioner caspase-3, and the arrest of LoVo and HCT-116 cell cycles in the G2/M and G1 phases, respectively. Lastly, the physicochemical, medicinal chemistry and ADMET properties of all compounds were predicted.
Collapse
Affiliation(s)
| | - Taghreed M. Al-Otaibi
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (T.M.A.-O.); (A.B.); (M.I.A.-Z.)
| | - Assem Barakat
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (T.M.A.-O.); (A.B.); (M.I.A.-Z.)
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (T.M.A.-O.); (A.B.); (M.I.A.-Z.)
| | - Mohd. Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Maha I. Al-Zaben
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (T.M.A.-O.); (A.B.); (M.I.A.-Z.)
| | - Najeh Krayem
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS, Université de Sfax, Route de Soukra 3038, Sfax BP 1173, Tunisia;
| | - Vijay H. Masand
- Department of Chemistry, Vidya Bharati College, Camp, Amravati, Maharashtra 444602, India;
| | - Abir Ben Bacha
- Biochemistry Department, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
| |
Collapse
|
11
|
Calonico K, De La Rosa-Millan J. Digestion-Related Enzyme Inhibition Potential of Selected Mexican Medicinal Plants ( Ludwigia octovalvis (Jacq.) P.H.Raven, Cnidoscolus aconitifolius and Crotalaria longirostrata). Foods 2023; 12:3529. [PMID: 37835184 PMCID: PMC10572748 DOI: 10.3390/foods12193529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 10/15/2023] Open
Abstract
Medicinal plants offer a valuable source of natural compounds with specific and selective bioactivity. These compounds have been isolated since the mid-nineteenth century and are now commonly used in modern medications. L. octovalvis (Jacq.) P.H.Raven, C. aconitifolius, and C. longirostrata are Mexican medicinal plants consumed regularly, and research has shown that they contain bioactive compounds capable of promoting the inhibition of digestive enzymes. This is noteworthy since enzyme inhibitors are bioactive substances that interact with enzymes, diminishing their activity and thereby contributing to the management of diseases and metabolic disturbances. To investigate the activity of these plants, individual analyses were conducted, assessing their proximal composition, bioactive compounds, and inhibition of α-Amylase, α-Glucosidase, lipase, and pepsin. The results revealed that all three plants exhibited enzymatic inhibition. When comparing the plants, it was determined that C. aconitifolius had the lowest concentration required for a 50% inhibition in α-Amylase, α-Glucosidase, and lipase, as indicated by the IC50 values. For pepsin, C. longirostrata demonstrated the lowest IC50 value. By understanding the bioactive compounds present in these plants, we can establish the relationship they have with enzymatic inhibition, which can be utilized for future investigations.
Collapse
Affiliation(s)
- Kimberly Calonico
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, BioFoods Research Lab, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, Monterrey 64849, Nuevo Leon, Mexico;
| | | |
Collapse
|
12
|
Krawczyk M, Burzynska-Pedziwiatr I, Wozniak LA, Bukowiecka-Matusiak M. Impact of Polyphenols on Inflammatory and Oxidative Stress Factors in Diabetes Mellitus: Nutritional Antioxidants and Their Application in Improving Antidiabetic Therapy. Biomolecules 2023; 13:1402. [PMID: 37759802 PMCID: PMC10526737 DOI: 10.3390/biom13091402] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycaemia and oxidative stress. Oxidative stress plays a crucial role in the development and progression of diabetes and its complications. Nutritional antioxidants derived from dietary sources have gained significant attention due to their potential to improve antidiabetic therapy. This review will delve into the world of polyphenols, investigating their origins in plants, metabolism in the human body, and relevance to the antioxidant mechanism in the context of improving antidiabetic therapy by attenuating oxidative stress, improving insulin sensitivity, and preserving β-cell function. The potential mechanisms of, clinical evidence for, and future perspectives on nutritional antioxidants as adjuvant therapy in diabetes management are discussed.
