1
|
Firoozi Z, Khalili D, Sardarian AR. Fe 3O 4@SiO 2 core/shell functionalized by gallic acid: a novel, robust, and water-compatible heterogeneous magnetic nanocatalyst for environmentally friendly synthesis of acridine-1,8-diones. RSC Adv 2024; 14:10842-10857. [PMID: 38577428 PMCID: PMC10990003 DOI: 10.1039/d4ra00629a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
In this study, we conveniently prepared a novel robust heterogeneous magnetic nanocatalyst using a Fe3O4@SiO2 core/shell stabilized by gallic acid. The catalyst was completely characterized by various physicochemical techniques, including infrared spectroscopy (FT-IR), X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), potentiometric titration, energy dispersive X-ray microanalysis (EDX), vibrating sample magnetometer (VSM), zeta potential analysis, and BET. The potential ability of the newly developed sulfonated nanocatalyst was then exploited in the multicomponent synthesis of acridine-1,8-dione derivatives by considering the green chemistry matrix and under mild conditions. Various aldehydes and amines were smoothly reacted with dimedone, affording the desired products in good to excellent yields. The introduction of sulfonic groups using gallic acid allowed the development of a water-compatible and highly recyclable catalytic system for reactions in an aqueous environment. The prepared catalyst can be readily magnetically separated and reused eight times without significant loss of activity. High synthetic efficiency, using a recyclable and eco-sustainable catalyst under mild conditions, and easy product isolation are salient features of this catalytic system, which makes this protocol compatible with the demands of green chemistry.
Collapse
Affiliation(s)
- Zahra Firoozi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71467-13565 Iran
| | - Dariush Khalili
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71467-13565 Iran
| | - Ali Reza Sardarian
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71467-13565 Iran
| |
Collapse
|
2
|
Hassanzadeh-Afruzi F, Salehi MM, Ranjbar G, Esmailzadeh F, Hanifehnejad P, Azizi M, Eshrati Yeganeh F, Maleki A. Utilizing magnetic xanthan gum nanocatalyst for the synthesis of acridindion derivatives via functionalized macrocycle Thiacalix[4]arene. Sci Rep 2023; 13:22162. [PMID: 38092842 PMCID: PMC10719371 DOI: 10.1038/s41598-023-49632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
An effective method for synthesizing acridinedione derivatives using a xanthan gum (XG), Thiacalix[4]arene (TC4A), and iron oxide nanoparticles (IONP) have been employed to construct a stable composition, which is named Thiacalix[4]arene-Xanthan Gum@ Iron Oxide Nanoparticles (TC4A-XG@IONP). The process used to fabricate this nanocatalyst includes the in-situ magnetization of XG, its amine modification by APTES to get NH2-XG@IONP hydrogel, the synthesis of TC4A, its functionalization with epichlorohydrine, and eventually its covalent attachment onto the NH2-XG@IONP hydrogel. The structure of the TC4A-XG@IONP was characterized by different analytical methods including Fourier-transform infrared spectroscopy, X-Ray diffraction analysis (XRD), Energy Dispersive X-Ray, Thermal Gravimetry analysis, Brunauer-Emmett-Teller, Field Emission Scanning Electron Microscope and Vibration Sample Magnetomete. With magnetic saturation of 9.10 emu g-1 and ~ 73% char yields, the TC4As-XG@IONP catalytic system demonstrated superparamagnetic property and high thermal stability. The magnetic properties of the TC4A-XG@IONP nanocatalyst system imparted by IONP enable it to be conveniently isolated from the reaction mixture by using an external magnet. In the XRD pattern of the TC4As-XG@IONP nanocatalyst, characteristic peaks were observed. This nanocatalyst is used as an eco-friendly, heterogeneous, and green magnetic catalyst in the synthesis of acridinedione derivatives through the one-pot pseudo-four component reaction of dimedone, various aromatic aldehydes, and ammonium acetate or aniline/substituted aniline. A combination of 10 mg of catalyst (TC4A-XG@IONP), 2 mmol of dimedone, and 1 mmol of aldehyde at 80 °C in a ethanol at 25 mL round bottom flask, the greatest output of acridinedione was 92% in 20 min.This can be attributed to using TC4A-XG@IONP catalyst with several merits as follows: high porosity (pore volume 0.038 cm3 g-1 and Pore size 9.309 nm), large surface area (17.306 m2 g-1), three dimensional structures, and many catalytic sites to active the reactants. Additionally, the presented catalyst could be reused at least four times (92-71%) with little activity loss, suggesting its excellent stability in this multicomponent reaction. Nanocatalysts based on natural biopolymers in combination with magnetic nanoparticles and macrocycles may open up new horizons for researchers in the field.
