1
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
2
|
Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotechnol 2024; 44:618-640. [PMID: 37158096 DOI: 10.1080/07388551.2023.2196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
3
|
Liu PY, Wu JJ, Li G, Lin CB, Jiang S, Liu S, Wan X. The Biosynthesis of Astaxanthin Esters in Schizochytrium sp. is Mediated by a Bifunctional Diacylglycerol Acyltransferase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3584-3595. [PMID: 38344823 DOI: 10.1021/acs.jafc.3c09086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Astaxanthin esters are a major form of astaxanthin found in nature. However, the exact mechanisms of the biosynthesis and storage of astaxanthin esters were previously unknown. We found that Schizochytrium sp. synthesized both astaxanthin and docosahexaenoic acid (DHA)-enriched lipids. The major type of astaxanthin produced was free astaxanthin along with astaxanthin-DHA monoester and other esterified forms. DHA accounted for 41.0% of the total fatty acids from astaxanthin monoesters. These compounds were deposited mainly in lipid droplets. The biosynthesis of the astaxanthin esters was mainly carried out by a novel diacylglycerol acyltransferase ScDGAT2-1, while ScDGAT2-2 was involved only in the production of triacylglycerol. We also identified astaxanthin ester synthases from the astaxanthin-producing algae Haematococcus pluvialis and Chromochloris zofingiensis, as well as a thraustochytrid Hondaea fermentalgiana with an unknown carotenoid profile. This investigation enlightens the application of thraustochytrids for the production of both DHA and astaxanthin and provides enzyme resources for the biosynthesis of astaxanthin esters in the engineered microbes.
Collapse
Affiliation(s)
- Peng-Yang Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun-Jie Wu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Gang Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chu-Bin Lin
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Wuhan Polytechnic University, Wuhan 430048, China
| | - Shan Jiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shuang Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Wuhan Polytechnic University, Wuhan 430048, China
| | - Xia Wan
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
4
|
Schütte L, Hanisch PG, Scheler N, Haböck KC, Huber R, Ersoy F, Berger RG. Squalene production under oxygen limitation by Schizochytrium sp. S31 in different cultivation systems. Appl Microbiol Biotechnol 2024; 108:201. [PMID: 38349390 PMCID: PMC10864429 DOI: 10.1007/s00253-024-13051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
The triterpene squalene is widely used in the food, cosmetics and pharmaceutical industries due to its antioxidant, antistatic and anti-carcinogenic properties. It is usually obtained from the liver of deep sea sharks, which are facing extinction. Alternative production organisms are marine protists from the family Thraustochytriaceae, which produce and store large quantities of various lipids. Squalene accumulation in thraustochytrids is complex, as it is an intermediate in sterol biosynthesis. Its conversion to squalene 2,3-epoxide is the first step in sterol synthesis and is heavily oxygen dependent. Hence, the oxygen supply during cultivation was investigated in our study. In shake flask cultivations, a reduced oxygen supply led to increased squalene and decreased sterol contents and yields. Oxygen-limited conditions were applied to bioreactor scale, where squalene accumulation and growth of Schizochytrium sp. S31 was determined in batch, fed-batch and continuous cultivation. The highest dry matter (32.03 g/L) was obtained during fed-batch cultivation, whereas batch cultivation yielded the highest biomass productivity (0.2 g/L*h-1). Squalene accumulation benefited from keeping the microorganisms in the growth phase. Therefore, the highest squalene content of 39.67 ± 1.34 mg/g was achieved by continuous cultivation (D = 0.025 h-1) and the highest squalene yield of 1131 mg/L during fed-batch cultivation. Volumetric and specific squalene productivity both reached maxima in the continuous cultivation at D = 0.025 h-1 (6.94 ± 0.27 mg/L*h-1 and 1.00 ± 0.03 mg/g*h-1, respectively). Thus, the choice of a suitable cultivation method under oxygen-limiting conditions depends heavily on the process requirements. KEY POINTS: • Measurements of respiratory activity and backscatter light of thraustochytrids • Oxygen limitation increased squalene accumulation in Schizochytrium sp. S31 • Comparison of different cultivation methods under oxygen-limiting conditions.