Collapse
|
13
|
Utami AR, Maksum IP, Deawati Y. Berberine and Its Study as an Antidiabetic Compound. BIOLOGY 2023; 12:973. [PMID: 37508403 PMCID: PMC10376565 DOI: 10.3390/biology12070973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that causes hyperglycemia conditions and leads to various chronic complications that causes death. The prevalence of diabetes is predicted to continue to increase, and with the high toxicity levels of current diabetes drugs, the exploration of natural compounds as alternative diabetes treatment has been widely carried out, one of which is berberine. Berberine and several other alkaloid compounds, including some of its derivatives, have shown many bioactivities, such as neuraminidase and hepatoprotective activity. Berberine also exhibits antidiabetic activity. As an antidiabetic compound, berberine is known to reduce blood glucose levels, increase insulin secretion, and weaken glucose tolerance and insulin resistance by activating the AMPK pathway. Apart from being an antidiabetic compound, berberine also exhibits various other activities such as being anti-adipogenic, anti-hyperlipidemic, anti-inflammatory, and antioxidant. Many studies have been conducted on berberine, but its exact mechanism still needs to be clarified and requires further investigation. This review will discuss berberine and its mechanism as a natural compound with various activities, mainly as an antidiabetic.
Collapse
Affiliation(s)
- Ayudiah Rizki Utami
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Yusi Deawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
14
|
Luo L, Fan W, Qin J, Guo S, Xiao H, Tang Z. Pharmacological and Pathological Effects of Mulberry Leaf Extract on the Treatment of Type 1 Diabetes Mellitus Mice. Curr Issues Mol Biol 2023; 45:5403-5421. [PMID: 37504259 PMCID: PMC10378407 DOI: 10.3390/cimb45070343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
This study investigated the pharmacological and pathological effects of aqueous mulberry leaf extract on type 1 diabetes mellitus mice induced with an intraperitoneal injection of streptozotocin (STZ). Diabetic mice were randomized into six groups: control (normal group), model, metformin-treated mice, and high-dose, medium-dose, and low-dose mulberry. The mulberry-treated mice were divided into high-, medium-, and low-dose groups based on the various doses of aqueous mulberry leaf extract during gavage. The efficacy of the six-week intervention was evaluated by measuring levels of fasting plasma glucose, alkaline phosphatase, alanine aminotransferase, aspartate transaminase, blood urea nitrogen, gamma-glutamyl transferase, glucose, high-density lipoprotein cholesterol, lactate dehydrogenase, and low-density lipoprotein cholesterol and recording body weight. Results revealed that mulberry leaf extract exhibited an ideal hypoglycemic effect, and the high-dose group was the most affected. Histology analysis, glycogen staining and apoptosis detection were used to study the extract's effects on the liver, kidney, and pancreatic cells of diabetic mice, enabling the assessment of its effectiveness and complications on a clinical and theoretical basis. It was shown that a certain concentration of aqueous mulberry leaf extract repaired the islet cells of type 1 diabetes mellitus mice, promoting normal insulin secretion. Herein, it was confirmed that mulberry leaf could be used to develop new hypoglycemic drugs or functional health food with broad applicability.
Collapse
Affiliation(s)
- Liru Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410128, China
| | - Wei Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410128, China
| | - Jingping Qin
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shiyin Guo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410128, China
| | - Hang Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410128, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410128, China
| |
Collapse
|
15
|
Metiefeng NT, Tamfu AN, Fotsing Tagatsing M, Tabopda TK, Kucukaydin S, Noah Mbane M, de Theodore Atchade A, Talla E, Henoumont C, Laurent S, Anouar EH, Dinica RM. In Vitro and In Silico Evaluation of Anticholinesterase and Antidiabetic Effects of Furanolabdanes and Other Constituents from Graptophyllum pictum (Linn.) Griffith. Molecules 2023; 28:4802. [PMID: 37375357 DOI: 10.3390/molecules28124802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Graptophyllum pictum is a tropical plant noticeable for its variegated leaves and exploited for various medicinal purposes. In this study, seven compounds, including three furanolabdane diterpenoids, i.e., Hypopurin E, Hypopurin A and Hypopurin B, as well as with Lupeol, β-sitosterol 3-O-β-d-glucopyranoside, stigmasterol 3-O-β-d-glucopyranoside and a mixture of β-sitosterol and stigmasterol, were isolated from G. pictum, and their structures were deduced from ESI-TOF-MS, HR-ESI-TOF-MS, 1D and 2D NMR experiments. The compounds were evaluated for their anticholinesterase activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BchE), as well as their antidiabetic potential through inhibition of α-glucosidase and α-amylase. For AChE inhibition, no sample had IC50 within tested concentrations, though the most potent was Hypopurin A, which had a percentage inhibition of 40.18 ± 0.75%, compared to 85.91 ± 0.58% for galantamine, at 100 µg/mL. BChE was more susceptible to the leaves extract (IC50 = 58.21 ± 0.65 µg/mL), stem extract (IC50 = 67.05 ± 0.82 µg/mL), Hypopurin A (IC50 = 58.00 ± 0.90 µg/mL), Hypopurin B (IC50 = 67.05 ± 0.92 µg/mL) and Hypopurin E (IC50 = 86.90 ± 0.76 µg/mL). In the antidiabetic assay, the furanolabdane diterpenoids, lupeol and the extracts had moderate to good activities. Against α-glucosidase, lupeol, Hypopurin E, Hypopurin A and Hypopurin B had appreciable activities but the leaves (IC50 = 48.90 ± 0.17 µg/mL) and stem (IC50 = 45.61 ± 0.56 µg/mL) extracts were more active than the pure compounds. In the α-amylase assay, stem extract (IC50 = 64.47 ± 0.78 µg/mL), Hypopurin A (IC50 = 60.68 ± 0.55 µg/mL) and Hypopurin B (IC50 = 69.51 ± 1.30 µg/mL) had moderate activities compared to the standard acarbose (IC50 = 32.25 ± 0.36 µg/mL). Molecular docking was performed to determine the binding modes and free binding energies of Hypopurin E, Hypopurin A and Hypopurin B in relation to the enzymes and decipher the structure-activity relationship. The results indicated that G. pictum and its compounds could, in general, be used in the development of therapies for Alzheimer's disease and diabetes.