Collapse
Affiliation(s)
- Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ghazaleh Ranjbar
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Peyman Hanifehnejad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mojtaba Azizi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Faten Eshrati Yeganeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
3
|
Beiranvand R, Dekamin MG. Trimesic acid-functionalized chitosan: A novel and efficient multifunctional organocatalyst for green synthesis of polyhydroquinolines and acridinediones under mild conditions. Heliyon 2023; 9:e16315. [PMID: 37260895 PMCID: PMC10227330 DOI: 10.1016/j.heliyon.2023.e16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Trimesic acid-functionalized chitosan (Cs/ECH-TMA) material was prepared through a simple procedure by using inexpensive and commercially available chitosan (Cs), epichlorohydrin (ECH) linker and trimesic acid (TMA). The obtained bio-based Cs/ECH-TMA material was characterized using energy-dispersive X-ray (EDX) and Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analysis. The Cs/ECH-TMA material was successfully used, as a multifunctional heterogeneous and sustainable catalyst, for efficient and expeditious synthesis of medicinally important polyhydroquinoline (PHQ) and polyhydroacridinedione (PHA) scaffolds through the Hantzsch condensation in a one-pot reaction. Indeed, the heterogeneous Cs/ECH-TMA material can be considered as a synergistic multifunctional organocatalyst due to the presence of a large number of acidic active sites in its structure as well as hydrophilicity. Both PHQs and PHAs were synthesized in the presence of biodegradable heterogeneous Cs/ECH-TMA catalytic system from their corresponding substrates in EtOH under reflux conditions and high to quantitative yields. The Cs/ECH-TMA catalyst is recyclable and can be reused at least four times without significant loss of its catalytic activity.
Collapse
|
4
|
Karami Z, Khodaei MM. Preparation, characterization, and application of supported phosphate acid on the UiO-66-NH2 as an efficient and bifunctional catalyst for the synthesis of acridines. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Ghamari kargar P, Bakhshi F, Bagherzade G. Value-Added Synthesized Acidic Polymer Nanocomposite with Waste Chicken Eggshell: A novel metal-free and heterogeneous catalyst for Mannich and Hantzsch Cascade Reactions from Alcohols. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
6
|
Kafshdarzadeh K, Malmir M, Amiri Z, Heravi MM. Ionic liquid-loaded triazine-based magnetic nanoparticles for promoting multicomponent reaction. Sci Rep 2022; 12:22261. [PMID: 36564418 PMCID: PMC9789048 DOI: 10.1038/s41598-022-26235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
A novel hybrid magnetic ionic-liquid as a heterogeneous catalyst was synthesized by hybridization of imidazolium based-ionic liquid onto the nitrogen rich magnetic nanocomposite. The resulting catalyst (n-Fe3O4@SiO2-TA-SO3H IL) has two advantages besides recyclability: (i) high capacity of functional-SO3H group with imidazolium-IL cation for promoting symmetric and asymmetric Hantzsch reaction and (ii) easy recovery. Caused by the polymeric and magnetic nature of the n-Fe3O4@SiO2-TA-SO3H IL, large quantities of acidic groups were bound to the n-Fe3O4@SiO2-TA surface, which reduced the catalyst mass applied to the catalytic reaction. Moreover, superior catalytic performance and outstanding recyclability of n-Fe3O4@SiO2-TA-SO3H IL in mild condition make this method a green pathway for manufacture of satisfactory chemicals.
