1
|
Rahman MA, Azmi IS, Ab Kadir MZ, Mohamed N, Jalil MJ. Eco friendly synthesis of epoxidized palm oleic acid in acidic ion exchange resin. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2023. [DOI: 10.1515/ijcre-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Abstract
Global raw material use has moved from a non-renewable to a renewable resource. Additionally, the research on epoxidation has produced a safer, more cost-effective, and ecologically friendly product than non-renewable resources. At present, there are limited studies on the production of epoxidized palm oleic acid using eco-friendly ion exchange resin method. Consequently, the objective of this study is to optimise the reaction conditions of epoxidation palm oleic acid using ion exchange resin (amberlite IR 120H) as a catalyst. Epoxidized palm oleic acid was prepared using performic acid formed in situ by mixing formic acid with hydrogen peroxide. The results showed that the optimum reaction conditions for the production of oxirane content were a temperature of 75 °C and a hydrogen peroxide concentration of 30%. The maximum relative conversion of palm oleic acid to oxirane was achieved using the optimum conditions with up to 75%. Finally, a mathematical model was developed using MATLAB and the fourth-order Runge–Kutta method was integrated with the genetic algorithm to determine the reaction rate, which was consistent with the experimental data. This study proved that palm oleic acid was successfully converted into a green epoxide that promotes the use of palm oil as a raw material.
Collapse
Affiliation(s)
- Mariam A. Rahman
- Chemical Engineering Studies , College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang , Kampus Permatang Pauh , Pulau Pinang , Malaysia
| | - Intan Suhada Azmi
- Chemical Engineering Studies , College of Engineering, Universiti Teknologi MARA Cawangan Johor , Kampus Pasir Gudang , Segamat , Malaysia
| | - Mohd Zulkipli Ab Kadir
- Chemical Engineering Studies , College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang , Kampus Permatang Pauh , Pulau Pinang , Malaysia
| | - Noorfazlida Mohamed
- Chemical Engineering Studies , College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang , Kampus Permatang Pauh , Pulau Pinang , Malaysia
| | - Mohd Jumain Jalil
- Chemical Engineering Studies , College of Engineering, Universiti Teknologi MARA Cawangan Johor , Kampus Pasir Gudang , Segamat , Malaysia
| |
Collapse
|
2
|
Chen BX, Sun JP. A radiative cooling, anti‐corrosion multifunctional composite coating derived from
Jatropha
(
Jatropha curcas L.
) oil. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bo Xi Chen
- School of Resources, Environment and Materials Guangxi University Nanning Guangxi China
| | - Jian Ping Sun
- School of Resources, Environment and Materials Guangxi University Nanning Guangxi China
| |
Collapse
|
3
|
Iwassa IJ, Saldaña MDA, Cardozo‐Filho L, da Silva C. Epoxidation of crambe seed oil with peracetic acid formed in situ. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Isabela Julio Iwassa
- Programa de Pós‐graduação em Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brazil
| | - Marleny D. A. Saldaña
- Department of Agricultural, Food and Nutritional Science University of Alberta Edmonton Alberta Canada
| | - Lucio Cardozo‐Filho
- Programa de Pós‐graduação em Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brazil
| | - Camila da Silva
- Programa de Pós‐graduação em Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brazil
| |
Collapse
|
4
|
Dominguez-Candela I, Lerma-Canto A, Cardona SC, Lora J, Fombuena V. Physicochemical Characterization of Novel Epoxidized Vegetable Oil from Chia Seed Oil. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3250. [PMID: 35591583 PMCID: PMC9100186 DOI: 10.3390/ma15093250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022]
Abstract
In this study, a novel epoxidized vegetable oil (EVO) from chia seed oil (CSO) has been obtained, with the aim to be employed in a great variety of green products related to the polymeric industry, as plasticizers and compatibilizers. Previous to the epoxidation process characterization, the fatty acid (FA) composition of CSO was analyzed using gas chromatography (GC). Epoxidation of CSO has been performed using peracetic acid formed in situ with hydrogen peroxide and acetic acid, applying sulfuric acid as catalyst. The effects of key parameters as temperature (60, 70, and 75 °C), the molar ratio of hydrogen peroxide:double bond (H2O2:DB) (0.75:1.0 and 1.50:1.0), and reaction time (0-8 h) were evaluated to obtain the highest relative oxirane oxygen yield (Yoo). The evaluation of the epoxidation process was carried out through iodine value (IV), oxirane oxygen content (Oo), epoxy equivalent weight (EEW), and selectivity (S). The main functional groups were identified by means of FTIR and 1H NMR spectroscopy. Physical properties were compared in the different assays. The study of different parameters showed that the best epoxidation conditions were carried out at 75 °C and H2O2:DB (1.50:1), obtaining an Oo value of 8.26% and an EEW of 193 (g·eq-1). These high values, even higher than those obtained for commercial epoxidized oils such as soybean or linseed oil, show the potential of the chemical modification of chia seed oil to be used in the development of biopolymers.
