1
|
Bowles AW, Quirk JA, Liu Y, Morritt GH, Freitag M, Whitehead GFS, Woodward AW, Brookfield A, Goodwin CAP, Collison D, Tuna F, McMullin CL, Dawson JA, Lu E, Ortu F. Mechanochemical Synthesis, Characterization and Reactivity of a Room Temperature Stable Calcium Electride. J Am Chem Soc 2024; 146:28914-28924. [PMID: 39377174 PMCID: PMC11503782 DOI: 10.1021/jacs.4c09408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
A new calcium-based Room temperature Stable Electride (RoSE), K[{Ca[N(Mes)(SiMe3)]3(e-)}2K3] (2), is successfully synthesized from the reaction of a calcium tris-amide, [Ca{N(Mes)(SiMe3)}3K] (1) (Mes = 2,4,6-trimethylphenyl), with potassium under mechanochemical treatment. The dimeric structure of K[{Ca[N(Mes)(SiMe3)]3(e-)}2K3] is calculated using ab initio random structure searching (AIRSS) methods. This shows the existence of highly localized anionic electrons (e-) and suggests poor electrical conductance, as confirmed via electroconductivity measurements. The two anionic electrons in 2 are strongly antiferromagnetically coupled, thus in agreement with the largely diamagnetic response from magnetometry. Reaction of 2 with pyridine affords 4,4'-bipyridine, while reaction with benzene gives C-H activation and formation of a calcium hydride complex, [K(η6-C6H6)4][{Ca[N(Mes)(SiMe3)](H)}2K3] (3). Computational DFT analysis reveals the crucial role played by the ligand framework in the stabilization of this new Ca-hydride complex.
Collapse
Affiliation(s)
- Alex W.
J. Bowles
- School
of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, U.K.
| | - James A. Quirk
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K.
| | - Yu Liu
- School
of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, U.K.
| | - George H. Morritt
- School
of Mathematics, Statistics, and Physics, Newcastle University, Newcastle
upon Tyne, NE1 7RU, U.K.
| | - Marina Freitag
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K.
| | | | - Adam W. Woodward
- Department
of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K.
| | - Adam Brookfield
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Manchester, M13 9PL, U.K.
| | - Conrad A. P. Goodwin
- Department
of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K.
| | - David Collison
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Manchester, M13 9PL, U.K.
| | - Floriana Tuna
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Manchester, M13 9PL, U.K.
| | - Claire L. McMullin
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.
| | - James A. Dawson
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K.
| | - Erli Lu
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Fabrizio Ortu
- School
of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, U.K.
| |
Collapse
|
2
|
Evans MJ, Parr JM, Nguyen DT, Jones C. An isolable stannaimine and its cycloaddition/metathesis reactions with carbon dioxide. Chem Commun (Camb) 2024; 60:10350-10353. [PMID: 39219473 DOI: 10.1039/d4cc04006f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An N-heterocyclic stannylene :Sn(NONAd) (NONAd = [O(SiMe2NAd)2]2-, Ad = 1-adamantyl), reacts rapidly with 2,4,6-tricyclohexylphenyl azide (TCHP)N3, affording a stannaimine, (NONAd)SnN(TCHP). Solutions of (NONAd)SnN(TCHP) react immediately with carbon dioxide (CO2) to give a [2+2]-cycloaddition product, which, upon heating, subsequently engages in a metathesis process to give [Sn(NONAd)(μ-O)]2 and the bulky isocyanate, (TCHP)NCO.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| | - Joseph M Parr
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| | - Dat T Nguyen
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| | - Cameron Jones
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| |
Collapse
|
3
|
Dong S, Zhu J. Predicting Activation of Small Molecules Including Dinitrogen via a Carbene with a σ 0π 2 Electronic Configuration. Inorg Chem 2024; 63:15931-15940. [PMID: 39121379 DOI: 10.1021/acs.inorgchem.4c02272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Although the main group species in the s and p blocks have begun to gain prominence in the field of dinitrogen (N2) activation in recent years, reports of carbene-mediated N2 activation remain particularly rare, especially for carbenes with a σ0π2 electronic configuration. Herein, we demonstrate examples of N2 activation initiated by a carbene with a σ0π2 electronic configuration and consequent N2 hydroboration reaction (with a reaction barrier as low as 19.9 kcal/mol) via density functional theory calculations. Meanwhile, the "push-pull" electronic effect upon introduction of a hydroborenium complex facilitates the generation of a thermodynamically and kinetically more stable product. In addition, such a σ0π2 carbene can also activate a series of H-X (X = H, CH3, or Bpin) bonds through an oxidative addition process with activation energies ranging from 6.0 to 18.0 kcal/mol. Our findings highlight the importance of σ0π2 carbenes in the field of small molecule activation, especially N2 activation.
