1
|
Wang K, Yin H, Li S, Wan Y, Xiao M, Yuan X, Huang Z, Gao Y, Zhou J, Guo K, Wang J. Quantitative detection of circular RNA and microRNA at point-of-care using droplet digital CRISPR/Cas13a platform. Biosens Bioelectron 2025; 267:116825. [PMID: 39369515 DOI: 10.1016/j.bios.2024.116825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/03/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Circular RNA (circRNA) and microRNA (miRNA) are both non-coding RNAs (ncRNAs) that serve as biomarkers for cancer diagnosis and prognosis. Quantitative detection of these ncRNAs is of particular importance to elucidate the functional mechanisms and evaluate their potential as biomarkers. However, the inherent structures of circRNA and miRNA are different from the mRNA, conventional qRT-PCR is unsuitable for the detection of these ncRNAs. Here, we propose a sensitive method for quantitative detection of circRNA and miRNA using polydisperse droplet digital CRISPR/Cas13a (PddCas13a). It can achieve limits of detection (LOD) as low as ∼10 aM without polymerase-based amplification. To efficiently detect the circRNA and miRNA in real samples, we use a chemically modified crRNA to enhance the stability of crRNA and improve the performance of Cas13a in complex environments containing contaminants. By integrating an extraction-free procedure with PddCas13a, we experimentally demonstrate the applicability of PddCas13a by testing clinical samples. Furthermore, we develop an automated and portable instrument for PddCas13a and verify its applicability for the detection of circRNA and miRNA from exosomes in point-of-care (POC) setting. This is the first report to detect the circRNA and miRNA simultaneously in POC setting. We envision this platform could promote the research of ncRNAs.
Collapse
Affiliation(s)
- Ke Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Haofan Yin
- Department of Medical Laboratory, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yunzhu Wan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Minmin Xiao
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaopeng Yuan
- Department of Medical Laboratory, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Zhenheng Huang
- R & D Department, Guangdong Forevergen Medical Technology Co., Ltd, Foshan, China
| | - Yunxin Gao
- R & D Department, Guangdong Forevergen Medical Technology Co., Ltd, Foshan, China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Keying Guo
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, Parkville, VIC, 3052, Australia.
| | - Jiasi Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
2
|
Benke EH, Boegner DJ, Bogusch AM, White IM. Sample-to-answer detection of miRNA from whole blood using thermally responsive alkane partitions. Biosens Bioelectron 2024:117052. [PMID: 39675942 DOI: 10.1016/j.bios.2024.117052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Circulating miRNA offers a tremendous opportunity as a biomarker paradigm for many applications in disease diagnostics, including point-of-care diagnostics for global health needs. However, despite the numerous miRNA detection schemes reported, there still does not exist a solution for highly sensitive sample-to-answer detection of miRNA directly from complex samples, such as whole blood. We recently developed thermally responsive alkane partitions (TRAPs), which - when combined with magnetic microbeads - enable the complete assay automation from whole blood. Here we apply TRAPs with ligation-LAMP to automate the detection of miRNA in whole blood samples. MBs and a TRAP enable the automated purification of miRNA from blood, while a novel displacement-ligation method is utilized to trigger the ligation-LAMP reaction, which is streamlined into one step by a second TRAP. Using easily manufacturable TRAP-enabled assay cassettes and a custom low-cost handheld instrument, we report the specific detection of miR-155 at concentrations as low as 15 fM in whole blood with no intermediate steps by the user. This new approach creates the opportunity for point-of-care miRNA-based diagnostics with global health applications.
Collapse
Affiliation(s)
- Evan H Benke
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - David J Boegner
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Alejandra M Bogusch
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Ian M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
3
|
Chung J, Xiao S, Gao Y, Soung YH. Recent Technologies towards Diagnostic and Therapeutic Applications of Circulating Nucleic Acids in Colorectal Cancers. Int J Mol Sci 2024; 25:8703. [PMID: 39201393 PMCID: PMC11354501 DOI: 10.3390/ijms25168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy has emerged as a promising noninvasive approach for colorectal cancer (CRC) management. This review focuses on technologies detecting circulating nucleic acids, specifically circulating tumor DNA (ctDNA) and circulating RNA (cfRNA), as CRC biomarkers. Recent advancements in molecular technologies have enabled sensitive and specific detection of tumor-derived genetic material in bodily fluids. These include quantitative real-time PCR, digital PCR, next-generation sequencing (NGS), and emerging nanotechnology-based methods. For ctDNA analysis, techniques such as BEAMing and droplet digital PCR offer high sensitivity in detecting rare mutant alleles, while NGS approaches provide comprehensive genomic profiling. cfRNA detection primarily utilizes qRT-PCR arrays, microarray platforms, and RNA sequencing for profiling circulating microRNAs and discovering novel RNA biomarkers. These technologies show potential in early CRC detection, treatment response monitoring, minimal residual disease assessment, and tumor evolution tracking. However, challenges remain in standardizing procedures, optimizing detection limits, and establishing clinical utility across disease stages. This review summarizes current circulating nucleic acid detection technologies, their CRC applications, and discusses future directions for clinical implementation.