Collapse
Affiliation(s)
- Ivan Dominguez-Candela
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Alejandro Lerma-Canto
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
| | - Salvador Cayetano Cardona
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Jaime Lora
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Vicent Fombuena
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
| |
Collapse
|
5
|
Effective Epoxidation of Fatty Acid Methyl Esters with Hydrogen Peroxide by the Catalytic System H3PW12O40/Quaternary Phosphonium Salts. Catalysts 2021. [DOI: 10.3390/catal11091058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Six quaternary phosphonium salts (QPSs) in combination with phosphotungstic heteropolyacid, H3PW12O40, were tested in the epoxidation of rapeseed oil fatty acid methyl esters with a hydrogen peroxide aqueous solution. The QPSs consisted of trihexyl(tetradecyl)phosphonium [P6], tributyl-tetradecylphosphonium [P4] or tetraoctylphosphonium [P8] cation and different anions—chloride (Cl−), bromide (Br−), tetrafluoroborate (BF4−), bis(trifluoromethylsulfonyl)amide (NTf2−), bis(2,4,4-trimethyl-pentyl)phosphinate (Phosf−). The influence of the kind of QPS and temperature on the epoxy number, iodine number, glycol content has been determined. The epoxidation was confirmed using Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) and elemental analysis CHO. Two QPSs with a trihexyltetradecyphosphonium cation—[P6][Fosf] and [P6][Cl]—were selected as the most effective in the studied epoxidation process. The proposed kinetic model takes into consideration the two reactions, namely, epoxidation and epoxy ring opening involving the formation of hydroxyl groups. The rate constants and activation energies for epoxidation fatty acid methyl esters were determined.
Collapse
|
6
|
The Lord of the Chemical Rings: Catalytic Synthesis of Important Industrial Epoxide Compounds. Catalysts 2021. [DOI: 10.3390/catal11070765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epoxidized group, also known as the oxirane group, can be considered as one of the most crucial rings in chemistry. Due to the high ring strain and the polarization of the C–O bond in this three-membered ring, several reactions can be carried out. One can see such a functional group as a crucial intermediate in fuels, polymers, materials, fine chemistry, etc. Literature covering the topic of epoxidation, including the catalytic aspect, is vast. No review articles have been written on the catalytic synthesis of short size, intermediate and macro-molecules to the best of our knowledge. To fill this gap, this manuscript reviews the main catalytic findings for the production of ethylene and propylene oxides, epichlorohydrin and epoxidized vegetable oil. We have selected these three epoxidized molecules because they are the most studied and produced. The following catalytic systems will be considered: homogeneous, heterogeneous and enzymatic catalysis.
Collapse
|
7
|
Abstract
A cleaner solvent-free process of used cooking oil epoxidation has been developed. The epoxidation reactions were carried out using “in situ”-formed peroxy acid. A variety of ion exchange resins with different cross-linking percentages and particle sizes such as Dowex 50WX2 50-100, Dowex 50WX2 100-200, Dowex 50WX2 200-400, Dowex 50WX4 50-100, Dowex 50WX4 100-200, Dowex 50WX4 200-400, Dowex 50WX8 50-100, Dowex 50WX8 100-200, Dowex 50WX8 200-400 were used in the synthesis as heterogeneous catalysts. No significant effect of the size as well as porosity of the catalysts on the properties of the final products was observed. In order to develop a more economically beneficial process, a much cheaper heterogeneous catalyst—Amberlite IR-120—was used and the properties of the epoxidized oil were compared with the bio-components obtained in the reaction catalyzed by the Dowex resins. The epoxidized waste oils obtained in the experiments were characterized by epoxy values in the range of 0.32–0.35 mol/100 g. To reduce the amount of waste, the reusability of the ion exchange resin in the epoxidation reaction was studied. Ten reactions were carried out using the same catalyst and each synthesis was monitored by determination of epoxy value changes vs. time of the reactions. It was noticed that in the case of the reactions where the catalyst was reused for the third and fourth time the content of oxirane rings was higher by 8 and 6%, respectively, compared to the reaction where the catalyst was used only one time. Such an observation has not been reported so far. The epoxidation process with catalyst recirculation is expected to play an important role in the development of a new approach to the environmentally friendly solvent-free epoxidation process of waste oils.