Collapse
Affiliation(s)
- Lina Schütte
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany.
| | - Patrick G Hanisch
- Department of Engineering and Management, Munich University of Applied Sciences HM, Munich, Germany
| | - Nina Scheler
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Katharina C Haböck
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Robert Huber
- Department of Engineering and Management, Munich University of Applied Sciences HM, Munich, Germany
| | - Franziska Ersoy
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Ralf G Berger
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
5
|
Debnath T, Bandyopadhyay TK, Vanitha K, Bobby MN, Nath Tiwari O, Bhunia B, Muthuraj M. Astaxanthin from microalgae: A review on structure, biosynthesis, production strategies and application. Food Res Int 2024; 176:113841. [PMID: 38163732 DOI: 10.1016/j.foodres.2023.113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Astaxanthin is a red-colored secondary metabolite with excellent antioxidant properties, typically finds application as foods, feed, cosmetics, nutraceuticals, and medications. Astaxanthin is usually produced synthetically using chemicals and costs less as compared to the natural astaxanthin obtained from fish, shrimps, and microorganisms. Over the decades, astaxanthin has been naturally synthesized from Haematococcus pluvialis in commercial scales and remains exceptional, attributed to its higher bioactive properties as compared to synthetic astaxanthin. However, the production cost of algal astaxanthin is still high due to several bottlenecks prevailing in the upstream and downstream processes. To that end, the present study intends to review the recent trends and advancements in astaxanthin production from microalgae. The structure of astaxanthin, sources, production strategies of microalgal astaxanthin, and factors influencing the synthesis of microalgal astaxanthin were discussed while detailing the pathway involved in astaxanthin biosynthesis. The study also discusses the relevant downstream process used in commercial scales and details the applications of astaxanthin in various health related issues.
Collapse
Affiliation(s)
- Taniya Debnath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India
| | | | - Kondi Vanitha
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak, Telangana, India
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Guntur 522213, Andhra Pradesh, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute (ICAR), New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India; Department of Bio Engineering, National Institute of Technology, Agartala-799046, India.
| |
Collapse
|
6
|
Bi Y, Guo P, Liu L, Chen L, Zhang W. Elucidation of sterol biosynthesis pathway and its co-regulation with fatty acid biosynthesis in the oleaginous marine protist Schizochytrium sp. Front Bioeng Biotechnol 2023; 11:1188461. [PMID: 37180050 PMCID: PMC10174431 DOI: 10.3389/fbioe.2023.1188461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Sterols constitute vital structural and regulatory components of eukaryotic cells. In the oleaginous microorganism Schizochytrium sp. S31, the sterol biosynthetic pathway primarily produces cholesterol, stigmasterol, lanosterol, and cycloartenol. However, the sterol biosynthesis pathway and its functional roles in Schizochytrium remain unidentified. Through Schizochytrium genomic data mining and a chemical biology approach, we first in silico elucidated the mevalonate and sterol biosynthesis pathways of Schizochytrium. The results showed that owing to the lack of plastids in Schizochytrium, it is likely to use the mevalonate pathway as the terpenoid backbone pathway to supply isopentenyl diphosphate for the synthesis of sterols, similar to that in fungi and animals. In addition, our analysis revealed a chimeric organization of the Schizochytrium sterol biosynthesis pathway, which possesses features of both algae and animal pathways. Temporal tracking of sterol profiles reveals that sterols play important roles in Schizochytrium growth, carotenoid synthesis, and fatty acid synthesis. Furthermore, the dynamics of fatty acid and transcription levels of genes involved in fatty acid upon chemical inhibitor-induced sterol inhibition reveal possible co-regulation of sterol synthesis and fatty acid synthesis, as the inhibition of sterol synthesis could promote the accumulation of fatty acid in Schizochytrium. Sterol and carotenoid metabolisms are also found possibly co-regulated, as the inhibition of sterols led to decreased carotenoid synthesis through down-regulating the gene HMGR and crtIBY in Schizochytrium. Together, elucidation of the Schizochytrium sterol biosynthesis pathway and its co-regulation with fatty acid synthesis lay the essential foundation for engineering Schizochytrium for the sustainable production of lipids and high-value chemicals.