Collapse
Affiliation(s)
- Kosar Kafshdarzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Masoume Malmir
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Zahra Amiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran.
| |
Collapse
|
7
|
Synthesis and Characterization of Nickel Metal-Organic Framework Including 4,6-diamino-2-mercaptopyrimidine and its Catalytic Application in Organic Reactions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04135-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Amiri Z, Malmir M, Hosseinnejad T, Kafshdarzadeh K, Heravi MM. Combined experimental and computational study on Ag-NPs immobilized on rod-like hydroxyapatite for promoting Hantzsch reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Roudini P, Hazeri N, Faroughi Niya H, Fatahpour M. Fe3O4@THAM-SO3H: An Eco-Friendly Solid Acid Nanocatalyst for Synthesis of 2-Amino-3-Cyanopyridines and 2,4,6-Triarylpyridines under Mild Reaction Conditions. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2025862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Parvin Roudini
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Nourallah Hazeri
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Homayoun Faroughi Niya
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Maryam Fatahpour
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
10
|
Moosavi-Zare AR, Goudarziafshar H, Yadollahi M, Jalilian Z. The Synthesis of Polysubstituted Amino Pyrazoles Using Nano-[Zn-4NSP]Cl2 as a New Schiff Base Complex and Catalyst. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2025865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Hamid Goudarziafshar
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Maryam Yadollahi
- Department of Chemistry, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| | - Zahra Jalilian
- Department of Chemistry, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| |
Collapse
|
11
|
Jalali-Mola S, Torabi M, Yarie M, Zolfigol MA. Acidic tributyl phosphonium-based ionic liquid: an efficient catalyst for preparation of diverse pyridine systems via a cooperative vinylogous anomeric-based oxidation. RSC Adv 2022; 12:34730-34739. [DOI: 10.1039/d2ra04631h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Experimental procedure for the synthesis of triaryl pyridines, indolyl pyridines and nicotinonitriles.
Collapse
Affiliation(s)
- Sepideh Jalali-Mola
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
12
|
Sayyahi S, Fallah-Mehrjardi M, Saghanezhad SJ. Synthesis of Heterocyclic Compounds by Catalysts Supported on Nano-Magnetite (Fe3O4)-An Update. MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x17999200507094534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Magnetic nanoparticles have gained a great deal of attention from both academic and industrial
point of view, owing to their unique properties including high surface area, and superparamagnetism,
which enable them to be suitable for modification with many compounds and employing
them as a catalyst in organic reactions. In this mini-review, we have summarized the application of
surface-modified magnetite nanoparticles as magnetically recoverable catalysts in heterocyclic synthesis.
These catalysts include silica, biopolymer, acid, amine, transition metal, ionic liquid and metal
organic framework supported magnetite catalysts.