Collapse
|
8
|
Mudri NH, Abdullah LC, Aung MM, Salleh MZ, Awang Biak DR, Rayung M. Comparative Study of Aromatic and Cycloaliphatic Isocyanate Effects on Physico-Chemical Properties of Bio-Based Polyurethane Acrylate Coatings. Polymers (Basel) 2020; 12:polym12071494. [PMID: 32635384 PMCID: PMC7407579 DOI: 10.3390/polym12071494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
Crude jatropha oil (JO) was modified to form jatropha oil-based polyol (JOL) via two steps in a chemical reaction known as epoxidation and hydroxylation. JOL was then reacted with isocyanates to produce JO-based polyurethane resin. In this study, two types of isocyanates, 2,4-toluene diisocyanate (2,4-TDI) and isophorone diisocyanate (IPDI) were introduced to produce JPUA-TDI and JPUA-IPDI respectively. 2,4-TDI is categorised as an aromatic isocyanate whilst IPDI is known as a cycloaliphatic isocyanate. Both JPUA-TDI and JPUA-IPDI were then end-capped by the acrylate functional group of 2-hydroxyethyl methacrylate (HEMA). The effects of that isocyanate structure were investigated for their physico, chemical and thermal properties. The changes of the functional groups during each synthesis step were monitored by FTIR analysis. The appearance of urethane peaks was observed at 1532 cm−1, 1718 cm−1 and 3369 cm−1 while acrylate peaks were detected at 815 cm−1 and 1663 cm−1 indicating that JPUA was successfully synthesised. It was found that the molar mass of JPUA-TDI was doubled compared to JPUA-IPDI. Each resin showed a similar degradation pattern analysed by thermal gravimetric analysis (TGA). For the mechanical properties, the JPUA-IPDI-based coating formulation exhibited a higher hardness value but poor adhesion compared to the JPUA-TDI-based coating formulation. Both types of jatropha-based polyurethane acrylate may potentially be used in an ultraviolet (UV) curing system specifically for clear coat surface applications to replace dependency on petroleum-based chemicals.
Collapse
Affiliation(s)
- Nurul Huda Mudri
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Kajang 43000, Selangor, Malaysia;
- Correspondence: (N.H.M); (L.C.A.); Tel.: +60-3-8946-6288 (L.C.A.)
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.A.); (M.R.)
- Correspondence: (N.H.M); (L.C.A.); Tel.: +60-3-8946-6288 (L.C.A.)
| | - Min Min Aung
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.A.); (M.R.)
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mek Zah Salleh
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Kajang 43000, Selangor, Malaysia;
| | - Dayang Radiah Awang Biak
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43000, Selangor, Malaysia
| | - Marwah Rayung
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.A.); (M.R.)
