1
|
Xu X, Xi Z, Zhao D, Liu Z, Wang L, Ban T, Wang J, Zhao S, Gao H, Wang G. Regulating electron transfer between valence-variable cuprum and cerium sites within bimetallic metal-organic framework towards enhanced catalytic hydrogenation performance. J Colloid Interface Sci 2024; 679:1159-1170. [PMID: 39423682 DOI: 10.1016/j.jcis.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Modulating the electron distribution between active sites in metal-organic frameworks (MOFs) offers a promising strategy for optimizing their catalytic performance. In this study, we employed a novel heterovalent substitution strategy to synthesize bimetallic organic frameworks (CuxCey-BTC) that feature dual active sites with copper (Cu) and cerium (Ce), Our objective was to achieve efficient hydrogenation of dicyclopentadiene (DCPD) by regulating the electron transfer between the valence-variable Cu and Ce species. The designed CuxCey-BTC were characterized using various spectroscopic and microscopic techniques, along with density functional theory (DFT) calculations, confirming the successful incorporation of bimetallic nodes within the framework structure and the electron transfer between them. The transfer of electrons from the less electronegative Ce to the Cu sites promotes the chemisorption of hydrogen gas (H2) on the electron-rich Cu sites, thereby optimizing the activation of the CC bond in DCPD. The Cu4Ce-BTC catalyst demonstrated exceptional performance, achieving complete conversion of DCPD and significantly surpassing monometallic MOFs. Moreover, we proposed a plausible pathway for the hydrogenation of DCPD. This work highlights the synergistic effects between bimetallic centers and offers a novel strategy to improve the MOFs' catalytic activity by modulating electron distribution between dual active sites.
Collapse
Affiliation(s)
- Xinmeng Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zuoshuai Xi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Danfeng Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zhiyuan Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Linmeng Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Tao Ban
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - JingJing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Shunzheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Hongyi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Shunde Innovation School, University of Science and Technology Beijing, Shunde 528399, PR China.
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
2
|
Chen J, Mao T, Wang J, Wang J, Wang S, Jin H. The Reconstruction of Bi 2Te 4O 11 Nanorods for Efficient and pH-universal Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202408849. [PMID: 38993071 DOI: 10.1002/anie.202408849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) to generate chemical fuels such as formate presents a promising route to a carbon-neutral future. However, its practical application is hindered by the competing CO production and hydrogen evolution reaction (HER), as well as the lack of pH-universal catalysts. Here, Te-modified Bi nanorods (Te-Bi NRs) were synthesized through in situ reconstruction of Bi2Te4O11 NRs under the CO2RR condition. Our study illustrates that the complex reconstruction process of Bi2Te4O11 NRs during CO2RR could be decoupled into three distinct steps, i.e., the destruction of Bi2Te4O11, the formation of Te/Bi phases, and the dissolution of Te. The thus-obtained Te-Bi NRs exhibit remarkably high performance in CO2RR towards formate production, showing high activity, selectivity, and stability across all pH conditions (acidic, neutral, and alkaline). In a flow cell reactor under neutral, alkaline, or acidic conditions, the catalysts achieved HCOOH Faradaic efficiencies of up to 94.3 %, 96.4 %, and 91.0 %, respectively, at a high current density of 300 mA cm-2. Density functional theory calculations, along with operando spectral measurements, reveal that Te manipulates the Bi sites to an electron-deficient state, enhancing the adsorption strength of the *OCHO intermediate, and significantly suppressing the competing HER and CO production. This study highlights the substantial influence of catalyst reconstruction under operational conditions and offers insights into designing highly active and stable electrocatalysts towards CO2RR.
