1
|
Zhang G, Huang X, Liu S, Xu Y, Wang N, Yang C, Zhu Z. Demystifying EV heterogeneity: emerging microfluidic technologies for isolation and multiplexed profiling of extracellular vesicles. LAB ON A CHIP 2025. [PMID: 39775292 DOI: 10.1039/d4lc00777h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers carrying complex molecular cargoes, including proteins, nucleic acids, glycans, etc. These vesicles are closely associated with specific physiological characteristics, which makes them invaluable in the detection and monitoring of various diseases. However, traditional isolation methods are often labour-intensive, inefficient, and time-consuming. In addition, single biomarker analyses are no longer accurate enough to meet diagnostic needs. Routine isolation and molecular analysis of high-purity EVs in clinical applications is even more challenging. In this review, we discuss a promising solution, microfluidic-based techniques, that combine efficient isolation and multiplex detection of EVs, to further demystify EV heterogeneity. These microfluidic-based EV multiplexing platforms will hopefully facilitate development of liquid biopsies and offer promising opportunities for personalised therapy.
Collapse
Affiliation(s)
- Guihua Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaodan Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yiling Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Nan Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao tong University, Shanghai 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
2
|
Yin J, Yu S, Mei X, Chen Z, Peng J, Lai W. Broad-spectrum detection of benzimidazoles with lateral flow immunoassay: A computational chemistry-assisted hapten design strategy and explore of molecular recognition mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135986. [PMID: 39369678 DOI: 10.1016/j.jhazmat.2024.135986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Benzimidazoles (BMZs) are a class of veterinary drugs with a benzimidazole ring, the abuse of which poses a serious threat to ecological balance and human health. Consequently, the development of broad-spectrum antibodies and rapid assays are crucial for detecting BMZs in food samples. Herein, we scientifically designed three hapten structures, predicted the availability of the hapten with computational chemistry, and subsequently verified the broad-spectrum with immunological experiments. A broad-spectrum monoclonal antibody (6F10) was prepared based on the predicted hapten-2. Molecular recognition studies illustrated intricate interactions between mAb 6F10 binding to BMZs attributed to halogen bonds and π-π/π-alkyl interactions, revealing key amino acid sites and demonstrating the reliability of the hapten prediction strategies. Finally, a broad-spectrum, rapid, and sensitive lateral flow immunoassay based on aggregation-induced emission microspheres with high fluorescence intensity was established. The LOD values of the proposed method for eight kinds of BMZs were 0.027, 0.032, 0.058, 0.091, 0.087, 0.246, 0.369, and 0.311 ng mL-1, respectively. In this work, a hapten prediction strategy based on a computational chemistry method effectively guided the preparation of antibodies for broad-spectrum recognition of BMZs, and the molecular recognition studies verified the interaction of mAb 6F10 with BMZs, enabling broad-spectrum and sensitive detection of BMZs in milk.
Collapse
Affiliation(s)
- Jiaqi Yin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Sha Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xi Mei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zongyou Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
3
|
Khemtonglang K, Liu W, Lee H, Wang W, Li S, Li ZY, Shepherd S, Yang Y, Diel DG, Fang Y, Cunningham BT. Portable, smartphone-linked, and miniaturized photonic resonator absorption microscope (PRAM Mini) for point-of-care diagnostics. BIOMEDICAL OPTICS EXPRESS 2024; 15:5691-5705. [PMID: 39421766 PMCID: PMC11482178 DOI: 10.1364/boe.531388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 10/19/2024]
Abstract
We report the design, development, and characterization of a miniaturized version of the photonic resonator absorption microscope (PRAM Mini), whose cost, size, and functionality are compatible with point-of-care (POC) diagnostic assay applications. Compared to previously reported versions of the PRAM instrument, the PRAM Mini components are integrated within an optical framework comprised of an acrylic breadboard and plastic alignment fixtures. The instrument incorporates a Raspberry Pi microprocessor and Bluetooth communication circuit board for wireless control and data connection to a linked smartphone. PRAM takes advantage of enhanced optical absorption of ∼80 nm diameter gold nanoparticles (AuNP) whose localized surface plasmon resonance overlaps with the ∼625 nm resonant reflection wavelength of a photonic crystal (PC) surface. When illuminated with wide-field low-intensity collimated light from a ∼617 nm wavelength red LED, each AuNP linked to the PC surface results in locally reduced reflection intensity, which is visualized by observing dark spots in the PC-reflected image with an inexpensive CMOS image sensor. Each AuNP in the image field of view can be easily counted with digital resolution. We report upon the selection of optical/electronic components, image processing algorithm, and contrast achieved for single AuNP detection. The instrument is operated via a wireless connection to a linked mobile device using a custom-developed software application that runs on an Android smartphone. As a representative POC application, we used the PRAM Mini as the detection instrument for an assay that measures the presence of antibodies against SARS-CoV-2 infection in cat serum samples, where each dark spot in the image represents a complex between one immobilized viral antigen, one antibody molecule, and one AuNP tag. With dimensions of 23 × 21 × 10 cm3, the PRAM Mini offers a compact detection instrument for POC diagnostics.
