1
|
Gatto CC, Cavalcante CDQO, Lima FC, Nascimento ÉCM, Martins JBL, Santana BLO, Gualberto ACM, Pittella-Silva F. Structural Design, Anticancer Evaluation, and Molecular Docking of Newly Synthesized Ni(II) Complexes with ONS-Donor Dithiocarbazate Ligands. Molecules 2024; 29:2759. [PMID: 38930825 PMCID: PMC11206525 DOI: 10.3390/molecules29122759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The current article reports the investigation of three new Ni(II) complexes with ONS-donor dithiocarbazate ligands: [Ni(L1)PPh3] (1), [Ni(L2)PPh3] (2), and [Ni(L2)Py] (3). Single-crystal X-ray analyses revealed mononuclear complexes with a distorted square planar geometry and the metal centers coordinated with a doubly deprotonated dithiocarbazate ligand and coligand pyridine or triphenylphosphine. The non-covalent interactions were investigated by the Hirshfeld surface and the results revealed that the strongest interactions were π⋅⋅⋅π stacking interactions and non-classical hydrogen bonds C-H···H and C-H···N. Physicochemical and spectroscopic methods indicate the same structures in the solid state and solution. The toxicity effects of the free ligands and Ni(II) complexes were tested on the human breast cancer cell line MCF-7 and non-malignant breast epithelial cell line MCF-10A. The half-maximal inhibitory concentration (IC50) values, indicating that the compounds were potent in inhibiting cell growth, were obtained for both cell lines at three distinct time points. While inhibitory effects were evident in both malignant and non-malignant cells, all three complexes demonstrated lower IC50 values for malignant breast cell lines than their non-malignant counterparts, suggesting a stronger impact on cancerous cell lines. Furthermore, molecular docking studies were performed showing the complex (2) as a promising candidate for further therapeutic exploration.
Collapse
Affiliation(s)
- Claudia C. Gatto
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Cássia de Q. O. Cavalcante
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Francielle C. Lima
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Érica C. M. Nascimento
- University of Brasilia, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília 70910-900, DF, Brazil; (É.C.M.N.); (J.B.L.M.)
| | - João B. L. Martins
- University of Brasilia, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília 70910-900, DF, Brazil; (É.C.M.N.); (J.B.L.M.)
| | - Brunna L. O. Santana
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| | - Ana C. M. Gualberto
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| | - Fabio Pittella-Silva
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| |
Collapse
|
2
|
Anane J, Owusu E, Rivera G, Bandyopadhyay D. Iron-Imine Cocktail in Drug Development: A Contemporary Update. Int J Mol Sci 2024; 25:2263. [PMID: 38396940 PMCID: PMC10888693 DOI: 10.3390/ijms25042263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Organometallic drug development is still in its early stage, but recent studies show that organometallics having iron as the central atom have the possibility of becoming good drug candidates because iron is an important micro-nutrient, and it is compatible with many biological systems, including the human body. Being an eco-friendly Lewis acid, iron can accept the lone pair of electrons from imino(sp2)-nitrogen, and the resultant iron-imine complexes with iron as a central atom have the possibility of interacting with several proteins and enzymes in humans. Iron-imine complexes have demonstrated significant potential with anticancer, bactericidal, fungicidal, and other medicinal activities in recent years. This article systematically discusses major synthetic methods and pharmacological potentials of iron-imine complexes having in vitro activity to significant clinical performance from 2016 to date. In a nutshell, this manuscript offers a simplistic view of iron complexes in medicinal inorganic chemistry: for instance, iron is presented as an "eco-friendly non-toxic" metal (as opposed to platinum) that will lead to non-toxic pharmaceuticals. The abundant literature on iron chelators shows that many iron complexes, particularly if redox-active in cells, can be quite cytotoxic, which can be beneficial for future targeted therapies. While we made every effort to include all the related papers, any omission is purely unintentional.
Collapse
Affiliation(s)
- Judith Anane
- School of Integrative Biological and Chemical Sciences (SIBCS), University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (J.A.); (E.O.)
| | - Esther Owusu
- School of Integrative Biological and Chemical Sciences (SIBCS), University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (J.A.); (E.O.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences (SIBCS), University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (J.A.); (E.O.)