Collapse
Affiliation(s)
- Jiadong Chen
- Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Zhejiang- Canada Joint Laboratory on Energy Storage and electrocatalysis, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale, Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Tingjie Mao
- Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Zhejiang- Canada Joint Laboratory on Energy Storage and electrocatalysis, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Juan Wang
- Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Zhejiang- Canada Joint Laboratory on Energy Storage and electrocatalysis, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jichang Wang
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Shun Wang
- Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Zhejiang- Canada Joint Laboratory on Energy Storage and electrocatalysis, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Huile Jin
- Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Zhejiang- Canada Joint Laboratory on Energy Storage and electrocatalysis, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
3
|
Palanimuthu N, Subramaniam MR, P MA, Sharma PK, Ramalingam V, Peramaiah K, Ramakrishnan S, Gu GH, Yu EH, Yoo DJ. Surface Area-Enhanced Cerium and Sulfur-Modified Hierarchical Bismuth Oxide Nanosheets for Electrochemical Carbon Dioxide Reduction to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400913. [PMID: 38847569 DOI: 10.1002/smll.202400913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/10/2024] [Indexed: 10/04/2024]
Abstract
Electrochemical carbon dioxide reduction reaction (ECO2RR) is a promising approach to synthesize fuels and value-added chemical feedstocks while reducing atmospheric CO2 levels. Here, high surface area cerium and sulfur-doped hierarchical bismuth oxide nanosheets (Ce@S-Bi2O3) are develpoed by a solvothermal method. The resulting Ce@S-Bi2O3 electrocatalyst shows a maximum formate Faradaic efficiency (FE) of 92.5% and a current density of 42.09 mA cm-2 at -1.16 V versus RHE using a traditional H-cell system. Furthermore, using a three-chamber gas diffusion electrode (GDE) reactor, a maximum formate FE of 85% is achieved in a wide range of applied potentials (-0.86 to -1.36 V vs RHE) using Ce@S-Bi2O3. The density functional theory (DFT) results show that doping of Ce and S in Bi2O3 enhances formate production by weakening the OH* and H* species. Moreover, DFT calculations reveal that *OCHO is a dominant pathway on Ce@S-Bi2O3 that leads to efficient formate production. This study opens up new avenues for designing metal and element-doped electrocatalysts to improve the catalytic activity and selectivity for ECO2RR.
Collapse
Affiliation(s)
- Naveenkumar Palanimuthu
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Mohan Raj Subramaniam
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Muthu Austeria P
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Republic of Korea
| | - Preetam Kumar Sharma
- Institute for Materials Discovery, University College London, Malet Place, London, WC1E 7JE, United Kingdom
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | - Vinoth Ramalingam
- School of Engineering, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, United Kingdom
| | - Karthik Peramaiah
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Shanmugam Ramakrishnan
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne, NE17RU, United Kingdom
| | - Geun Ho Gu
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Republic of Korea
| | - Eileen Hao Yu
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | - Dong Jin Yoo
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
4
|
Yang J, Jiao J, Liu S, Yin Y, Cheng Y, Wang Y, Zhou M, Zhao W, Tong X, Jing L, Zhang P, Sun X, Zhu Q, Kang X, Han B. Switching Reaction Pathways of CO 2 Electroreduction by Modulating Cations in the Electrochemical Double Layer. Angew Chem Int Ed Engl 2024; 63:e202410145. [PMID: 38979674 DOI: 10.1002/anie.202410145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Tuning the selectivity of CO2 electroreduction reaction (CO2RR) solely by changing electrolyte is a very attractive topic. In this study, we conducted CO2RR in different aqueous electrolytes over bulk metal electrodes. It was discovered that controlled CO2RR could be achieved by modulating cations in the electrochemical double layer. Specifically, ionic liquid cations in the electrolyte significantly inhibits the hydrogen evolution reaction (HER), while yielding high Faraday efficiencies toward CO (FECO) or formate (FEformate) depending on the alkali metal cations. For example, the product could be switched from CO (FECO=97.3 %) to formate (FEformate=93.5 %) by changing the electrolyte from 0.1 M KBr-0.5 M 1-octyl-3-methylimidazolium bromide (OmimBr) to 0.1 M CsBr-0.5 M OmimBr aqueous solutions over pristine Cu foil electrode. In situ spectroscopy and theoretical calculations reveal that the ordered structure generated by the assembly of Omim+ under an applied negative potential alters the hydrogen bonding structure of the interfacial water, thereby inhibiting the HER. The difference in selectivity in the presence of different cations is attributed to the hydrogen bonding effect caused by Omim+, which alters the solvated structure of the alkali metal cations and thus affects the stabilization of intermediates of different pathways.