Collapse
Affiliation(s)
- Kodchakorn Khemtonglang
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Weinan Liu
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hankeun Lee
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Weijing Wang
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Siyan Li
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhao Yuan Li
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Skye Shepherd
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yihong Yang
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Zhejiang University-University of Illinois Urbana-Champaign Institute, Zhejiang, China
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brian T. Cunningham
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
| |
Collapse
|
4
|
Jiang H. Latest Research Progress of Liquid Biopsy in Tumor-A Narrative Review. Cancer Manag Res 2024; 16:1031-1042. [PMID: 39165347 PMCID: PMC11335005 DOI: 10.2147/cmar.s479338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Human life expectancy is significantly impacted by cancer, with liquid biopsy emerging as an advantageous method for cancer detection because of its noninvasive nature, high accuracy, ease of sampling, and cost-effectiveness compared with conventional tissue biopsy techniques. Liquid biopsy shows promise in early cancer detection, real-time monitoring, and personalized treatment for various cancers, including lung, cervical, and prostate cancers, and offers innovative approaches for cancer diagnosis and management. By utilizing circulating tumor DNA, circulating tumor cells, and exosomes as biomarkers, liquid biopsy enables the tracking of cancer progression. Various techniques commonly used in life sciences research, such as polymerase chain reaction (PCR), next-generation sequencing (NGS), and droplet digital PCR, are employed to assess cancer progression on the basis of different indicators. This review examines the latest advancements in liquid biopsy markers-circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and exosomes-for cancer diagnosis over the past three years, with a focus on their detection methodologies and clinical applications. It encapsulates the pivotal aims of liquid biopsy, including early detection, therapy response prediction, treatment monitoring, prognostication, and its relevance in minimal residual disease, while also addressing the challenges facing routine clinical adoption. By combining the latest research advancements and practical clinical experiences, this work focuses on discussing the clinical significance of DNA methylation biomarkers and their applications in tumor screening, auxiliary diagnosis, companion diagnosis, and recurrence monitoring. These discussions may help enhance the application of liquid biopsy throughout the entire process of tumor diagnosis and treatment, thereby providing patients with more precise and effective treatment plans.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Urology, The Fifth Affiliated Hospital of Zunyi Medical University (Zhuhai Sixth People’s Hospital), Zhuhai, People’s Republic of China
| |
Collapse
|
5
|
Zhong Y, Li Z, Li Z, Li B, Xin H, Wang C. Remotely Activated DNA Probe System for the Detection and Imaging of Dual miRNAs. ACS APPLIED BIO MATERIALS 2024; 7:462-471. [PMID: 38151236 DOI: 10.1021/acsabm.3c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Cancers remain the leading cause of mortality worldwide. It is crucial to detect cancer at an early stage for improving survival rates. Biomarkers have precise implications for cancer progression. Here, we built a straightforward DNA probe system that could be activated by near-infrared light to detect dual miRNAs with a high specificity. This probe is built on the basis of upconversion nanoparticles, which could emit ultraviolet light and activate DNA probes adsorbed on the outer layer. The DNA probe system is remotely controlled through manipulation of the near-infrared (NIR) light, enabling simultaneous detection of dual miRNAs. The DNA nanosystem could be effectively endocytosed by cancer cells and reflect expression levels of dual miRNAs. Overall, this study demonstrates a promising remote-controlled DNA nanoplatform for the simultaneous detection of dual miRNAs, which has tremendous potential for precise cancer diagnostics and therapies.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Zhihao Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Zheng Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Bo Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Hui Xin
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Chunyan Wang