Collapse
Affiliation(s)
- Nathalie Tanko Metiefeng
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde 812, Cameroon
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla 48800, Turkey
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, 'Dunarea de Jos' University of Galati, 47 Domneasca Str., 800008 Galati, Romania
| | - Maurice Fotsing Tagatsing
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde 812, Cameroon
| | - Turibio Kuiate Tabopda
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde 812, Cameroon
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla 48800, Turkey
| | - Martin Noah Mbane
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde 812, Cameroon
| | - Alex de Theodore Atchade
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde 812, Cameroon
| | - Emmanuel Talla
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Celine Henoumont
- Laboratory of NMR and Molecular Imaging, Department of General, Organic and Biomedical Chemistry, University of Mons, B-7000 Mons, Belgium
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic and Biomedical Chemistry, University of Mons, B-7000 Mons, Belgium
| | - El Hassane Anouar
- Department of Chemistry, College of Sciences and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, 'Dunarea de Jos' University of Galati, 47 Domneasca Str., 800008 Galati, Romania
| |
Collapse
|
16
|
Saidi S, Remok F, Handaq N, Drioiche A, Gourich AA, Menyiy NE, Amalich S, Elouardi M, Touijer H, Bouhrim M, Bouissane L, Nafidi HA, Bin Jardan YA, Bourhia M, Zair T. Phytochemical Profile, Antioxidant, Antimicrobial, and Antidiabetic Activities of Ajuga iva (L.). Life (Basel) 2023; 13:life13051165. [PMID: 37240812 DOI: 10.3390/life13051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
In Morocco, many applications in ethnomedicine on Ajuga iva (L.) have been recognized as able to treat various pathologies such as diabetes, stress, and microbial infections. The objective of this work is to carry out phytochemical, biological, and pharmacological investigations on the extracts of Ajuga iva leaves in order to confirm its therapeutic effects. The phytochemical screening carried out on the different extracts of Ajuga iva showed its richness in primary (lipids and proteins) and secondary metabolites (flavonoids, tannins, reducing compounds, oses, and holoside. The best contents of polyphenols, flavonoids, and tannins evaluated by spectrophotometric methods were found in the hydroethanolic extract (69.850 ± 2.783 mg EAG/g DE, 17.127 ± 0.474 mg EQ/g DE, 5.566 ± 0.000 mg EQC/g DE), respectively. Analysis of the chemical composition of the aqueous extract by LC/UV/MS revealed 32 polyphenolic compounds including ferulic acid (19.06%), quercetin (10.19%), coumaric acid (9.63%), and apigenin-7-(2-O-apiosylglucoside) (6.8%). The antioxidant activity of Ajuga iva extracts was evaluated by three methods (DPPH*, FRAP, CAT). The hydroethanolic extract recorded the strongest reducing power: DPPH* (IC50 = 59.92 ± 0.7 µg/mL), FRAP (EC50 = 196.85 ± 1.54 (µg/mL), and CAT (199.21 ± 0.37 mg EAG/gE). A strong correlation between phenolic compounds and antioxidant activities was confirmed by the determination of Pearson's coefficient. The antimicrobial activity of Ajuga iva studied by the microtiter method revealed potent antifungal and antibacterial qualities against Candida parapsilosis and Staphylococcus aureus BLACT. An in vivo oral glucose tolerance test (OGTT) using normal rats revealed that the antihyperglycemic action of the aqueous extract significantly reduced postprandial hyperglycaemia at (30 min, p < 0.01) and area under the curve (AUC glucose), p < 0.01. Similarly, the aqueous extract, tested on pancreatic α-amylase enzyme activity in vitro and in vivo significantly inhibited pancreatic α-amylase activity with IC50 = 1.52 ± 0.03 mg/mL. In conclusion, the extract from Ajuga iva could be a good source of bioactive molecules, which exhibit potent antioxidant and antimicrobial activity, as well as strong antidiabetic activity, for applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Soukaina Saidi
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
- Laboratory of Molecular Chemistry, Materials and Catalysis, Faculty of Science and Technologies, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Firdaous Remok