Collapse
Affiliation(s)
- Jiahao Yang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiapeng Jiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shiqiang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yaoyu Yin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingying Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiyong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Tong
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihong Jing
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
5
|
Sun Z, Li C, Wei Z, Zhang F, Deng Z, Zhou K, Wang Y, Guo J, Yang J, Xiang Z, Ma P, Zhai H, Li S, Chen W. Sulfur-Bridged Asymmetric CuNi Bimetallic Atom Sites for CO 2 Reduction with High Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404665. [PMID: 38923612 DOI: 10.1002/adma.202404665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Double-atom catalysts (DACs) with asymmetric coordination are crucial for enhancing the benefits of electrochemical carbon dioxide reduction and advancing sustainable development, however, the rational design of DACs is still challenging. Herein, this work synthesizes atomically dispersed catalysts with novel sulfur-bridged Cu-S-Ni sites (named Cu-S-Ni/SNC), utilizing biomass wool keratin as precursor. The plentiful disulfide bonds in wool keratin overcome the limitations of traditional gas-phase S ligand etching process and enable the one-step formation of S-bridged sites. X-ray absorption spectroscopy (XAS) confirms the existence of bimetallic sites with N2Cu-S-NiN2 moiety. In H-cell, Cu-S-Ni/SNC shows high CO Faraday efficiency of 98.1% at -0.65 V versus RHE. Benefiting from the charge tuning effect between the metal site and bridged sulfur atoms, a large current density of 550 mA cm-2 can be achieved at -1.00 V in flow cell. Additionally, in situ XAS, attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and density functional theory (DFT) calculations show Cu as the main adsorption site is dual-regulated by Ni and S atoms, which enhances CO2 activation and accelerates the formation of *COOH intermediates. This kind of asymmetric bimetallic atom catalysts may open new pathways for precision preparation and performance regulation of atomic materials toward energy applications.
Collapse
Affiliation(s)
- Zhiyi Sun
- Analysis and Testing Center, Beijing Institute of Technology, Beijing, 100081, China
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chen Li
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Zihao Wei
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fang Zhang
- Analysis and Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziwei Deng
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Kejia Zhou
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yong Wang
- Guangdong R&D Center for Technological Economy, Guangzhou, 510070, China
| | - Jinhong Guo
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiayi Yang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zequn Xiang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Peijie Ma
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Huazhang Zhai
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shenghua Li
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
6
|
Chen H, Mo P, Zhu J, Xu X, Cheng Z, Yang F, Xu Z, Liu J, Wang L. Anionic Coordination Control in Building Cu-Based Electrocatalytic Materials for CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400661. [PMID: 38597688 DOI: 10.1002/smll.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Renewable energy-driven conversion of CO2 to value-added fuels and chemicals via electrochemical CO2 reduction reaction (CO2RR) technology is regarded as a promising strategy with substantial environmental and economic benefits to achieve carbon neutrality. Because of its sluggish kinetics and complex reaction paths, developing robust catalytic materials with exceptional selectivity to the targeted products is one of the core issues, especially for extensively concerned Cu-based materials. Manipulating Cu species by anionic coordination is identified as an effective way to improve electrocatalytic performance, in terms of modulating active sites and regulating structural reconstruction. This review elaborates on recent discoveries and progress of Cu-based CO2RR catalytic materials enhanced by anionic coordination control, regarding reaction paths, functional mechanisms, and roles of different non-metallic anions in catalysis. Finally, the review concludes with some personal insights and provides challenges and perspectives on the utilization of this strategy to build desirable electrocatalysts.
Collapse
Affiliation(s)
- Hanxia Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Pengpeng Mo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Junpeng Zhu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xiaoxue Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhixiang Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Feng Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhongfei Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Juzhe Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
7
|
Liang S, Fang Z, Yang C, Wang Q. Selective CO 2 electroreduction to formate over a Cu-based catalyst in S 2--containing electrolyte. Chem Commun (Camb) 2024; 60:7602-7605. [PMID: 38952342 DOI: 10.1039/d4cc02047b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
A Cu2O-derived catalyst selectively and durably electroreduces CO2 to formate with a maximum faradaic efficiency of 74% in S2--containing electrolyte and exhibits a high formate partial current density of up to 110 mA cm-2 in a flow cell.