Collapse
Affiliation(s)
- Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
4
|
Nguyen DT, Helling C, Jones C. Synthesis and Characterization of Bulky 1,3-Diamidopropane Complexes of Group 2 Metals (Be-Sr). Chem Asian J 2024; 19:e202400498. [PMID: 38760323 DOI: 10.1002/asia.202400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Reaction of lithium 1,3-diamidopropane Li2(TripNCN) (TripNCN=[{(Trip)NCH2}2CH2]2-, Trip=2,4,6-triisopropylphenyl) with BeBr2(OEt2)2 gave the diamido beryllium complex, [(TripNCN)Be(OEt2)]. Deprotonation reactions between the bulkier 1,3-diaminopropane (TCHPNCN)H2 (TCHPNCN=[{(TCHP)NCH2}2CH2]2-, TCHP=2,4,6-tricyclohexylphenyl) and magnesium alkyls afforded the adduct complexes [(TCHPNCN)Mg(OEt2)] and [(TCHPNCN)Mg(THF)2], depending on the reaction conditions employed. Treating [(TCHPNCN)Mg(THF)2] with the N-heterocyclic carbene :C{(MeNCMe)2} (TMC) gave [(TCHPNCN)Mg(TMC)2] via substitution of the THF ligands. Reactions of (ArNCN)H2 (Ar=Trip or TCHP) with Mg{CH2(SiMe3)}2, in the absence of Lewis bases, yielded the N-bridged dimers [{(ArNCN)Mg}2]. Salt metathesis reactions between alkali metal salts M2(TCHPNCN) (M=Li or K) and CaI2 or SrI2 led to the THF adduct compounds [(TCHPNCN)Ca(THF)3] and [(TCHPNCN)Sr(THF)4], the differing number of THF ligands in which is a result of the different sizes of the metals involved. The described complexes hold potential as precursors to kinetically protected, low oxidation state group 2 metal species.
Collapse
Affiliation(s)
- Dat T Nguyen
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Christoph Helling
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| |
Collapse
|
5
|
Xu S, Wang Q, Rajeshkumar T, Jiang S, Maron L, Xu X. Reductive Dimerization of Alkenes and Allenes Enabled by Photochemically Activated Zinc-Zinc Bonded Compounds. J Am Chem Soc 2024; 146:19590-19598. [PMID: 38957130 DOI: 10.1021/jacs.4c07390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Metal radicals have shown versatile reactivity in modern synthetic chemistry. However, the use of zinc radicals for molecular synthesis has been barely explored. Here, we show that a transient zinc radical can be formed through photoactivation of a zinc-zinc bonded compound, which is able to mediate the selective dimerization of alkenes and allenes. Treatment of dizinc compounds [L2Zn2] [L = CH3C(2,6-iPr2C6H3N)CHC(CH3)(NCH2CH2PR2); R = Ph (LPh) or iPr (LiPr)] with a diverse array of aromatic alkenes under UV irradiation (365 nm) facilely afforded the head-to-head coupling products, i.e., 1,4-dizinciobutanes in high yields. In addition, arylallenes could also be selectively dimerized by the dizinc compound to give 2,5-dizincyl-functionalized 1,5-hexadienes under the same conditions. Control reactions of [LPh2Zn2] in the presence of UV irradiation isolated a zinc phenyl complex and a trimeric zinc phosphide complex resulting from C-P bond cleavage at the tridentate ligand. Reactions of photoactivated dizinc compounds with organic spin traps, i.e., 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and 2,2'-bipyridine (2,2'-bpy), successfully isolated zinc radical trapping products [LZnOTEMP] and [LPhZn(2,2'-bpy)·-], respectively. The profile of alkene dimerization was elucidated by density functional theory calculations, which confirmed that a transient zinc radical [LZn·] was initially generated through homolytic Zn-Zn bond cleavage via photoactivation followed by single-electron transfer and radical dimerization. The unique selectivity of the current reaction was also studied computationally.