Collapse
Affiliation(s)
- Soheil Sayyahi
- Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
| | | | | |
Collapse
|
13
|
Sameri F, Bodaghifard MA, Mobinikhaledi A. Ionic Liquid-Coated Nanoparticles (CaO@SiO 2@BAIL): A Bi-Functional and Environmentally Benign Catalyst for Green Synthesis of Pyridine, Pyrimidine, and Pyrazoline Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1903954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fatemeh Sameri
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | | | | |
Collapse
|
14
|
Roozifar M, Hazeri N, Faroughi Niya H. Application of salicylic acid as an eco‐friendly and efficient catalyst for the synthesis of 2,4,6‐triaryl pyridine, 2‐amino‐3‐cyanopyridine, and polyhydroquinoline derivatives. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Majid Roozifar
- Department of Chemistry, Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| | - Nourallah Hazeri
- Department of Chemistry, Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| | - Homayoun Faroughi Niya
- Department of Chemistry, Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| |
Collapse
|
15
|
Recent advances in preparation and application of sulfonic acid derivatives bonded to inorganic supports. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01997-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Taheri-Ledari R, Esmaeili MS, Varzi Z, Eivazzadeh-Keihan R, Maleki A, Shalan AE. Facile route to synthesize Fe 3O 4@acacia-SO 3H nanocomposite as a heterogeneous magnetic system for catalytic applications. RSC Adv 2020; 10:40055-40067. [PMID: 35520839 PMCID: PMC9057486 DOI: 10.1039/d0ra07986c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022] Open
Abstract
In this work, a novel catalytic system for facilitating the organic multicomponent synthesis of 9-phenyl hexahydroacridine pharmaceutical derivatives is reported. Concisely, this catalyst was constructed from acacia gum (gum arabic) as a natural polymeric base, iron oxide magnetic nanoparticles (Fe3O4 NPs), and sulfone functional groups on the surface as the main active catalytic sites. Herein, a convenient preparation method for this nanoscale composite is introduced. Then, essential characterization methods such as various spectroscopic analyses and electron microscopy (EM) were performed on the fabricated nano-powder. The thermal stability and magnetic properties were also precisely monitored via thermogravimetric analysis (TGA) and vibrating-sample magnetometry (VSM) methods. Then, the performance of the presented catalytic system (Fe3O4@acacia-SO3H) was further investigated in the referred organic reaction by using various derivatives of the components involved in the reaction. Optimization, mechanistic studies, and reusability screening were carried out for this efficient catalyst as well. Overall, remarkable reaction yields (94%) were obtained for the various produced derivatives of 9-phenyl hexahydroacridine in the indicated optimal conditions.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Mir Saeed Esmaeili
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Zahra Varzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI) P. O. Box 87 Helwan Cairo 11421 Egypt
- BCMaterials, Basque Center for Materials, Applications and Nanostructures Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n Leioa 48940 Spain
| |
Collapse
|
17
|
Torabi M, Yarie M, Karimi F, Zolfigol MA. Catalytic synthesis of coumarin-linked nicotinonitrile derivatives via a cooperative vinylogous anomeric-based oxidation. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04267-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Design and application of (Fe3O4)-GOTfOH based AgNPs doped starch/PEG-poly (acrylic acid) nanocomposite as the magnetic nanocatalyst and the wound dress. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Dashteh M, Zolfigol MA, Khazaei A, Baghery S, Yarie M, Makhdoomi S, Safaiee M. Synthesis of cobalt tetra-2,3-pyridiniumporphyrazinato with sulfonic acid tags as an efficient catalyst and its application for the synthesis of bicyclic ortho-aminocarbonitriles, cyclohexa-1,3-dienamines and 2-amino-3-cyanopyridines. RSC Adv 2020; 10:27824-27834. [PMID: 35516925 PMCID: PMC9055596 DOI: 10.1039/d0ra02172e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
Cobalt tetra-2,3-pyridiniumporphyrazinato with sulfonic acid tag [Co(TPPASO3H)]Cl was produced and catalyzed the synthesis of ortho-aminocarbonitriles, cyclohexa-1,3-dienamines and 2-amino-3-cyanopyridines. The synthesis of 2-amino-3-cyanopyridines by using [Co(TPPASO3H)]Cl proceeded via a cooperative vinylogous anomeric based oxidation mechanism. [Co(TPPASO3H)]Cl can be recycled and reused six times with a marginal decreasing of its catalytic activity.