Collapse
Affiliation(s)
- Shuyu Liang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Ziyi Fang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Chaoran Yang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Qiang Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
8
|
Liu H, Yang C, Bian T, Yu H, Zhou Y, Zhang Y. Bottom-up Growth of Convex Sphere with Adjustable Cu(0)/Cu(I) Interfaces for Effective C 2 Production from CO 2 Electroreduction. Angew Chem Int Ed Engl 2024; 63:e202404123. [PMID: 38702953 DOI: 10.1002/anie.202404123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
One challenge confronting the Cu2O catalysts in the electrocatalysis of carbon dioxide reduction reaction (CO2RR) is the reduction of active Cu(I) species, resulting in low selectivity and quick deactivation. In this study, we for the first time introduce a bottom-up growth of convex sphere with adjustable Cu(0)/Cu(I) interfaces (Cux@Cu2O convex spheres). Interestingly, the interfaces are dynamically modulated by varying hydrothermal time, thus regulating the conversion of C1 and C2 products. In particular, the 4 h hydrothermal treatment applied to Cu0.25@Cu2O convex sphere with the favorable Cu(0)/Cu(I) interface results in the highest selectivity for C2 products (90.5 %). In situ Fourier-transform infrared spectroscopy measurements and density functional theory calculations reveal that the Cu(0)/Cu(I) interface lowers the energy barrier for the production of ethylene and ethanol while increasing the coverage of localized *CO adsorbate for increased dimerization. This work establishes a novel approach for transforming the state of valence-sensitive electrocatalysts into high-value energy-related engineering products.
Collapse
Affiliation(s)
- Huan Liu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
| | - Chenghan Yang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
| | - Tong Bian
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
| | - Huijun Yu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
| | - Yiwei Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
| |
Collapse
|
9
|
Wei Z, Ding J, Wang Z, Wang A, Zhang L, Liu Y, Guo Y, Yang X, Zhai Y, Liu B. Enhanced Electrochemical CO 2 Reduction to Formate over Phosphate-Modified In: Water Activation and Active Site Tuning. Angew Chem Int Ed Engl 2024; 63:e202402070. [PMID: 38664999 DOI: 10.1002/anie.202402070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Indexed: 05/28/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) offers a sustainable strategy for producing fuels and chemicals. However, it suffers from sluggish CO2 activation and slow water dissociation. In this work, we construct a (P-O)δ- modified In catalyst that exhibits high activity and selectivity in electrochemical CO2 reduction to formate. A combination of in situ characterizations and kinetic analyses indicate that (P-O)δ- has a strong interaction with K+(H2O)n, which effectively accelerates water dissociation to provide protons. In situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) measurements together with density functional theory (DFT) calculations disclose that (P-O)δ- modification leads to a higher valence state of In active site, thus promoting CO2 activation and HCOO* formation, while inhibiting competitive hydrogen evolution reaction (HER). As a result, the (P-O)δ- modified oxide-derived In catalyst exhibits excellent formate selectivity across a broad potential window with a formate Faradaic efficiency as high as 92.1 % at a partial current density of ~200 mA cm-2 and a cathodic potential of -1.2 V vs. RHE in an alkaline electrolyte.
Collapse
Affiliation(s)
- Zhiming Wei
- The Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China
| | - Ziyi Wang
- The Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Anyang Wang
- School of Electrical Engineering, Wuhan University, 430072, Wuhan, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yuhang Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China
| | - Yuzheng Guo
- School of Electrical Engineering, Wuhan University, 430072, Wuhan, China
| | - Xuan Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 999077, Hong Kong SAR, China
| |
Collapse
|
10
|
Zhang J, Xia S, Wang Y, Wu J, Wu Y. Recent advances in dynamic reconstruction of electrocatalysts for carbon dioxide reduction. iScience 2024; 27:110005. [PMID: 38846002 PMCID: PMC11154216 DOI: 10.1016/j.isci.2024.110005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Electrocatalysts undergo structural evolution under operating electrochemical CO2 reduction reaction (CO2RR) conditions. This dynamic reconstruction correlates with variations in CO2RR activity, selectivity, and stability, posing challenges in catalyst design for electrochemical CO2RR. Despite increased research on the reconstruction behavior of CO2RR electrocatalysts, a comprehensive understanding of their dynamic structural evolution under reaction conditions is lacking. This review summarizes recent developments in the dynamic reconstruction of catalysts during the CO2RR process, covering fundamental principles, modulation strategies, and in situ/operando characterizations. It aims to enhance understanding of electrocatalyst dynamic reconstruction, offering guidelines for the rational design of CO2RR electrocatalysts.