Collapse
Affiliation(s)
- Shuilian Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qiujie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France
| | - Shengjie Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
6
|
O'Reilly A, Haynes MD, Turner ZR, McMullin CL, Harder S, O'Hare D, Fulton JR, Coles MP. Mixing and matching N, N- and N, O-chelates in anionic Mg(I) compounds: synthesis and reactivity with RNCNR and CO. Chem Commun (Camb) 2024; 60:7204-7207. [PMID: 38910507 DOI: 10.1039/d4cc02594f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Reduction of [Mg(NON)]2 ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) affords Mg(I) species containing NON- and NNO-ligands ([NNO]2- = [N(Dipp)SiMe2N(Dipp)SiMe2O]2-). The products of reactions with iPrNCNiPr and CO are consistent with the presence of reducing Mg(I) centres. Extraction with THF affords [K(THF)2]2[(NNO)Mg-Mg(NNO)] with a structurally characterised Mg-Mg bond that was examined using density functional theory.
Collapse
Affiliation(s)
- Andrea O'Reilly
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand.
| | - Matthew D Haynes
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Zoë R Turner
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | | | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - J Robin Fulton
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand.
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand.
| |
Collapse
|
7
|
Gentner T, Ballmann GM, Banerjee S, Kennedy AR, Robertson SD, Mulvey RE. Application of Bis(amido)alkyl Magnesiates toward the Synthesis of Molecular Rubidium and Cesium Hydrido-magnesiates. Organometallics 2024; 43:1393-1401. [PMID: 38938897 PMCID: PMC11200325 DOI: 10.1021/acs.organomet.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Rubidium and cesium are the least studied naturally occurring s-block metals in organometallic chemistry but are in plentiful supply from a sustainability viewpoint as highlighted in the periodic table of natural elements published by the European Chemical Society. This underdevelopment reflects the phenomenal success of organometallic compounds of lithium, sodium, and potassium, but interest in heavier congeners has started to grow. Here, the synthesis and structures of rubidium and cesium bis(amido)alkyl magnesiates [(AM)MgN'2alkyl]∞, where N' is the simple heteroamide -N(SiMe3)(Dipp), and alkyl is nBu or CH2SiMe3, are reported. More stable than their nBu analogues, the reactivities of the CH2SiMe3 magnesiates toward 1,4-cyclohexadiene are revealed. Though both reactions produce target hydrido-magnesiates [(AM)MgN'2H]2 in crystalline form amenable to X-ray diffraction study, the cesium compound could only be formed in a trace quantity. These studies showed that the bulk of the -N(SiMe3)(Dipp) ligand was sufficient to restrict both compounds to dimeric structures. Bearing some resemblance to inverse crown complexes, each structure has [(AM)(N)(Mg)(N)]2 ring cores but differ in having no AM-N bonds, instead Rb and Cs complete the rings by engaging in multihapto interactions with Dipp π-clouds. Moreover, their hydride ions occupy μ3-(AM)2Mg environments, compared to μ2-Mg2 environments in inverse crowns.