Collapse
Affiliation(s)
- Mohammad Dashteh
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988133493009
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988133493009
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988133493009
| | - Saeed Baghery
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988133493009
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988133493009
| | - Sajjad Makhdoomi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamedan University of Medicinal Science Hamedan Iran
| | - Maliheh Safaiee
- Department of Medicinal Plants Production, University of Nahavand Nahavand 6593139565 Iran
| |
Collapse
|
20
|
Alishahi N, Nasr‐Esfahani M, Mohammadpoor‐Baltork I, Tangestaninejad S, Mirkhani V, Moghadam M. Nicotine‐based ionic liquid supported on magnetic nanoparticles: An efficient and recyclable catalyst for selective one‐pot synthesis of
mono
‐ and
bis
‐4
H
‐pyrimido[2,1‐
b
]benzothiazoles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nasrin Alishahi
- Department of Chemistry, Catalysis Division University of Isfahan Isfahan 81746‐73441 Iran
| | | | | | | | - Valiollah Mirkhani
- Department of Chemistry, Catalysis Division University of Isfahan Isfahan 81746‐73441 Iran
| | - Majid Moghadam
- Department of Chemistry, Catalysis Division University of Isfahan Isfahan 81746‐73441 Iran
| |
Collapse
|
21
|
Alirezvani Z, Dekamin MG, Valiey E. New Hydrogen-Bond-Enriched 1,3,5-Tris(2-hydroxyethyl) Isocyanurate Covalently Functionalized MCM-41: An Efficient and Recoverable Hybrid Catalyst for Convenient Synthesis of Acridinedione Derivatives. ACS OMEGA 2019; 4:20618-20633. [PMID: 31858048 PMCID: PMC6906789 DOI: 10.1021/acsomega.9b02755] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/28/2019] [Indexed: 05/03/2023]
Abstract
A new nano-ordered 1,3,5-tris(2-hydroxyethyl) isocyanurate-1,3-propylene covalently functionalized MCM-41 (MCM-41-Pr-THEIC) was designed and prepared at room temperature through a simple procedure. According to various microscopic, spectroscopic, or thermal methods and techniques, the correlation of the catalytic performance of the hybrid mesoporous MCM-41-Pr-THEIC to its structural characteristics was fully confirmed. The new MCM-41-Pr-THEIC organosilica nanomaterials were successfully investigated as a solid mild nanocatalyst through hydrogen-bonding activation provided by its organic moiety, for the pseudo-four-component condensation of dimedone, aldehydes, and ammonium acetate or p-toluidine to afford the corresponding acridinedione derivatives under green conditions. Furthermore, the introduced nanocatalyst could be reused at least four times with negligible loss of its activity, indicating the good stability and high activity of the new hybrid organosilica.
Collapse
Affiliation(s)
- Zahra Alirezvani
- Pharmaceutical and Heterocyclic
Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mohammad G. Dekamin
- Pharmaceutical and Heterocyclic
Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic
Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
22
|
Zarei A, Yarie M, Zolfigol MA, Niknam K. Synthesis of a novel bifunctional oxyammonium‐based ionic liquid: Application for the synthesis of pyrano[4,3‐b]pyrans and tetrahydrobenzo[b]pyrans. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Azra Zarei
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Khodabakhsh Niknam
- Department of Chemistry, Faculty of SciencesPersian Gulf University Bushehr Iran
| |
Collapse
|
23
|
Wang H, Zhao W, Du J, Wei F, Chen Q, Wang X. Cationic organotin cluster [
t
‐Bu
2
Sn(OH)(H
2
O)]
2
2+
2OTf
−
‐catalyzed one‐pot three‐component syntheses of 5‐substituted 1
H
‐tetrazoles and 2,4,6‐triarylpyridines in water. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hongshe Wang
- College of Chemistry and Chemical EngineeringBaoji University of Arts and Sciences Baoji 721013 China
| | - Weixing Zhao
- College of Chemistry and Chemical EngineeringBaoji University of Arts and Sciences Baoji 721013 China
| | - Juan Du
- College of Chemistry and Chemical EngineeringBaoji University of Arts and Sciences Baoji 721013 China
| | - Fenyan Wei
- College of Chemistry and Chemical EngineeringBaoji University of Arts and Sciences Baoji 721013 China
| | - Qi Chen
- College of Chemistry and Chemical EngineeringBaoji University of Arts and Sciences Baoji 721013 China
| | - Xiaomei Wang
- College of Chemistry and Chemical EngineeringBaoji University of Arts and Sciences Baoji 721013 China
| |
Collapse
|
24
|