- School of Earth, Environmental, and Marine Sciences (SEEMS), University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
3
|
Cavalcante CDQO, da Mota THA, de Oliveira DM, Nascimento ÉCM, Martins JBL, Pittella-Silva F, Gatto CC. Dithiocarbazate ligands and their Ni(II) complexes with potential biological activity: Structural, antitumor and molecular docking study. Front Mol Biosci 2023; 10:1146820. [PMID: 36968279 PMCID: PMC10034969 DOI: 10.3389/fmolb.2023.1146820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
In the search for new metal complexes with antitumor potential, two dithiocarbazate ligands derived from 1,1,1-trifluoro-2,4-pentanedione (H2L1) and (H2L2) and four Ni(II) complexes, [Ni(L1)PPh3] (1), [Ni(L1)Py] (2), [Ni(L2)PPh3] (3), and [Ni(L2)Py] (4), were successfully synthesized and investigated by physical-chemistry and spectroscopic methods. The crystal structure of the H2L1 and the Ni(II) complexes has been elucidated by single-crystal X-ray diffraction. The obtained structure from H2L1 confirms the cyclization reaction and formation of the pyrazoline derivative. The results showed square planar geometry to the metal centers, in which dithiocarbazates coordinated by the ONS donor system and a triphenylphosphine or pyridine molecule complete the coordination sphere. Hirshfeld surface analysis by dnorm function was investigated and showed π–π stacking interactions upon the molecular packing of H2L1 and non-classical hydrogen bonds for all compounds. Fingerprint plots showed the main interactions attributed to H⋅H C⋅H, O⋅H, Br⋅H, and F⋅H, with contacts contributing between 1.9% and 38.2%. The mass spectrometry data indicated the presence of molecular ions [M + H]+ and characteristic fragmentations of the compounds, which indicated the same behavior of the compounds in solution and solid state. Molecular docking simulations were studied to evaluate the properties and interactions of the free dithiocarbazates and their Ni(II) complexes with selected proteins and DNA. These results were supported by in vitro cytotoxicity assays against four cancer cell lines, showing that the synthesized metal complexes display promising biological activity.
Collapse
Affiliation(s)
- Cássia de Q. O. Cavalcante
- University of Brasília, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília, DF, Brazil
| | - Tales H. A. da Mota
- University of Brasília, Faculdade UnB Ceilândia, Multidisciplinary Laboratory of Human Health, Brasília, DF, Brazil
| | - Diêgo M. de Oliveira
- University of Brasília, Faculdade UnB Ceilândia, Multidisciplinary Laboratory of Human Health, Brasília, DF, Brazil
| | - Érica C. M. Nascimento
- University of Brasília, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília, DF, Brazil
| | - João B. L. Martins
- University of Brasília, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília, DF, Brazil
| | - Fabio Pittella-Silva
- University of Brasília, Faculty of Health Sciences and Medicine, Laboratory of Molecular Cancer Pathology, Brasília, DF, Brazil
| | - Claudia C. Gatto
- University of Brasília, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília, DF, Brazil
- *Correspondence: Claudia C. Gatto,
| |
Collapse
|
4
|
Sahu G, Patra SA, Lima S, Das S, Görls H, Plass W, Dinda R. Ruthenium(II)-Dithiocarbazates as Anticancer Agents: Synthesis, Solution Behavior, and Mitochondria-Targeted Apoptotic Cell Death. Chemistry 2023; 29:e202202694. [PMID: 36598160 DOI: 10.1002/chem.202202694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
The reaction of the Ru(PPh3 )3 Cl2 with HL1-3 -OH (-OH stands for the oxime hydroxyl group; HL1 -OH=diacetylmonoxime-S-benzyldithiocarbazonate; HL2 -OH=diacetylmonoxime-S-(4-methyl)benzyldithiocarbazonate; and HL3 -OH=diacetylmonoxime-S-(4-chloro)benzyl-dithiocarbazonate) gives three new ruthenium complexes [RuII (L1-3 -H)(PPh3 )2 Cl] (1-3) (-H stands for imine hydrogen) coordinated with dithiocarbazate imine as the final products. All ruthenium(II) complexes (1-3) have been characterized by elemental (CHNS) analyses, IR, UV-vis, NMR (1 H, 13 C, and 31 P) spectroscopy, HR-ESI-MS spectrometry and also, the structure of 1-2 was further confirmed by single crystal X-ray crystallography. The solution/aqueous stability, hydrophobicity, DNA interactions, and cell viability studies of 1-3 against HeLa, HT-29, and NIH-3T3 cell lines were performed. Cell viability results suggested 3 being the most cytotoxic of the series with IC50 6.9±0.2 μM against HeLa cells. Further, an apoptotic mechanism of cell death was confirmed by cell cycle analysis and Annexin V-FITC/PI double staining techniques. In this regard, the live cell confocal microscopy results revealed that compounds primarily target the mitochondria against HeLa, and HT-29 cell lines. Moreover, these ruthenium complexes elevate the ROS level by inducing mitochondria targeting apoptotic cell death.