Collapse
Affiliation(s)
- Thomas
X. Gentner
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Gerd M. Ballmann
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Sumanta Banerjee
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Alan R. Kennedy
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Stuart D. Robertson
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Robert E. Mulvey
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| |
Collapse
|
8
|
Evans MJ, Mullins J, Mondal R, Jones C. Reductions of Arenes using a Magnesium-Dinitrogen Complex. Chemistry 2024; 30:e202401005. [PMID: 38622992 DOI: 10.1002/chem.202401005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
In this contribution, we present "Birch-type", and other reductions of simple arenes by the potassium salt of an anionic magnesium dinitrogen complex, [{K(TCHPNON)Mg}2(μ-N2)] (TCHPNON=4,5-bis(2,4,6-tricyclohexylanilido)-2,7-diethyl-9,9-dimethyl-xanthene), which acts as a masked dimagnesium(I) diradical in these reactions. This reagent is non-hazardous, easy-to-handle, and in some cases provides access to 1,4-cyclohexadiene reduction products under relatively mild reaction conditions. This system works effectively to reduce benzene, naphthalene and anthracene through magnesium-bound "Birch-type" reduction intermediates. Cyclohexadiene products can be subsequently released from the magnesium centres by protonolysis with methanol. In contrast, the reduction of substituted arenes is less selective and involves competing reaction pathways. For toluene and 1,3,5-triphenylbenzene, the structural authentication of "Birch-type" reduction intermediates is conclusive, although the formation of corresponding 1,4-cyclohexadiene derivatives was low yielding. Reduction of anisole did not yield an isolable "Birch-type" intermediate, but instead gave a C-O activation product. Treating triphenylphosphine with [{K(TCHPNON)Mg}2(μ-N2)] resulted in the extrusion of both biphenyl and dinitrogen to afford a magnesium(II) phosphanide [{K(TCHPNON)Mg(μ-PPh2)}2]. Reduction of fluorobenzene proceeded via C-F activation of the arene, and isolation of the magnesium(II) fluoride [{K(TCHPNON)Mg(μ-F)}2]. Finally, the two-electron reduction of 1,3,5,7-cyclooctatetraene (COT) with [{K(TCHPNON)Mg}2(μ-N2)] yielded a complex, [{K(TCHPNON)Mg}2(μ-COT)], incorporating the aromatic dianion (COT2-).
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemistry, Monash University, PO Box 23, 3800, Melbourne, Victoria, Australia
| | - Jeremy Mullins
- School of Chemistry, Monash University, PO Box 23, 3800, Melbourne, Victoria, Australia
| | - Rahul Mondal
- School of Chemistry, Monash University, PO Box 23, 3800, Melbourne, Victoria, Australia
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, 3800, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Evans MJ, Jones C. Low oxidation state and hydrido group 2 complexes: synthesis and applications in the activation of gaseous substrates. Chem Soc Rev 2024; 53:5054-5082. [PMID: 38595211 DOI: 10.1039/d4cs00097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Numerous industrial processes utilise gaseous chemical feedstocks to produce useful chemical products. Atmospheric and other small molecule gases, including anthropogenic waste products (e.g. carbon dioxide), can be viewed as sustainable building blocks to access value-added chemical commodities and materials. While transition metal complexes have been well documented in the reduction and transformation of these substrates, molecular complexes of the terrestrially abundant alkaline earth metals have also demonstrated promise with remarkable reactivity reported towards an array of industrially relevant gases over the past two decades. This review covers low oxidation state and hydrido group 2 complexes and their role in the reduction and transformation of a selection of important gaseous substrates towards value-added chemical products.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemistry, Monash University, PO Box 23, Melbourne, Victoria, 3800, Australia.
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
10
|
Rang M, Heinz M, Halkić A, Weber M, Dewhurst RD, Rempel A, Härterich M, Holthausen MC, Braunschweig H. Trapping of a Terminal Intermediate in the Boron-Mediated Dinitrogen Reduction: Mono-, Tri-, and Tetrafunctionalized Hydrazines in Two Steps from N 2. J Am Chem Soc 2024. [PMID: 38598273 DOI: 10.1021/jacs.4c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The addition of chlorotrimethylsilane to a boron-mediated, transition-metal-free N2 activation reaction leads to the isolation of multiple potassium boryl(silyl)hydrazido species, likely trapping products of a terminal dinitrogen complex of boron. One of these silylated N2 species can be protonated or methylated, providing access to mono- to tetrafunctionalized hydrazines in two steps from N2 and in the absence of transition metals.