- Department of Chemistry, Faculty of Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
9
|
Bio-Resin Production through Ethylene Unsaturated Carbon Using Vegetable Oils. Processes (Basel) 2020. [DOI: 10.3390/pr8010048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bio-resins are bio-based materials derived from vegetable resources, especially from vegetable seed oils. It is widely known that bio-resources are renewable, highly available, and sustainable. Resins and most polymers are largely derived from petroleum-based sources that are known to pose chemical risks. Resins have practical applications in printing inks, plasticisers and diluents, as well as in coating materials. Vegetable oils possess a large number of oxirane groups, which are essential for epoxidation to occur, resulting in the production of bio-resins. This undeniably serves as a promising candidate for competing with fossil-fuel-derived petroleum-based products. Thus, the aim of this review paper is to highlight aspects related to the production of bio-resins, including the chemical route of vegetable oil epoxidation process and its influencing factors, the reaction kinetics, bio-resins and the physico-chemical and mechanical properties of bio-resins, along with their applications. The resins industry has seen some remarkable progress towards the commercialisation of several bio-resins originating from vegetable oils, such as soybean oil, castor oil, and linseed oil. This success has undoubtedly intensified further efforts in fields related to bio-resin applications. Research and development is ongoing with the aim of customising a feasible formulation for the synthesis of bio-resins with the desired properties for catering to various applications
Collapse
|
10
|
Derahman A, Abidin ZZ, Cardona F, Biak DRA, Tahir PM, Abdan K, Liew KE. EPOXIDATION OF JATROPHA METHYL ESTERS VIA ACIDIC ION EXCHANGE RESIN: OPTIMIZATION AND CHARACTERIZATION. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190362s20180326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Technological Parameters of Epoxidation of Sesame Oil with Performic Acid. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2018. [DOI: 10.2478/pjct-2018-0038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The course of epoxidation of sesame oil (SO) with performic acid formed „in situ” by the reaction of 30 wt% hydrogen peroxide and formic acid in the presence of sulfuric acid(VI) as a catalyst was studied. The most advantageous of the technological independent parameters of epoxidation are as follows: temperature 80°C, H2O2/ C=C 3.5:1, HCOOH/C=C 0.8:1, amount of catalyst as H2SO4/(H2O2+HCOOH) 1 wt%, stirring speed at least 700 rpm, reaction time 6 h. The iodine number (IN), epoxy number (EN), a relative conversion to oxirane (RCO) and oxirane oxygen content (EOe) were determined every hour during the reaction. Under optimal conditions the sesame oil conversion amounted to 90.7%, the selectivity of transformation to epoxidized sesame oil was equal to 93.2%, EN = 0.34 mol/100 g, IN = 0.04 mol/100 g oil (10.2 g/100 g oil), a relative conversion to oxirane RCO = 84.6%, and oxirane oxygen content of EOe = 5.5%.
Collapse
|
12
|
Bhalerao MS, Kulkarni VM, Patwardhan AV. Ultrasound-assisted chemoenzymatic epoxidation of soybean oil by using lipase as biocatalyst. ULTRASONICS SONOCHEMISTRY 2018; 40:912-920. [PMID: 28946503 DOI: 10.1016/j.ultsonch.2017.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
The present work reports the use of ultrasonic irradiation for enhancing lipase catalyzed epoxidation of soybean oil. Higher degree of unsaturated fatty acids, present in the soybean oil was converted to epoxidized soybean oil by using an immobilized lipase, Candida antarctica (Novozym 435). The effects of various parameters on the relative percentage conversion of the double bond to oxirane oxygen were investigated and the optimum conditions were established. The parameters studied were temperature, hydrogen peroxide to ethylenic unsaturation mole ratio, stirring speed, solvent ratio, catalyst loading, ultrasound frequency, ultrasound input power and duty cycle. The main objective of this work was to intensify chemoenzymatic epoxidation of the soybean oil by using ultrasound, to reduce the time required for epoxidation. Epoxidation of the soybean oil was achieved under mild reaction conditions by indirect ultrasonic irradiations (using ultrasonic bath). The relative percentage conversion to oxirane oxygen of 91.22% was achieved within 5h. The lipase was remarkably stable under optimized reaction conditions, later was recovered and reused six times to produce epoxidized soybean oil (ESO).
Collapse
Affiliation(s)
- Machhindra S Bhalerao
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India
| | - Vaishali M Kulkarni
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India
| | - Anand V Patwardhan
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
13
|
Saalah S, Abdullah LC, Aung MM, Salleh MZ, Awang Biak DR, Basri M, Jusoh ER, Mamat S. Physicochemical Properties of Jatropha Oil-Based Polyol Produced by a Two Steps Method. Molecules 2017; 22:molecules22040551. [PMID: 28353677 PMCID: PMC6154640 DOI: 10.3390/molecules22040551] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/15/2017] [Accepted: 03/25/2017] [Indexed: 12/05/2022] Open
Abstract
A low cost, abundant, and renewable vegetable oil source has been gaining increasing attention due to its potential to be chemically modified to polyol and thence to become an alternative replacement for the petroleum-based polyol in polyurethane production. In this study, jatropha oil-based polyol (JOL) was synthesised from non-edible jatropha oil by a two steps process, namely epoxidation and oxirane ring opening. In the first step, the effect of the reaction temperature, the molar ratio of the oil double bond to formic acid, and the reaction time on the oxirane oxygen content (OOC) of the epoxidised jatropha oil (EJO) were investigated. It was found that 4.3% OOC could be achieved with a molar ratio of 1:0.6, a reaction temperature of 60 °C, and 4 h of reaction. Consequently, a series of polyols with hydroxyl numbers in the range of 138–217 mgKOH/g were produced by oxirane ring opening of EJOs, and the physicochemical and rheological properties were studied. Both the EJOs and the JOLs are liquid and have a number average molecular weight (Mn) in the range of 834 to 1457 g/mol and 1349 to 2129 g/mol, respectively. The JOLs exhibited Newtonian behaviour, with a low viscosity of 430–970 mPas. Finally, the JOL with a hydroxyl number of 161 mgKOH/g was further used to synthesise aqueous polyurethane dispersion, and the urethane formation was successfully monitored by Fourier Transform Infrared (FTIR).