Collapse
Affiliation(s)
| | | | | | - Young Hwa Soung
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.C.); (S.X.); (Y.G.)
| |
Collapse
|
4
|
Liu X, Wang Q, Li J, Diao Z, Hou J, Huo D, Hou C. Simultaneous Detection of Micro-RNAs by a Disposable Biosensor via the Click Chemistry Connection Strategy. Anal Chem 2024; 96:10577-10585. [PMID: 38887964 DOI: 10.1021/acs.analchem.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Simultaneous detection of multiple breast cancer-associated miRNAs significantly raises the accuracy and reliability of early diagnosis. In this work, disposable carbon fiber paper serves as the biosensing interface, linking DNA probes via click chemistry to efficiently capture targets and signals efficiently. DNA probes have multiple recognition domains that trigger a cascade reaction through the helper probes and targets, resulting in two signals output. The signals are centrally encapsulated in the pore of the MIL-88(Fe)-NH2. The signal carriers are directed by signal probes to the recognition domains that correspond to the DNA probes. The biosensor is selective and stable, and it can quantify miRNA-21 and miRNA-155 simultaneously with detection limits of 0.64 and 0.54 fmol/L, respectively. Furthermore, it demonstrates satisfactory performance in tests conducted with normal human serum and cell lysate. Overall, this method makes a satisfactory exploration to realize an inexpensive and sensitive biosensor for multiple biomarkers.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Qun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Zhan Diao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, P. R. China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
5
|
Raucci A, Cimmino W, Romanò S, Singh S, Normanno N, Polo F, Cinti S. Electrochemical detection of miRNA using commercial and hand-made screen-printed electrodes: liquid biopsy for cancer management as case of study. ChemistryOpen 2024; 13:e202300203. [PMID: 38333968 PMCID: PMC11230927 DOI: 10.1002/open.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The growth of liquid biopsy, i. e., the possibility of obtaining health information by analysing circulating species (nucleic acids, cells, proteins, and vesicles) in peripheric biofluids, is pushing the field of sensors and biosensors beyond the limit to provide decentralised solutions for nonspecialists. In particular, among all the circulating species that can be adopted in managing cancer evolution, both for diagnostic and prognostic applications, microRNAs have been highly studied and detected. The development of electrochemical devices is particularly relevant for liquid biopsy purposes, and the screen-printed electrodes (SPEs) represent one of the building blocks for producing novel portable devices. In this work, we have taken miR-2115-3p as model target (it is related to lung cancer), and we have developed a biosensor by exploiting the use of a complementary DNA probe modified with methylene blue as redox mediator. In particular, the chosen sensing architecture was applied to serum measurements of the selected miRNA, obtaining a detection limit within the low nanomolar range; in addition, various platforms were interrogated, namely commercial and hand-made SPEs, with the aim of providing the reader with some insights about the optimal platform to be used by considering both the cost and the analytical performance.