Collapse
Affiliation(s)
- Maximilian Rang
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Myron Heinz
- Institute for Inorganic and Analytical Chemistry, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Anel Halkić
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco Weber
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rian D Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Anna Rempel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcel Härterich
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Max C Holthausen
- Institute for Inorganic and Analytical Chemistry, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Nguyen DT, Helling C, Evans MJ, Jones C. Enforcing Metal-Arene Interactions in Bulky p-Terphenyl Bis(anilide) Complexes of Group 2 Metals (Be-Ba): Potential Precursors for Low-Oxidation-State Alkaline Earth Metal Systems. Inorg Chem 2024; 63:5718-5726. [PMID: 38471088 DOI: 10.1021/acs.inorgchem.4c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
An extremely bulky p-terphenyl bis(aniline), p-C6H4{C6H4[N(H)TCHP]-2}2 (TCHP = 2,4,6-tricyclohexylphenyl) TCHPTerphH2, has been developed. Deprotonation of a less bulky analogue, DipTerphH2 (Dip = 2,6-diisopropylphenyl), with BePh2 affords the bimetallic system, [(BePh)2(μ-DipTerph)] 1. Treating either TCHPTerphH2 or DipTerphH2 with Mg{CH2(SiMe3)}2 gives the monomeric bis(anilide) complexes [Mg(ArTerph)] (Ar = Dip 2, TCHP 3) which display rare examples of η6-arene coordination to the metal center. Treating 2 with THF leads to partial dissociation of the Mg···arene interaction and formation of [Mg(DipTerph)(THF)] 4. Reactions of the bis(aniline)s with the group 2 metal amides [M{N(SiMe3)2}2] afford dimeric, structurally analogous compounds [{M(ArTerph)}2] (Ar = Dip, M = Ca 5, Sr 6, Ba 7; Ar = TCHP, M = Ca 8, Sr 9, Ba 10) which display intermolecular M···arene interactions in the solid state. Computational studies have shown that the intramolecular M···η6-arene interactions in models of the ether-free metal bis(anilide) compounds are largely electrostatic in nature. Reductions of these compounds with alkali metals led to mixtures of unidentified products.
Collapse
Affiliation(s)
- Dat T Nguyen
- School of Chemistry, Monash University, P.O. Box 23, Melbourne 3800, Victoria, Australia
| | - Christoph Helling
- School of Chemistry, Monash University, P.O. Box 23, Melbourne 3800, Victoria, Australia
| | - Matthew J Evans
- School of Chemistry, Monash University, P.O. Box 23, Melbourne 3800, Victoria, Australia
| | - Cameron Jones
- School of Chemistry, Monash University, P.O. Box 23, Melbourne 3800, Victoria, Australia
| |
Collapse
|
12
|
Czernetzki C, Arrowsmith M, Endres L, Krummenacher I, Braunschweig H. Tricoordinate Beryllium Radicals and Their Reactivity. Inorg Chem 2024; 63:2670-2678. [PMID: 38259240 DOI: 10.1021/acs.inorgchem.3c04014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The one-electron reduction of [(CAAC)Be(Dur)Br] (CAAC = cyclic alkyl(amino)carbene, Dur = 2,3,5,6-tetramethylphenyl = duryl) with lithium sand in diethyl ether yields the first neutral, tricoordinate, and moderately stable beryllium radical, [(CAAC)(Et2O)BeDur]• (2-Et2O), which undergoes a facile second one-electron reduction concomitant with the insertion of the beryllium center into the endocyclic C-NCAAC bond and a cyclopropane-forming C-H bond activation of an adjacent methyl group. In situ generation of 2-Et2O and addition of PMe3 yield the stable analogue, [(CAAC)(Me3P)BeDur]• (2-PMe3), which serves as a platform for PMe3-ligand exchange with stronger donors, generating the radicals [(CAAC)LBeDur]• (2-L, L = isocyanides, pyridines, and N-heterocyclic carbenes). X-ray structural analyses show trigonal-planar beryllium centers and strong π backbonding from the metal to the CAAC ligand. The EPR signals of all six isolated [(CAAC)LBeDur]• radicals display significant, albeit small, hyperfine coupling to the 9Be nucleus. DFT calculations show that the spin density is mostly delocalized over the CAAC π framework and, where present, the isocyanide CN moiety, with only a small proportion (3-6%) on the beryllium center. 2-PMe3 proved thermally unstable at 80 °C, first undergoing radical hydrogen abstraction with the solvent, followed by insertion of beryllium into the endocyclic C-NCAAC bond and PMe3 transfer to the former carbene carbon atom. The reactions with diphenyl disulfide and phenyl azide occur at the beryllium center and yield the corresponding Be(II) phenyl sulfide and amino complexes, respectively, the latter concomitant with radical transfer and hydrogen abstraction by the beryllium-bound nitrogen center.