Collapse
Affiliation(s)
- Jianfang Zhang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Shuai Xia
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Wang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Institute of Energy, Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230009, China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China
- China International S&T Cooperation Base for Advanced Energy and Environmental Materials & Anhui Provincial International S&T Cooperation Base for Advanced Energy Materials, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
11
|
Xiong WF, Cai WZ, Wang J, Si DH, Gao SY, Li HF, Cao R. Br, O-Modified Cu(111) Interface Promotes CO 2 Reduction to Multicarbon Products. SMALL METHODS 2024:e2301807. [PMID: 38856023 DOI: 10.1002/smtd.202301807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/23/2024] [Indexed: 06/11/2024]
Abstract
Electrochemical reduction of CO2 to multicarbon (C2+) products with added value represents a promising strategy for achieving a carbon-neutral economy. Precise manipulation of the catalytic interface is imperative to control the catalytic selectivity, particularly toward C2+ products. In this study, a unique Cu/UIO-Br interface is designed, wherein the Cu(111) plane is co-modified simultaneously by Br and O from UIO-66-Br support. Such Cu/UIO-Br catalytic interface demonstrates a superior Faradaic efficiency of ≈53% for C2+ products (ethanol/ethylene) and the C2+ partial current density reached 24.3 mA cm-2 in an H-cell electrolyzer. The kinetic isotopic effect test, in situ attenuated total reflection Fourier transform infrared spectroscopy and density functional theory calculations have been conducted to elucidate the catalytic mechanism. The Br, O co-modification on the Cu(111) interface enhanced the adsorption of CO2 species. The hydrogen-bond effect from the doped Br atom regulated the kinetic processes of *H species in CO2RR and promoted the formation of *COH intermediate. The formed *COH facilitates the *CO-*COH coupling and promotes the C2+ selectivity finally. This comprehensive investigation not only provides an in-depth study and understanding of the catalytic process but also offers a promising strategy for designing efficient Cu-based catalysts with exceptional C2+ products.
Collapse
Affiliation(s)
- Wan-Feng Xiong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Wan-Zhen Cai
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Duan-Hui Si
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shui-Ying Gao
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Hong-Fang Li
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Rong Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
12
|
Jiang M, Wang H, Zhu M, Luo X, He Y, Wang M, Wu C, Zhang L, Li X, Liao X, Jiang Z, Jin Z. Review on strategies for improving the added value and expanding the scope of CO 2 electroreduction products. Chem Soc Rev 2024; 53:5149-5189. [PMID: 38566609 DOI: 10.1039/d3cs00857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The electrochemical reduction of CO2 into value-added chemicals has been explored as a promising solution to realize carbon neutrality and inhibit global warming. This involves utilizing the electrochemical CO2 reduction reaction (CO2RR) to produce a variety of single-carbon (C1) and multi-carbon (C2+) products. Additionally, the electrolyte solution in the CO2RR system can be enriched with nitrogen sources (such as NO3-, NO2-, N2, or NO) to enable the synthesis of organonitrogen compounds via C-N coupling reactions. However, the electrochemical conversion of CO2 into valuable chemicals still faces challenges in terms of low product yield, poor faradaic efficiency (FE), and unclear understanding of the reaction mechanism. This review summarizes the promising strategies aimed at achieving selective production of diverse carbon-containing products, including CO, formate, hydrocarbons, alcohols, and organonitrogen compounds. These approaches involve the rational design of electrocatalysts and the construction of coupled electrocatalytic reaction systems. Moreover, this review presents the underlying reaction mechanisms, identifies the existing challenges, and highlights the prospects of the electrosynthesis processes. The aim is to offer valuable insights and guidance for future research on the electrocatalytic conversion of CO2 into carbon-containing products of enhanced value-added potential.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Xiao Li
- College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China.