Torabi M, Yarie M, Zolfigol MA. Synthesis of a novel and reusable biological urea based acidic nanomagnetic catalyst: Application for the synthesis of 2‐amino‐3‐cyano pyridines
via
cooperative vinylogous anomeric based oxidation. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4933] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Morteza Torabi
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan 6517838683 Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
25
|
Novel magnetic nanoparticles with morpholine tags as multirole catalyst for synthesis of hexahydroquinolines and 2-amino-4,6-diphenylnicotinonitriles through vinylogous anomeric-based oxidation. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03802-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
A novel and reusable ionically tagged nanomagnetic catalyst: Application for the preparation of 2-amino-6-(2-oxo-2H-chromen-3-yl)-4-arylnicotinonitriles via vinylogous anomeric based oxidation. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Wang H, Zhao W, Du J, Wei F, Chen Q, Wang X. Retracted Article: An efficient one pot three-component synthesis of 2,4,6-triarylpyridines using triflimide as a metal-free catalyst under solvent-free conditions. RSC Adv 2019; 9:5158-5163. [PMID: 35514631 PMCID: PMC9060662 DOI: 10.1039/c9ra00653b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/06/2019] [Indexed: 11/22/2022] Open
Abstract
A simple and efficient protocol developed for one pot three-component synthesis of 2,4,6-triarylpyridines from aromatic aldehydes, substituted acetophenones and ammonium acetate using the versatile super Brønsted acid triflimide (HNTf2) as an effective catalyst is described. The reactions proceed well in the presence of 1 mol% of HNTf2 at 80 °C under solvent-free conditions and provide the corresponding triarylpyridines in good to excellent yields. The method reported has several advantages such as a metal-free and commercially available catalyst, mild reaction conditions and lower loading of catalyst. A simple and efficient protocol developed for one pot three-component synthesis of 2,4,6-triarylpyridines from aromatic aldehydes, substituted acetophenones and ammonium acetate using triflimide (HNTf2) as an effective catalyst is described.![]()
Collapse
Affiliation(s)
- Hongshe Wang
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Weixing Zhao
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Juan Du
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Fenyan Wei
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Qi Chen
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Xiaomei Wang
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| |
Collapse
|
28
|
Noura S, Ghorbani M, Zolfigol MA, Narimani M, Yarie M, Oftadeh M. Biological based (nano) gelatoric ionic liquids (NGILs): Application as catalysts in the synthesis of a substituted pyrazole via vinylogous anomeric based oxidation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Yarie M, Zolfigol MA, Baghery S, Alonso DA, Khoshnood A, Bayat Y, Asgari A. Triphenyl(3-sulfopropyl)phosphonium trinitromethanide as a novel nanosized molten salt: Catalytic activity at the preparation of dihydropyrano[2,3-c]pyrazoles. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
S. Kamble S, S. Shankarling G. Amalgamation of CSR and DES: An Energy Efficient Protocol for the One-Pot Synthesis of 2,4,6- Triaryl Pyridine Derivatives. ChemistrySelect 2018. [DOI: 10.1002/slct.201801690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sujit S. Kamble
- Dyestuff Technology Department; Institute of Chemical Technology, N. P. Marg, Matunga; Mumbai- 400019 India
| | - Ganapati S. Shankarling
- Dyestuff Technology Department; Institute of Chemical Technology, N. P. Marg, Matunga; Mumbai- 400019 India
| |
Collapse
|
31
|
Babaee S, Zolfigol MA, Zarei M, Zamanian J. 1,10-Phenanthroline-Based Molten Salt as a Bifunctional Sulfonic Acid Catalyst: Application to the Synthesis of N
-Heterocycle Compounds via
Anomeric Based Oxidation. ChemistrySelect 2018. [DOI: 10.1002/slct.201801476] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry; Faculty of Chemistry; Bu-Ali Sina University; Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry; Faculty of Chemistry; Bu-Ali Sina University; Hamedan 6517838683 Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry; Faculty of Chemistry; Bu-Ali Sina University; Hamedan 6517838683 Iran
| | - Javad Zamanian
- Department of Organic Chemistry; Faculty of Chemistry; Bu-Ali Sina University; Hamedan 6517838683 Iran
| |
Collapse
|