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|
6
|
Ganesh KM, Bhaskar S, Cheerala VSK, Battampara P, Reddy R, Neelakantan SC, Reddy N, Ramamurthy SS. Review of Gold Nanoparticles in Surface Plasmon-Coupled Emission Technology: Effect of Shape, Hollow Nanostructures, Nano-Assembly, Metal-Dielectric and Heterometallic Nanohybrids. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:111. [PMID: 38202566 PMCID: PMC10780701 DOI: 10.3390/nano14010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Point-of-care (POC) diagnostic platforms are globally employed in modern smart technologies to detect events or changes in the analyte concentration and provide qualitative and quantitative information in biosensing. Surface plasmon-coupled emission (SPCE) technology has emerged as an effective POC diagnostic tool for developing robust biosensing frameworks. The simplicity, robustness and relevance of the technology has attracted researchers in physical, chemical and biological milieu on account of its unique attributes such as high specificity, sensitivity, low background noise, highly polarized, sharply directional, excellent spectral resolution capabilities. In the past decade, numerous nano-fabrication methods have been developed for augmenting the performance of the conventional SPCE technology. Among them the utility of plasmonic gold nanoparticles (AuNPs) has enabled the demonstration of plethora of reliable biosensing platforms. Here, we review the nano-engineering and biosensing applications of AuNPs based on the shape, hollow morphology, metal-dielectric, nano-assembly and heterometallic nanohybrids under optical as well as biosensing competencies. The current review emphasizes the recent past and evaluates the latest advancements in the field to comprehend the futuristic scope and perspectives of exploiting Au nano-antennas for plasmonic hotspot generation in SPCE technology.
Collapse
Affiliation(s)
- Kalathur Mohan Ganesh
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Sri Sathya Sai District, Puttaparthi 515134, India;
| | - Seemesh Bhaskar
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vijay Sai Krishna Cheerala
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Brindavan Campus, Kadugodi, Bengaluru 560067, India; (V.S.K.C.); (S.C.N.)
| | - Prajwal Battampara
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru 560109, India; (P.B.); (R.R.); (N.R.)
| | - Roopa Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru 560109, India; (P.B.); (R.R.); (N.R.)
| | - Sundaresan Chittor Neelakantan
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Brindavan Campus, Kadugodi, Bengaluru 560067, India; (V.S.K.C.); (S.C.N.)
| | - Narendra Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru 560109, India; (P.B.); (R.R.); (N.R.)
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Sri Sathya Sai District, Puttaparthi 515134, India;
| |
Collapse
|
7
|
Wang H, Sun Y, Zhang Z, Yang X, Ning B, Senyushkin P, Bogdanov B, Zmaga G, Xue Y, Chi J, Xie H, Chen S, Wu T, Lian Z, Pan Q, Chen B, Tan Z, Pan X, Su M, Song Y. Molecular Recognition-Modulated Hetero-Assembly of Nanostructures for Visualizable and Portable Detection of Circulating miRNAs. Anal Chem 2023; 95:11769-11776. [PMID: 37489945 DOI: 10.1021/acs.analchem.3c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Biomolecular markers, particularly circulating microRNAs (miRNAs) play an important role in diagnosis, monitoring, and therapeutic intervention of cancers. However, existing detection strategies remain intricate, laborious, and far from being developed for point-of-care testing. Here, we report a portable colorimetric sensor that utilizes the hetero-assembly of nanostructures driven by base pairing and recognition for direct detection of miRNAs. Following hybridization, two sizes of nanoparticles modified with single-strand DNA can be robustly assembled into heterostructures with strong optical resonance, exhibiting distinct structure colors. Particularly, the large nanoparticles are first arranged into nanochains to enhance scattering signals of small nanoparticles, which allows for sensitive detection and quantification of miRNAs without the requirement of target extraction, amplification, and fluorescent labels. Furthermore, we demonstrate the high specificity and single-base selectivity of testing different miRNA samples, which shows great potential in the diagnosis, staging, and monitoring of cancers. These heterogeneous assembled nanostructures provide an opportunity to develop simple, fast, and convenient tools for miRNAs detection, which is suitable for many scenarios, especially in low-resource setting.