| | - Xuemei Liao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhenju Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
13
|
Zhang Z, Wang X, Tian H, Jiao H, Tian N, Bian L, Liu Y, Wang ZL. Highly dispersed Cu-Cu 2O-CeO x interfaces on reduced graphene oxide for CO 2 electroreduction to C 2+ products. J Colloid Interface Sci 2024; 661:966-976. [PMID: 38330668 DOI: 10.1016/j.jcis.2024.01.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
The Cu0-Cu+ interfaces play a key role in the electrochemical CO2 reduction reaction (CO2RR) to produce multi-carbon products (C2+), however, it is difficult for Cu+ to exist stably under reducing conditions. Herein, we construct highly dispersed and stable Cu-Cu2O-CeOx interface on reduced graphene oxide (rGO) for CO2 electroreduction to C2+ products. During the synthesis process, utilizing strong electrostatic interactions, the complex ions of Cu2+ and Ce3+ are uniformly adsorbed on the surface of graphene oxide. Then, under the solvothermal reaction of ethylene glycol and thiourea, the two metal complex ions are converted into highly dispersed and ultrafine Cu2S-CeOx nanocomposites on rGO. Interestingly, CeOx and thiourea synergistically regulate the generation of only Cu+. Under the CO2RR process, the reconstruction of Cu2S promotes the formation of Cu0 and Cu2O species. CeOx stabilizes partial Cu+ species and promotes the formation of Cu-Cu2O-CeOx composite interface. With the help of synergistic effect of Cu0, Cu+ and CeOx, the optimized reaction interface achieves the Faradaic efficiency (FE) of 74.5 % for C2+ products with the current density of 230 mA cm-2 at -0.9 V versus the reversible hydrogen electrode. In situ attenuate total reflectance-infrared absorption spectroscopy (ATR-IRAS) spectra show that the composite interfaces promote the adsorption and activation of H2O and CO2, improve the surface coverage of CO intermediates (*CO), and thus accelerate the CC coupling process.
Collapse
Affiliation(s)
- Ziyang Zhang
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Xin Wang
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Tian
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Han Jiao
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Nana Tian
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lei Bian
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuan Liu
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhong-Li Wang
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Guo Z, Yu Y, Li C, Campos Dos Santos E, Wang T, Li H, Xu J, Liu C, Li H. Deciphering Structure-Activity Relationship Towards CO 2 Electroreduction over SnO 2 by A Standard Research Paradigm. Angew Chem Int Ed Engl 2024; 63:e202319913. [PMID: 38284290 DOI: 10.1002/anie.202319913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 01/30/2024]
Abstract
Authentic surface structures under reaction conditions determine the activity and selectivity of electrocatalysts, therefore, the knowledge of the structure-activity relationship can facilitate the design of efficient catalyst structures for specific reactivity requirements. However, understanding the relationship between a more realistic active surface and its performance is challenging due to the complicated interface microenvironment in electrocatalysis. Herein, we proposed a standard research paradigm to effectively decipher the structure-activity relationship in electrocatalysis, which is exemplified in the CO2 electroreduction over SnO2 . The proposed practice has aided in discovering authentic/resting surface states (Sn layer) of SnO2 accountable for the electrochemical CO2 reduction reaction (CO2 RR) performance under electrocatalytic conditions, which then is corroborated in the subsequent CO2 RR experiments over SnO2 with different morphologies (nanorods, nanoparticles, and nanosheets) in combination with in situ characterizations. This proposed methodology is further extended to the SnO electrocatalysts, providing helpful insights into catalytic structures. It is believed that our proposed standard research paradigm is also applicable to other electrocatalytic systems, in the meantime, decreases the discrepancy between theory and experiments, and accelerates the design of catalyst structures that achieve sustainable performance for energy conversion.