Collapse
Affiliation(s)
- Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.,Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
5
|
Gou Y, Jia X, Hou LX, Deng JG, Huang GJ, Jiang HW, Yang F. Dithiocarbazate-Fe III, -Co III, -Ni II, and -Zn II Complexes: Design, Synthesis, Structure, and Anticancer Evaluation. J Med Chem 2022; 65:6677-6689. [PMID: 35446587 DOI: 10.1021/acs.jmedchem.1c02186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Non-platinum-metal complexes show great potential as anticancer agents. Herein, a series of dithiocarbazate non-Pt-metal complexes, including [FeIII(L)2]·Cl·2H2O 1, [CoIII(L)2]·NO3·2.5H2O 2, [NiII(L)2] 3, and [ZnII(L)2] 4, have been designed and evaluated for their efficacy as antineoplastic agents. Among them, complex 2 exhibited higher anticancer efficacy than complexes 1, 3, 4, and cisplatin against several cancer cell lines. Hemolysis assays revealed that complex 2 showed comparable hemolysis with cisplatin. In vivo anticancer evaluations showed that complex 2 could retard tumor xenograft growth effectively with low systemic toxicity. Further studies revealed that complex 2 suppressed cancer cells by triggering multiple mechanisms involving the simultaneous inhibition of mitochondria and glycolytic bioenergetics. Overall, our study provides new insights into the anticancer mechanism of Co complexes, which can be used as a good strategy to overcome the flexibility of cancer cells to chemotherapy adaptation.
Collapse
Affiliation(s)
- Yi Gou
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Xiaoying Jia
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Norma University, Guilin 541004, Guangxi, China
| | - Li Xia Hou
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Jun Gang Deng
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Guo Jin Huang
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Hao Wen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Feng Yang
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Norma University, Guilin 541004, Guangxi, China
| |
Collapse
|
6
|
Wu S, Wu Z, Ge Q, Zheng X, Yang Z. Antitumor activity of tridentate pincer and related metal complexes. Org Biomol Chem 2021; 19:5254-5273. [PMID: 34059868 DOI: 10.1039/d1ob00577d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pincer complexes featuring tunable tridentate ligand frameworks are one of the most actively studied classes of metal-based complexes. Currently, growing attention is devoted to the cytotoxicity of pincer and related metal complexes. The antiproliferative activity of numerous pincer complexes has been reported. Pincer tridentate ligand scaffolds show different coordination modes and offer multiple options for directed structural modifications. This review summarizes the significant progress in the research studies of the antitumor activity of pincer and related platinum(ii), gold(iii), palladium(ii), copper(ii), iron(iii), ruthenium(ii), nickel(ii) and some other metal complexes, in order to provide a reference for designing novel metal coordination drug candidates with promising antitumor activity.
Collapse
Affiliation(s)
- Shulei Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zaoduan Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Xing Zheng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
7
|
Li Y, Fan X, Wang J, Kong C, Chen J, Wang S, Li H, Bai F, Zhang H. Comparative study on the photophysical properties between carbene‐based Fe (II) and Ru (II) complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuan Li
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130023 People's Republic of China
| | - Xue‐Wen Fan
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130023 People's Republic of China
| | - Jian Wang
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130023 People's Republic of China
| | - Chui‐Peng Kong
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130023 People's Republic of China
| | - Jie Chen
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130023 People's Republic of China
| | - Shi‐Ping Wang
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130023 People's Republic of China
| | - Hui‐Cong Li
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130023 People's Republic of China
| | - Fu‐Quan Bai
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130023 People's Republic of China
| | - Hong‐Xing Zhang
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130023 People's Republic of China
| |
Collapse
|
8
|
Bouché M, Hognon C, Grandemange S, Monari A, Gros PC. Recent advances in iron-complexes as drug candidates for cancer therapy: reactivity, mechanism of action and metabolites. Dalton Trans 2020; 49:11451-11466. [PMID: 32776052 DOI: 10.1039/d0dt02135k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this perspective, we discuss iron-complexes as drug candidates that are promising alternatives to conventional platinum-based chemotherapies owing to their broad range of reactivities and to the targeting of different biological systems. Breakthroughs in the comprehension of iron complexes' structure-activity relationship contributed to the clarification of their metabolization pathways, sub-cellular localization and influence on iron homeostasis, while enlightening the primary molecular targets of theses likely multi-target metallodrugs. Both the antiproliferative activity and elevated safety index observed among the family of iron complexes showed encouraging results as per their therapeutic potential and selectivity also with the aim of reducing chemotherapy side-effects, and facilitated more pre-clinical investigations. The purpose of this perspective is to summarize the recent advances that contributed in unveiling the intricate relationships between the structural modifications on iron-complexes and their reactivity, cellular trafficking and global mechanisms of action to broaden their use as anticancer drugs and advance to clinical evaluation.
Collapse
Affiliation(s)
- Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| | - Cécilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Philippe C Gros
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| |
Collapse
|