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Nadia Handaq
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
- Plant Valorization and Protection Research Team, Laboratory of Environmental Biology and Sustainable Development, Higher Normal School of Tetouan, Abdelmaek Essaadi University, Tetouan 93000, Morocco
| | - Aziz Drioiche
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Aman Allah Gourich
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology and Phytochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Smail Amalich
- Laboratory of Pharmacology and Phytochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohamed Elouardi
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Hanane Touijer
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Mohamed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, Faculty of Sciences and Technology Beni Mellal, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Latifa Bouissane
- Laboratory of Molecular Chemistry, Materials and Catalysis, Faculty of Science and Technologies, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Laayoune 70000, Morocco
| | - Touriya Zair
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| |
Collapse
|
17
|
Artasensi A, Mazzolari A, Pedretti A, Vistoli G, Fumagalli L. Obesity and Type 2 Diabetes: Adiposopathy as a Triggering Factor and Therapeutic Options. Molecules 2023; 28:molecules28073094. [PMID: 37049856 PMCID: PMC10095867 DOI: 10.3390/molecules28073094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Obesity and type 2 diabetes (T2DM) are major public health concerns associated with serious morbidity and increased mortality. Both obesity and T2DM are strongly associated with adiposopathy, a term that describes the pathophysiological changes of the adipose tissue. In this review, we have highlighted adipose tissue dysfunction as a major factor in the etiology of these conditions since it promotes chronic inflammation, dysregulated glucose homeostasis, and impaired adipogenesis, leading to the accumulation of ectopic fat and insulin resistance. This dysfunctional state can be effectively ameliorated by the loss of at least 15% of body weight, that is correlated with better glycemic control, decreased likelihood of cardiometabolic disease, and an improvement in overall quality of life. Weight loss can be achieved through lifestyle modifications (healthy diet, regular physical activity) and pharmacotherapy. In this review, we summarized different effective management strategies to address weight loss, such as bariatric surgery and several classes of drugs, namely metformin, GLP-1 receptor agonists, amylin analogs, and SGLT2 inhibitors. These drugs act by targeting various mechanisms involved in the pathophysiology of obesity and T2DM, and they have been shown to induce significant weight loss and improve glycemic control in obese individuals with T2DM.
Collapse
|
18
|
Lesgards JF. Benefits of Whey Proteins on Type 2 Diabetes Mellitus Parameters and Prevention of Cardiovascular Diseases. Nutrients 2023; 15:nu15051294. [PMID: 36904293 PMCID: PMC10005124 DOI: 10.3390/nu15051294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major cause of morbidity and mortality, and it is a major risk factor for the early onset of cardiovascular diseases (CVDs). More than genetics, food, physical activity, walkability, and air pollution are lifestyle factors, which have the greatest impact on T2DM. Certain diets have been shown to be associated with lower T2DM and cardiovascular risk. Diminishing added sugar and processed fats and increasing antioxidant-rich vegetable and fruit intake has often been highlighted, as in the Mediterranean diet. However, less is known about the interest of proteins in low-fat dairy and whey in particular, which have great potential to improve T2DM and could be used safely as a part of a multi-target strategy. This review discusses all the biochemical and clinical aspects of the benefits of high-quality whey, which is now considered a functional food, for prevention and improvement of T2DM and CVDs by insulin- and non-insulin-dependent mechanisms.
Collapse
Affiliation(s)
- Jean-François Lesgards
- Ingénierie des Peptides Thérapeutiques, Ambrilia-Cellpep, Faculté de Médecine Nord, Aix-Marseille University, Boulevard Pierre Dramard, 13015 Marseille, France
| |
Collapse
|