Collapse
Affiliation(s)
- Corinna Czernetzki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Lukas Endres
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
13
|
Mondal R, Evans MJ, Nguyen DT, Rajeshkumar T, Maron L, Jones C. Steric control of Mg-Mg bond formation vs. N 2 activation in the reduction of bulky magnesium diamide complexes. Chem Commun (Camb) 2024; 60:1016-1019. [PMID: 38170497 DOI: 10.1039/d3cc05787a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Reduction of the magnesium(II) diamide [Mg(TripNON)] (TripNON = 4,5-bis(2,4,6-triisopropylanilido)-2,7-diethyl-9,9-dimethyl-xanthene) with 5% w/w K/KI leads to a good yield of a dianionic dimagnesium(I) species, as its potassium salt, [{K(TripNON)Mg}2]. An X-ray crystallographic analysis shows the molecule to contain a very long Mg-Mg bond (3.137(2) Å). The formation of [{K(TripNON)Mg}2] contrasts with a previously reported reduction of a magnesium(II) complex incorporating a bulkier diamide ligand, which instead afforded a magnesium-dinitrogen complex. In the current study, [{K(TripNON)Mg}2] has been shown to be a viable reagent for the reductive activation of CO, H2 and N2O.
Collapse
Affiliation(s)
- Rahul Mondal
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Matthew J Evans
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Dat T Nguyen
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Thayalan Rajeshkumar
- Université de Toulouse et CNRS, INSA, UPS, UMR5215, LPCNO, 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Laurent Maron
- Université de Toulouse et CNRS, INSA, UPS, UMR5215, LPCNO, 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| |
Collapse
|
14
|
Boronski JT. Alkaline earth metals: homometallic bonding. Dalton Trans 2023; 53:33-39. [PMID: 38031468 DOI: 10.1039/d3dt03550f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The study of alkaline earth metal complexes is undergoing a renaissance. Stable molecular species featuring Mg-Mg bonds were reported in 2007 and their reactivity has since been intensively investigated. Motivated by this work, efforts have also been devoted to the synthesis of complexes featuring Be-Be and Ca-Ca bonds. These collective endeavours have revealed that the chemistry of the group 2 metals is richer and more complex than had previously been appreciated. Here, a discussion of the nature of homometallic alkaline earth bonding is presented, recent synthetic advances are described, and future directions are considered.
Collapse
Affiliation(s)
- Josef T Boronski
- Chemistry Research Laboratory, Department of Chemistry, Oxford, OX1 3TA, UK.
| |
Collapse
|
15
|
Townrow OPE, Färber C, Zenneck U, Harder S. Metal Vapour Synthesis of an Organometallic Barium(0) Synthon. Angew Chem Int Ed Engl 2023:e202318428. [PMID: 38078903 DOI: 10.1002/anie.202318428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 12/23/2023]
Abstract
A hydrocarbon-soluble barium anthracene complex was prepared by means of metal vapour synthesis. Reaction of 9,10-bis(trimethylsilyl)anthracene (Anth'') with barium vapour gave deep purple Ba(Anth'') which after extraction with diethyl ether crystallised as the cyclic octamer [Ba(Anth'')⋅Et2 O]8 . Dissolution in benzene or toluene led to replacement of the Et2 O ligand with a softer arene ligand and isolation of Ba(Anth'')⋅arene. Diffusion ordered spectroscopy (DOSY NMR ) measurements in benzene-d6 indicate solution species with a molecular weight that equals a trimeric constitution. Natural population analysis (NPA) assigned charges of +1.70 and -1.70 to Ba and Anth'', respectively, relating to highly ionic Ba2+ /Anth''2- bonding. Preliminary reactivity studies with air, Ph2 C=NPh, or H2 show that the complex reacts as a Ba0 synthon by release of neutral Anth''. This soluble molecular Ba0 /BaII redox synthon provides new routes for the syntheses of barium complexes under mild conditions.
Collapse
Affiliation(s)
- Oliver P E Townrow
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Christian Färber
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Ulrich Zenneck
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| |
Collapse
|