Collapse
Affiliation(s)
- Ada Raucci
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 9, 80131, Naples, Italy
| | - Wanda Cimmino
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 9, 80131, Naples, Italy
| | - Sabrina Romanò
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 9, 80131, Naples, Italy
| | - Sima Singh
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 9, 80131, Naples, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori (IRCCS) Fondazione Pascale, Via Mariano Semmola 53, 80131, Naples, Italy
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 9, 80131, Naples, Italy
| |
Collapse
|
6
|
Ardoino N, Lunelli L, Pucker G, Vanzetti L, Favaretto R, Pasquardini L, Pederzolli C, Guardiani C, Potrich C. Optimization of Surface Functionalizations for Ring Resonator-Based Biosensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:3107. [PMID: 38793970 PMCID: PMC11124806 DOI: 10.3390/s24103107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Liquid biopsy is expected to become widespread in the coming years thanks to point of care devices, which can include label-free biosensors. The surface functionalization of biosensors is a crucial aspect that influences their overall performance, resulting in the accurate, sensitive, and specific detection of target molecules. Here, the surface of a microring resonator (MRR)-based biosensor was functionalized for the detection of protein biomarkers. Among the several existing functionalization methods, a strategy based on aptamers and mercaptosilanes was selected as the most highly performing approach. All steps of the functionalization protocol were carefully characterized and optimized to obtain a suitable protocol to be transferred to the final biosensor. The functionalization protocol comprised a preliminary plasma treatment aimed at cleaning and activating the surface for the subsequent silanization step. Different plasma treatments as well as different silanes were tested in order to covalently bind aptamers specific to different biomarker targets, i.e., C-reactive protein, SARS-CoV-2 spike protein, and thrombin. Argon plasma and 1% v/v mercaptosilane were found as the most suitable for obtaining a homogeneous layer apt to aptamer conjugation. The aptamer concentration and time for immobilization were optimized, resulting in 1 µM and 3 h, respectively. A final passivation step based on mercaptohexanol was also implemented. The functionalization protocol was then evaluated for the detection of thrombin with a photonic biosensor based on microring resonators. The preliminary results identified the successful recognition of the correct target as well as some limitations of the developed protocol in real measurement conditions.
Collapse
Affiliation(s)
- Niccolò Ardoino
- FTH S.r.l., Via Sommarive 18, I-38123 Trento, Italy; (N.A.); (R.F.); (C.G.)
| | - Lorenzo Lunelli
- Center for Sensors & Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123 Trento, Italy; (L.L.); (G.P.); (L.V.); (C.P.)
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via alla Cascata 56/C, I-38123 Trento, Italy
| | - Georg Pucker
- Center for Sensors & Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123 Trento, Italy; (L.L.); (G.P.); (L.V.); (C.P.)
| | - Lia Vanzetti
- Center for Sensors & Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123 Trento, Italy; (L.L.); (G.P.); (L.V.); (C.P.)
| | - Rachele Favaretto
- FTH S.r.l., Via Sommarive 18, I-38123 Trento, Italy; (N.A.); (R.F.); (C.G.)
- Department of Physics, University of Trento, Via Sommarive 14, Povo, I-38123 Trento, Italy
| | - Laura Pasquardini
- Indivenire S.r.l., Via Sommarive 18, I-38123 Trento, Italy;
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, I-81031 Aversa, Italy
| | - Cecilia Pederzolli
- Center for Sensors & Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123 Trento, Italy; (L.L.); (G.P.); (L.V.); (C.P.)
| | - Carlo Guardiani
- FTH S.r.l., Via Sommarive 18, I-38123 Trento, Italy; (N.A.); (R.F.); (C.G.)
| | - Cristina Potrich
- Center for Sensors & Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123 Trento, Italy; (L.L.); (G.P.); (L.V.); (C.P.)
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via alla Cascata 56/C, I-38123 Trento, Italy
| |
Collapse
|
7
|
Gou Z, Li J, Liu J, Yang N. The hidden messengers: cancer associated fibroblasts-derived exosomal miRNAs as key regulators of cancer malignancy. Front Cell Dev Biol 2024; 12:1378302. [PMID: 38694824 PMCID: PMC11061421 DOI: 10.3389/fcell.2024.1378302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), a class of stromal cells in the tumor microenvironment (TME), play a key role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis, and resistance to chemotherapy. CAFs mediate their activities by secreting soluble chemicals, releasing exosomes, and altering the extracellular matrix (ECM). Exosomes contain various biomolecules, such as nucleic acids, lipids, and proteins. microRNA (miRNA), a 22-26 nucleotide non-coding RNA, can regulate the cellular transcription processes. Studies have shown that miRNA-loaded exosomes secreted by CAFs engage in various regulatory communication networks with other TME constituents. This study focused on the roles of CAF-derived exosomal miRNAs in generating cancer malignant characteristics, including immune modulation, tumor growth, migration and invasion, epithelial-mesenchymal transition (EMT), and treatment resistance. This study thoroughly examines miRNA's dual regulatory roles in promoting and suppressing cancer. Thus, changes in the CAF-derived exosomal miRNAs can be used as biomarkers for the diagnosis and prognosis of patients, and their specificity can be used to develop newer therapies. This review also discusses the pressing problems that require immediate attention, aiming to inspire researchers to explore more novel avenues in this field.