Collapse
Affiliation(s)
- Yali Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Pengfei Guo
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Liangsen Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
- *Correspondence: Weiwen Zhang,
| |
Collapse
|
7
|
Li L, Tang X, Luo Y, Hu X, Ren L. Accumulation and conversion of β-carotene and astaxanthin induced by abiotic stresses in Schizochytrium sp. Bioprocess Biosyst Eng 2022; 45:911-920. [PMID: 35212833 DOI: 10.1007/s00449-022-02709-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/12/2022] [Indexed: 11/02/2022]
Abstract
Astaxanthin is a kind of ketone carotenoid belonging to tetraterpenoids with an excellent antioxidant activity and it is widely used in nutrition and health-care industries. This study aimed to explore the effect of different abiotic stresses on carotenoid production in Schizochytrium sp. Firstly, the characteristics of carotenoid accumulation were studied in Schizochytrium sp. by monitoring the change of carotenoid yields and gene expressions. Then, different abiotic stresses were systematically studied to regulate the carotenoid accumulation. Results showed that low temperature could advance the astaxanthin accumulation, while ferric ion could stimulate the conversion from carotene to astaxanthin. The glucose and monosodium glutamate ratio of 100:5 was helpful for the accumulation of β-carotene. In addition, micro-oxygen supply conditions could increase the yield of β-carotene and astaxanthin by 25.47% and 14.92%, respectively. This study provided the potential regulation strategies for carotenoid production which might be used in different carotenoid-producing strains.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmaceutical and Chemical Engineering, Chengxian College, Southeast University, No. 6 Dongda Road, Nanjing, 210088, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiuyang Tang
- School of Pharmaceutical and Chemical Engineering, Chengxian College, Southeast University, No. 6 Dongda Road, Nanjing, 210088, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Yangyang Luo
- School of Pharmaceutical and Chemical Engineering, Chengxian College, Southeast University, No. 6 Dongda Road, Nanjing, 210088, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xuechao Hu
- School of Pharmaceutical and Chemical Engineering, Chengxian College, Southeast University, No. 6 Dongda Road, Nanjing, 210088, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Lujing Ren
- School of Pharmaceutical and Chemical Engineering, Chengxian College, Southeast University, No. 6 Dongda Road, Nanjing, 210088, People's Republic of China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
8
|
Liu C, Hu B, Cheng Y, Guo Y, Yao W, Qian H. Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments. BIORESOURCE TECHNOLOGY 2021; 337:125398. [PMID: 34139560 DOI: 10.1016/j.biortech.2021.125398] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The demand for carotenoids from natural sources obtained by biological extraction methods is increasing with the development of biotechnology and the continued awareness of food safety. Natural plant-derived carotenoids have a relatively high production cost and are affected by the season, while microbial-derived carotenoids are favored due to their natural, high-efficiency, low production cost, and ease of industrialization. This article reviewed the following aspects of natural carotenoids derived from microorganisms: (1) the structures and properties of main carotenoids; (2) fungal and microalgal sources of the main carotenoids; (3) influencing factors and modes of improvement for carotenoids production; (4) efficient extraction methods for carotenoids; and (5) the commercial value of carotenoids. This review provided a reference and guidance for the development of natural carotenoids derived from microorganisms.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Bin Hu
- School of Biotechnology, Jiangnan University, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
9
|
Sañé E, Del Mondo A, Ambrosino L, Smerilli A, Sansone C, Brunet C. The Recent Advanced in Microalgal Phytosterols: Bioactive Ingredients Along With Human-Health Driven Potential Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Elisabet Sañé
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia E Biotecnologie Marine, Napoli, Italy
| | - Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia E Biotecnologie Marine, Napoli, Italy
| | - Luca Ambrosino
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia E Biotecnologie Marine, Napoli, Italy
| | - Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia E Biotecnologie Marine, Napoli, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia E Biotecnologie Marine, Napoli, Italy
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia E Biotecnologie Marine, Napoli, Italy
| |
Collapse
|
10
|
Wan X, Zhou XR, Moncalian G, Su L, Chen WC, Zhu HZ, Chen D, Gong YM, Huang FH, Deng QC. Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering. Prog Lipid Res 2020; 81:101083. [PMID: 33373616 DOI: 10.1016/j.plipres.2020.101083] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
There is an increasing demand for astaxanthin in food, feed, cosmetics and pharmaceutical applications because of its superior anti-oxidative and coloring properties. However, naturally produced astaxanthin is expensive, mainly due to low productivity and limited sources. Reprogramming of microorganisms for astaxanthin production via metabolic engineering is a promising strategy. We primarily focus on the application of synthetic biology, enzyme engineering and metabolic engineering in enhancing the synthesis and accumulation of astaxanthin in microorganisms in this review. We also discuss the biosynthetic pathways of astaxanthin within natural producers, and summarize the achievements and challenges in reprogramming microorganisms for enhancing astaxanthin production. This review illuminates recent biotechnological advances in microbial production of astaxanthin. Future perspectives on utilization of new technologies for boosting microbial astaxanthin production are also discussed.
Collapse
Affiliation(s)
- Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | | | - Gabriel Moncalian
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Wen-Chao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Hang-Zhi Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Dan Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yang-Min Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Feng-Hong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | - Qian-Chun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| |
Collapse
|