Collapse
Affiliation(s)
- Sariah Saalah
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (D.R.A.B.); (S.M.)
- Higher Institution Centre of Excellence Wood and Tropical Fibre (HICoE), Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.A.); (E.R.J.)
- Correspondence: or ; Tel.: +60-3-8946-6288
| | - Min Min Aung
- Higher Institution Centre of Excellence Wood and Tropical Fibre (HICoE), Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.A.); (E.R.J.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mek Zah Salleh
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Kajang 43000, Selangor, Malaysia;
| | - Dayang Radiah Awang Biak
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (D.R.A.B.); (S.M.)
| | - Mahiran Basri
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Emiliana Rose Jusoh
- Higher Institution Centre of Excellence Wood and Tropical Fibre (HICoE), Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.A.); (E.R.J.)
| | - Suhaini Mamat
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (D.R.A.B.); (S.M.)
- Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology (UniKL MICET), Alor Gajah 78000, Melaka, Malaysia
| |
Collapse
|
14
|
Dinda S, Veeram NSR, Adusumalli RB. Production of bio-epoxide and bio-adhesive from non-edible oil. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
|
16
|
Carbonell-Verdu A, Bernardi L, Garcia-Garcia D, Sanchez-Nacher L, Balart R. Development of environmentally friendly composite matrices from epoxidized cottonseed oil. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.11.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
|
18
|
Sammaiah A, Padmaja KV, Prasad RBN. Synthesis of epoxy jatropha oil and its evaluation for lubricant properties. J Oleo Sci 2014; 63:637-43. [PMID: 24829128 DOI: 10.5650/jos.ess13172] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vegetable oils are being investigated as potential source of environmentally favorable lubricants over synthetic products. Jatropha curcas L. oil (JO) identified as a potential raw material for biodiesel was explored for its use as a feedstock for biolubricants. Epoxidized jatropha oil (EJO) was prepared by peroxyformic acid generated in situ by reacting formic acid and hydrogen peroxide in the presence of sulfuric acid as catalyst. Almost complete conversion of unsaturated bonds in the oil into oxirane was achieved with oxirane value 5.0 and iodine value of oil reduced from 92 to 2 mg I2/g. EJO exhibited superior oxidative stability compared to JO. This study employed three antioxidants such as butylated hydroxy toluene (BHT), zinc dimethyl dithiocarbamate (ZDDC), and diphenyl amine (DPA) and found that DPA antioxidant performed better than ZDDC and BHT over EJO compared to JO. The lubricating properties of EJO and epoxy soybean oil (ESBO) are comparable. Hence, EJO can be projected as a potential lubricant basestock for high temperature applications.
Collapse
Affiliation(s)
- Arukali Sammaiah
- Centre for Lipid Research, CSIR-Indian Institute of Chemical Technology
| | | | | |
Collapse
|
19
|
de Torres M, Jiménez-Osés G, Mayoral JA, Pires E, Blanco RM, Fernández O. Evaluation of several catalytic systems for the epoxidation of methyl oleate using H2O2 as oxidant. Catal Today 2012. [DOI: 10.1016/j.cattod.2012.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Daniel L, Ardiyanti AR, Schuur B, Manurung R, Broekhuis AA, Heeres HJ. Synthesis and properties of highly branched Jatropha curcas L. oil derivatives. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201000119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Dinda S, Goud V, Patwardhan AV, Pradhan NC. Selective epoxidation of natural triglycerides using acidic ion exchange resin as catalyst. ASIA-PAC J CHEM ENG 2010. [DOI: 10.1002/apj.466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|