Collapse
Affiliation(s)
- Zixuan Gou
- Bethune First Clinical School of Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jianming Liu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Yang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Cinti S, Tomassi S, Ciardiello C, Migliorino R, Pirozzi M, Leone A, Di Gennaro E, Campani V, De Rosa G, D'Amore VM, Di Maro S, Donati G, Singh S, Raucci A, Di Leva FS, Kessler H, Budillon A, Marinelli L. Paper-based electrochemical device for early detection of integrin αvβ6 expressing tumors. Commun Chem 2024; 7:60. [PMID: 38514757 PMCID: PMC10957923 DOI: 10.1038/s42004-024-01144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Despite progress in the prevention and diagnosis of cancer, current technologies for tumor detection present several limitations including invasiveness, toxicity, inaccuracy, lengthy testing duration and high cost. Therefore, innovative diagnostic techniques that integrate knowledge from biology, oncology, medicinal and analytical chemistry are now quickly emerging in the attempt to address these issues. Following this approach, here we developed a paper-based electrochemical device for detecting cancer-derived Small Extracellular Vesicles (S-EVs) in fluids. S-EVs were obtained from cancer cell lines known to express, at a different level, the αvβ6 integrin receptor, a well-established hallmark of numerous epithelial cancer types. The resulting biosensor turned out to recognize αvβ6-containing S-EVs down to a limit of 0.7*103 S-EVs/mL with a linear range up to 105 S-EVs /mL, and a relative standard deviation of 11%, thus it may represent a novel opportunity for αvβ6 expressing cancers detection.
Collapse
Affiliation(s)
- Stefano Cinti
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy.
| | - Stefano Tomassi
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Chiara Ciardiello
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS- Fondazione G. Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Rossella Migliorino
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS- Fondazione G. Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Marinella Pirozzi
- Second Unit, Institute of Experimenal Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS- Fondazione G. Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS- Fondazione G. Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Virginia Campani
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Giuseppe De Rosa
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Vincenzo Maria D'Amore
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Salvatore Di Maro
- Department DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Greta Donati
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Sima Singh
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Ada Raucci
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Alfredo Budillon
- Istituto Nazionale Tumori -IRCCS- Fondazione G. Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
9
|
Singh S, Raucci A, Cimmino W, Cinti S. Paper-Based Analytical Devices for Cancer Liquid Biopsy. Anal Chem 2024; 96:3698-3706. [PMID: 38377543 DOI: 10.1021/acs.analchem.3c04478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Liquid biopsies have caused a significant revolution in cancer diagnosis, and the use of point of care (PoC) platforms has the potential to bring liquid biopsy-based cancer detection closer to patients. These platforms provide rapid and on-site analysis by reducing the time between sample collection and results output. The aim of this tutorial content is to provide readers an in-depth understanding regarding the choice of the ideal sensing platform suitable for specific cancer-related biomarkers.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Ada Raucci
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Wanda Cimmino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
- BAT Center- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Naples, Italy
- Bioelectronics Task Force at University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| |
Collapse
|
10
|
Wang W, Liu L, Zhu J, Xing Y, Jiao S, Wu Z. AI-Enhanced Visual-Spectral Synergy for Fast and Ultrasensitive Biodetection of Breast Cancer-Related miRNAs. ACS NANO 2024; 18:6266-6275. [PMID: 38252138 DOI: 10.1021/acsnano.3c10543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
In biomedical testing, artificial intelligence (AI)-enhanced analysis has gradually been applied to the diagnosis of certain diseases. This research employs AI algorithms to refine the precision of integrative detection, encompassing both visual results and fluorescence spectra from lateral flow assays (LFAs), which signal the presence of cancer-linked miRNAs. Specifically, the color shift of gold nanoparticles (GNPs) is paired with the red fluorescence from nitrogen vacancy color centers (NV-centers) in fluorescent nanodiamonds (FNDs) and is integrated into LFA strips. While GNPs amplify the fluorescence of FNDs, in turn, FNDs enhance the color intensity of GNPs. This reciprocal intensification of fluorescence and color can be synergistically augmented with AI algorithms, thereby improving the detection sensitivity for early diagnosis. Supported by the detection platform based on this strategy, the fastest detection results with a limit of detection (LOD) at the fM level and the R2 value of ∼0.9916 for miRNA can be obtained within 5 min. Meanwhile, by labeling the capture probes for miRNA-21 and miRNA-96 (both of which are early indicators of breast cancer) on separate T-lines, simultaneous detection of them can be achieved. The miRNA detection methods employed in this study may potentially be applied in the future for the early detection of breast cancer.
Collapse
Affiliation(s)
- Wei Wang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jianxiong Zhu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Songlong Jiao
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|