Collapse
Affiliation(s)
- Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Yali Sun
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Xu Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Bobing Ning
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Pavel Senyushkin
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Bogdan Bogdanov
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Georgii Zmaga
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Yonggan Xue
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Jimei Chi
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Sisi Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Tingqing Wu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Zewei Lian
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Zhiyu Tan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Xiangyu Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| |
Collapse
|
8
|
Sengupta J, Hussain CM. CNT and Graphene-Based Transistor Biosensors for Cancer Detection: A Review. Biomolecules 2023; 13:1024. [PMID: 37509060 PMCID: PMC10377131 DOI: 10.3390/biom13071024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
An essential aspect of successful cancer diagnosis is the identification of malignant tumors during the early stages of development, as this can significantly diminish patient mortality rates and increase their chances of survival. This task is facilitated by cancer biomarkers, which play a crucial role in determining the stage of cancer cells, monitoring their growth, and evaluating the success of treatment. However, conventional cancer detection methods involve several intricate steps, such as time-consuming nucleic acid amplification, target detection, and a complex treatment process that may not be appropriate for rapid screening. Biosensors are emerging as promising diagnostic tools for detecting cancer, and carbon nanotube (CNT)- and graphene-based transistor biosensors have shown great potential due to their unique electrical and mechanical properties. These biosensors have high sensitivity and selectivity, allowing for the rapid detection of cancer biomarkers at low concentrations. This review article discusses recent advances in the development of CNT- and graphene-based transistor biosensors for cancer detection.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
9
|
Xiong Y, Shepherd S, Tibbs J, Bacon A, Liu W, Akin LD, Ayupova T, Bhaskar S, Cunningham BT. Photonic Crystal Enhanced Fluorescence: A Review on Design Strategies and Applications. MICROMACHINES 2023; 14:668. [PMID: 36985075 PMCID: PMC10059769 DOI: 10.3390/mi14030668] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 05/25/2023]
Abstract
Nanoscale fluorescence emitters are efficient for measuring biomolecular interactions, but their utility for applications requiring single-unit observations is constrained by the need for large numerical aperture objectives, fluorescence intermittency, and poor photon collection efficiency resulting from omnidirectional emission. Photonic crystal (PC) structures hold promise to address the aforementioned challenges in fluorescence enhancement. In this review, we provide a broad overview of PCs by explaining their structures, design strategies, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-enhanced fluorescence-based biosensors incorporated with emerging technologies, including nucleic acids sensing, protein detection, and steroid monitoring. Finally, we discuss current challenges associated with PC-enhanced fluorescence and provide an outlook for fluorescence enhancement with photonic-plasmonics coupling and their promise for point-of-care biosensing as well monitoring analytes of biological and environmental relevance. The review presents the transdisciplinary applications of PCs in the broad arena of fluorescence spectroscopy with broad applications in photo-plasmonics, life science research, materials chemistry, cancer diagnostics, and internet of things.
Collapse
Affiliation(s)
- Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
| | - Skye Shepherd
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Tibbs
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amanda Bacon
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weinan Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
| | - Lucas D. Akin
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Takhmina Ayupova
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seemesh Bhaskar
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| | - Brian T. Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
| |
Collapse
|