Collapse
Affiliation(s)
- Zhongyuan Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Yihong Yu
- Key Lab for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Congcong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Egon Campos Dos Santos
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Tianyi Wang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Huihui Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuangwei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
15
|
Jin Z, Jiao D, Dong Y, Liu L, Fan J, Gong M, Ma X, Wang Y, Zhang W, Zhang L, Gen Yu Z, Voiry D, Zheng W, Cui X. Boosting Electrocatalytic Carbon Dioxide Reduction via Self-Relaxation of Asymmetric Coordination in Fe-Based Single Atom Catalyst. Angew Chem Int Ed Engl 2024; 63:e202318246. [PMID: 38102742 DOI: 10.1002/anie.202318246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Addressing the limitations arising from the consistent catalytic behavior observed for various intermediates during the electrochemical carbon dioxide reduction reaction (CO2 RR) poses a significant challenge in the optimization of catalytic activity. In this study, we aimed to address this challenge by constructing an asymmetric coordination Fe single atom catalyst (SCA) with a dynamically evolved structure. Our catalyst, consisting of a Fe atom coordinated with one S atom and three N atoms (Fe-S1 N3 ), exhibited exceptional selectivity (CO Faradaic efficiency of 99.02 %) and demonstrated a high intrinsic activity (TOF of 7804.34 h-1 ), and remarkable stability. Using operando XAFS spectra and Density Functional Theory (DFT) calculations, we elucidated the self-relaxation of geometric distortion and dynamic evolution of bond lengths within the catalyst. These structure changes enabled independent regulation of the *COOH and *CO intermediate adsorption energies, effectively breaking the linear scale relationship and enhancing the intrinsic activity of CO2 RR. This study provides valuable insights into the dynamic evolution of SACs and paves the way for targeted catalyst designs aimed to disrupt the linear scaling relationships.
Collapse
Affiliation(s)
- Zhaoyong Jin
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Dongxu Jiao
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Yilong Dong
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Lin Liu
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Jinchang Fan
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Ming Gong
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Xingcheng Ma
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Ying Wang
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Wei Zhang
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Lei Zhang
- College of Chemistry, Jilin University, 130012, Changchun, China
| | - Zhi Gen Yu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, 138632, Singapore, Singapore
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, 34000, Montpellier, France
| | - Weitao Zheng
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Xiaoqiang Cui
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| |
Collapse
|
16
|
Li Y, Delmo EP, Hou G, Cui X, Zhao M, Tian Z, Zhang Y, Shao M. Enhancing Local CO 2 Adsorption by L-histidine Incorporation for Selective Formate Production Over the Wide Potential Window. Angew Chem Int Ed Engl 2023; 62:e202313522. [PMID: 37855722 DOI: 10.1002/anie.202313522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2 RR) to produce valuable chemicals is a promising pathway to alleviate the energy crisis and global warming issues. However, simultaneously achieving high Faradaic efficiency (FE) and current densities of CO2 RR in a wide potential range remains as a huge challenge for practical implements. Herein, we demonstrate that incorporating bismuth-based (BH) catalysts with L-histidine, a common amino acid molecule of proteins, is an effective strategy to overcome the inherent trade-off between the activity and selectivity. Benefiting from the significantly enhanced CO2 adsorption capability and promoted electron-rich nature by L-histidine integrity, the BH catalyst exhibits excellent FEformate in the unprecedented wide potential windows (>90 % within -0.1--1.8 V and >95 % within -0.2--1.6 V versus reversible hydrogen electrode, RHE). Excellent CO2 RR performance can still be achieved under the low-concentration CO2 feeding (e.g., 20 vol.%). Besides, an extremely low onset potential of -0.05 VRHE (close to the theoretical thermodynamic potential of -0.02 VRHE ) was detected by in situ ultraviolet-visible (UV-Vis) measurements, together with stable operation over 50 h with preserved FEformate of ≈95 % and high partial current density of 326.2 mA cm-2 at -1.0 VRHE .
Collapse
Affiliation(s)
- Yicheng Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ernest Pahuyo Delmo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, China
| | - Guoyu Hou
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xianglong Cui
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ming Zhao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Yu Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|